ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

 ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERINGSemester Final Examination
Course No. ME 4103
Course Title: Statics

Winter Semester: A.Y. 2022-2023
TIME : 3 hours
Full Marks : 150

Each question carries equal marks. Symbols have their usual meanings. Draw the free body diagram if required. The right column also indicates the course objective (CO) and Program Outcomes (PO) addressed by each question. Assume reasonable values for missing data.

Q-01(a). Two cables exert forces on the pipe. Determine the magnitude of the projected component of F_{2} along the line of action of F_{2}

Q-01(b). Determine the stretch in each of two speings required to bold the 20 kg crate in equilibrium position. Each spring has an unstretched length of 2 m and a stiffness of $k=360 \mathrm{~N} / \mathrm{m}$

Q-02(a). Replace the loading on the frame by a single resultant force. Specify where its line of action intersects a horizontal line along member $C B$, measured from end C.

Q-02(b). The bent rod is supported at A, B, and C by smooth journal bearings. Determine the magnitude of F_{2} which will cause the reaction at the bearing C, to be equal to zero. The bearings are in proper alignment and exert only force reactions on the rod. Set $F_{f}=300 \mathrm{lb}$.

\mathbf{F}_{2}

Q-03(a). Determine the force in each member of the truss and state if the members are in tension

Q-03(b). Determine the force in members $\boldsymbol{B C}, \boldsymbol{H C}$, and $\boldsymbol{H G}$. State if these members are in tension or compression.

Q-04(a). The block brake is used to stop the wheel from rotating when the wheel is subjected to a couple moment $M_{c}=360 \mathrm{Nm}$. If the coefficient of static friction between the wheel and the block

Q-04(b). Determine the minimum force P needed to push the tube E up the incline. The force acts parallel to the plane, and the coefficients of static friction at the contacting surfaces are $\mu_{A}=0.2$, $\mu_{A}=0.3$, and $\mu_{C}=0.4$. The 100 kg roller and $40-\mathrm{kg}$ tube each have a radius of 150 mm .

Q-05(a). The steel plate is 0.3 m thick and has a density of $7850 \mathrm{~kg} / \mathrm{m}^{\prime}$. Determine the location of

Q-05(b). Locate the centroid \bar{z} of the frustum of the right-circular cone.

Q-06(a). The frustum is formed by rotating the shaded area around the x axis. Determine the moment of inertia I_{x} and express the result in terms of the total mass m of the frustum. The material

Q-06(b). The pendulum consists of a disk having a mass of 6 kg and slender rods $A B$ and $D C$ which have a mass per unit length of $2 \mathrm{~kg} / \mathrm{m}$. Determine the length L of $D C$ so that the center of mass is at the bearing O. What is the moment of inertia of the assembly about an axis perpendicular to the page and passing through point \boldsymbol{O} ?

Geometric Properties of Line and Area Elements

Centroid Location

Circular are segment

Crcular art segment

Quarter and semicirale arcs

Center of Gravity and Mass Moment of Inertia of Homogeneous Solids

Hamisphere
$t_{u n}=I_{y y}=0.259 m r^{2} I_{u z}=\frac{3}{m r^{2}}$

Thin Circular disk
$I_{z r}=I_{n g}=\frac{1}{4} m r^{2} \quad I_{u t}=\frac{1}{2} m r^{2} I_{n r}-\frac{1}{2} m r^{2}$

Thin ring
$I_{x x}=I_{v v}=\| m r^{2} \quad f_{m z}=m r^{2}$

Cytinder
$I_{x m}=I_{r g}=\frac{1}{1} \frac{1}{2}\left(3 r^{2}+h^{2}\right) \quad I_{a}=\frac{1}{2} m r^{2}$

Cone

$$
I_{m}=I_{n}=\frac{3}{1} m\left(4 r^{2}+h^{2}\right) I_{s t}=\frac{3}{10} m v^{2}
$$

Thin plave
$I_{x t}=\frac{1}{12} m b^{2} I_{r r}=\frac{1}{12} m a^{2} I_{\pi r}=\frac{1}{12} m\left(a^{2}+b^{2}\right)$

$t_{x x}=I_{y y}=\frac{1}{1} m t^{2} t_{x x}=l_{y y}=\frac{1}{1} x=l^{2} t_{x x}=0$

