B.Sc. Engg. (EE), 7th Sem.

Date: 23 December, 2023(Afternoon)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination Course No.: EEE 4703 Course Title: Communication Engineering II Winter Semester, A. Y. 2022-2023 Time: 3 Hours Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in brackets.

1.	a)	Distinguish between coherent and non-coherent demodulation. List different modulation schemes under the two headings.	10	(CO2, PO2)			
	b)	b) Using generator polynomial for the (15, 5) cyclic code below, encode the message sequence 11 0 11 in systematic form. Show the resulting codeword polynomial. Write the property characterizes the degree of the generator polynomial. g(X) = 1 + X + X ² + X ⁴ + X ⁴ + X ¹⁰					
2.	a)	Deduce the condition for high SER for MPSK.	10	(CO2, PO2)			
	b)	Consider a (7,4) code whose generator matrix is $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ (i) Find all the codewords of the code (ii) Find H, the party-tocks matrix of the code. (iii) Compute the synchronic first received vector 1 0 1 0 . Is this a valid (code vector)	15	(CO2, PO2)			
3.	a)	Show that the probability of error of a BPSK signaling system is equal to M-PAM signaling system.	10	(CO2, PO2)			
	b)	Consider a systematic block code whose parity-check equations are $P_1 = m_1 + m_2 + m_3$ $P_1 = m_1 + m_2 + m_3$ $P_2 = m_1 + m_2 + m_3$ where m_1 are message digits and p_2 are check digits.	15	(CO2, PO2)			

i) Find the generator matrix and the parity-check matrix for this code.

ii) Find, how many errors can the code correct.

a) Derive the overall probability of symbol error of QPSK scheme.

b) Figure 4(b) is a representation of convolutional encoder. Assume that a received 15 message from this encoder is 1 1 0 0 1 0. Using Viterbi algorithm (trellis diagram) find the transmitted sequence.

5. a) Consider a (7,4) code whose generator matrix is

			01	
			0	
			0	
			11	

i) Find all the codewords of the code,

ii) Find H, the parity-check matrix of the code.

- b) Construct a triple error-correcting BCH code with block length n = 31 over 10 GF (2⁵). [Hints: (n, k) = (31,16)]
- a) Construct a systematic cyclic code (7, 4) using generator polynomial 15 g(x) = x3+x2+1, with message (1010).
 - b) Determine binary trees and Huffman codes for the following source statistics: 10

PO2)

Symbol	S0	SI	\$2	\$3	S4	\$5	S6	\$7
Probability1	0.20	0.20	0.15	0.15	0.1	0.1	0.05	0.05
Probability2	0.3	0.25	0.1	0.1	0.075			

10

15