
M.Sc. Engg./Ph.D.

December 23, 2023
1:30 pm-4:30 pm

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination
Course No.: EEE 6413
Course Title: Engineering Optimization

Winter Semester, A. Y. 2022-2023
Time: 3 Hours
Full Marks: 150

There are 7 (Seven) questions. Answer any 5 (Five) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question are written in the brackets.

1. a) Formulate the method of Lagrange multiplier for problems with equality constraint for a simple case of two variables and one constraint. Expand the formulation to explain the necessary condition for a general problem.
b) Minimize the following objective function subjected to the given constraints by applying Lagrange multiplier method.

$$
\text { Minimize } f=9-8 x_{1}-6 x_{2}-4 x_{3}+2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}
$$

Subject to

$$
x_{1}+x_{2}+2 x_{3}=3
$$

2. a) Specify the difference between Lagrange Multiplier method and Kuhn-Tucker Conditions.
b) Minimize the following objective function subjected to the given constraints by applying Kuhn-Tucker conditions.

$$
\text { Minimize } f=\left(x_{1}-1\right)^{2}+\left(x_{2}-5\right)^{2}
$$

Subject to

$$
\begin{gathered}
-x_{1}^{2}+x_{2} \leq 4 \\
-\left(x_{1}-2\right)^{2}+x_{2} \leq 3
\end{gathered}
$$

3. a) Find all the basic solutions corresponding to the system of equations and identify whether solutions are feasible or not, optimal or not and degenerative or not.

$$
\begin{gathered}
2 x_{1}+3 x_{2}-2 x_{3}-7 x_{4}=1 \\
x_{1}+x_{2}+x_{3}+3 x_{4}=6 \\
x_{1}-x_{2}+x_{3}+5 x_{4}=4
\end{gathered}
$$

b) Solve the following linear programming problem using simplex method.

$$
\text { Maximize } f=x_{1}+2 x_{2}+x_{3}
$$

Subject to

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3} \leq 2 \\
-2 x_{1}+x_{2}-5 x_{3} \geq-6 \\
4 x_{1}+x_{2}+x_{3} \leq 6 \\
x_{1} \geq 0, \quad 1=1,2,3
\end{gathered}
$$

4. a) Define a unimodal and multimodal function with suitable diagram.
b) Find the value of x in the interval $(0,1)$ which minimizes the function $f=x(x-1.5)$ to within ± 0.05 by (i) the Dichotomous and (ii) the Fibonacci method.
5. Find the minimum of the following function by using the secant method.

$$
f(\lambda)=0.65-\frac{0.75}{1+\lambda^{2}}-0.65 \lambda \tan ^{-1}\left(\frac{1}{\lambda}\right) .
$$

6. Minimize $f=2 x_{1}^{2}+x_{2}^{2}$ from the starting point (1,2) using univariate method (Two cycles only)
7. a) Minimize $f=4 x_{1}^{2}+3 x_{2}^{2}-5 x_{1} x_{2}-8 x_{1}$ by using the steepest descent method with the starting point (0,0) (three iterations only)
b) Minimize $f=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by taking the starting point $(0,0)$ using Newton's method.
