B.Sc. Engg. (EE), $7^{\text {h }}$ Sem.

Date: 23 December, 2023(Afternoon)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination

Course No.: EEE 4703
Course Title: Communication Engineering II

Winter Semester, A. Y. 2022-2023
Time: 3 Hours
Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in brackets.

1. a) Distinguish between coherent and non-coherent demodulation. List different

10 modulation schemes under the two headings.
b) Using generator polynomial for the $(15,5)$ cyclic code below, encode the message sequence 11011 in systematic form. Show the resulting codeword polynomial. Write the property characterizes the degree of the generator polynomial.

$$
g(X)=1+X+X^{2}+X^{5}+X^{8}+X^{10}
$$

2. a) Deduce the condition for high SER for MPSK.
b) Consider a $(7,4)$ code whose generator matrix is $\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
(i) Find all the codewords of the code
(ii) Find \mathbf{H}, the parity-check matrix of the code.
(iii) Compute the syndrome for the received vector 1101101 . Is this a valid code vector?
(iv) Find the error-correcting capability of the code.
(v) Find the error-detecting capability of the code.
3. a) Show that the probability of error of a BPSK signaling system is equal to

M-PAM signaling system.
b) Consider a systematic block code whose parity-check equations are
$P_{1}=m_{1}+m_{2}+m_{4}$
$P_{2}=m_{1}+m_{3}+m_{4}$
$P_{3}=m_{1}+m_{2}+m_{3}$
$P_{4}=m_{1}+m_{3}+m_{4}$
where m_{i} are message digits and p_{i} are check digits.
i) Find the generator matrix and the parity-check matrix for this code.
ii) Find, how many errors can the code correct.
4. a) Derive the overall probability of symbol error of QPSK scheme.
b) Figure 4(b) is a representation of convolutional encoder. Assume that a received message from this encoder is 1100010 . Using Viterbi algorithm (trellis diagram) find the transmitted sequence.

Figure 4(b)
5. a) Consider a $(7,4)$ code whose generator matrix is

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

i) Find all the codewords of the code,
ii) Find \mathbf{H}, the parity-check matrix of the code.
b) Construct a triple error-correcting BCH code with block length $\mathrm{n}=31$ over GF $\left(2^{5}\right)$. [Hints: $(\mathrm{n}, \mathrm{k})=(31,16)$]
6. a) Construct a systematic cyclic code (7, 4) using generator polynomial 15 $\mathrm{g}(\mathrm{x})=\mathrm{x} 3+\mathrm{x} 2+1$, with message (1010).
b) Determine binary trees and Huffman codes for the following source statistics:

Symbol	S0	S1	S2	S3	S4	S5	S6	S7
Probability1	0.20	0.20	0.15	0.15	0.1	0.1	0.05	0.05
Probability2	0.3	0.25	0.1	0.1	0.075	0.075	0.05	0.05

