ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OTC) DEPARTMENT OF NATURAL SCIENCES (NSc)

Semester Final Examination
 Course Code: Math 4311/Math 4399
 Course Title: Vector Analysis, Multivariable Calculus and Complex Variables

Winter Semester: A.Y. 2022-2023
Full Marks: 150
Time: 3 Hours

Answer all the questions. Marks of each question and corresponding CO and PO are written in the brackets. The symbols used have their usual meaning

L (a) Use a line integral to find the area of the region enclosed by the asteroid [13] $x=a \cos ^{3} \varphi, y-a \sin ^{3} \varphi(0 \leq \varphi \leq 2 \pi)$
(b) Use Green's Theorem to evaluate $\int x^{2} y d x+x d y$ along the triangular path C
with vertices $(0,0),(1,0)$ and $(1,2)$ described in the positive direction.
2.
(a) Evaluate $\iint_{S} A \cdot n d S$, where $\mathrm{A}=\left(\mathrm{x}+\mathrm{y}^{2}\right) \hat{-}-2 \mathrm{x} \mathbf{j}+2 \mathrm{yz} k$ and S is the surface of
the plane $2 x+y+2 z=6$ in the first octant
(b) Evaluate $\iint_{S} F \cdot n d S$, where $\mathbf{F}=4 x z i-y^{2} j+y z k$ and S is the surface of the
cube bounded by $x=0, x=1, y=0, y=1, z=0$ and $z=1$.
3. (a) Use Divergence Theorem to find the outward flux of the vector field
$\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ across the surface of the region that is enclosed by
the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and the plane $z=0$.
(b) Use Stokes' theorem to find the work performed by the force field $\mathrm{F}(x, y, z)$ -
$x^{2} 7+4 x y^{3} j+y^{2} \mathrm{xk}$ on a particle that traverses the rectangle C with comers
$(0,0,0),(1,0,0),(1,3,3)$, and $(0,3,3)$
4. (a) Construct a Riemann surface for the function $2^{1 / 3}$
(b) Determine whether the following function u is harmonic or not If yes, find the conjugate harmonic function v and express $f(z)=u+i v$ as an analytic function of z.

$$
u(x, y)=e^{x} \sin y
$$

(c) Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in a Laurant series valid for $|z-1|>1$
5. (a) State Cauchy's theorem for complex integration. Verify Cauchy's theorem for PO1 the function $f(z)=z^{3}-i z^{2}-5 z+2 i$ if C is the circle $|z|=1$.
(b) Determine the region of the w plane into which the region bounded by $x=$ POI 1, $y=1$, and $x+y=1$ is mapped by the transformation $w=z^{2}$.
(c) Evaluate $\oint_{c} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{x}} d z$ where C is the circle $|z|=4$.
(b) Find a bilinear transformation that maps the upper half of the z plane into the unit circle in the w plane in such a way that $z=i$ is mapped into $w=0$ while the point at infinity is mapped into $w=-1$.

