(10)

Name of the Program: B. Sc. (ME/IPE/BScTE 2Y) Semester: 3rd Sem./2nd Sem.

Date: 15/12/2023 Time: 9:00 am -12:00noon

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF NATURAL SCIENCES (NSc)

Semester Final Examination Course Code: Math 4311/Math 4599 Course Title: Vector Analysis, Multivariable Calculus and Complex Variables

Winter Semester: A.Y. 2022-2023 Full Marks: 150 Time: 3 Hours

Answer all the questions. Marks of each question and corresponding CO and PO are written in the brackets. The symbols used have their usual meaning,

1.	(a) Use a line integral to find the area of the region enclosed by the asteroid $x = a \cos^3 \varphi$, $y = a \sin^3 \varphi$ $(0 \le \varphi \le 2\pi)$	[13] CO2 PO1
2.	(b) Use Green's Theorem to evaluate $\int_{C} x^2 y dx + x dy$ along the triangular path C	[12] CO2 PO1
	with vertices (0,0), (1,0) and (1,2) described in the positive direction.	
	(a) Evaluate $\iint_{0} A \cdot ndS$, where $A = (x + y^{2})i - 2x \mathbf{j} + 2yz \mathbf{k}$ and S is the surface of	[13] CO2
	the plane $2x + y + 2z = 6$ in the first octant.	PO1
	(b) Evaluate $\iint\limits_{x} \ F \cdot \textit{ndS}$, where $F = 4 x z i \ -y^2 j \ +y z k$ and S is the surface of the	[12] CO2
	cube bounded by $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$ and $z = 1$.	POI
3.	(a) Use Divergence Theorem to find the outward flux of the vector field F(x, y, z) = x ² 1 + y ³ j + z ² k across the surface of the region that is enclosed by the hemisphere z = √(x ² - x ² - y ²) and the plane z = 0.	[12] CO2 PO2
4.	(b) Use Stokes' theorem to find the work performed by the force field $F(x,y,z)=x^{2}i+4xy^{2}j+y^{2}xk$ on a particle that traverses the rectangle C with corners (0,0,0), (1,0,0), (1,3,3), and (0,3,3).	[13] CO2 PO2
	(a) Construct a Riemann surface for the function z ^{1/3} .	[10] CO3 PO1
	(b) Determine whether the following function u is harmonic or not. If yes, find the conjugate harmonic function v and express $f(z) = u + iv$ as an analytic function of z .	[8] CO3 PO1

	(c) Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurant series valid for $ z - 1 > 1$.	[7] CO3 PO1
5.	(a) State Cauchy's theorem for complex integration. Verify Cauchy's theorem for the function $f(x) = x^3 - ix^2 - 5x + 2i$ if C is the circle $ x = 1$.	[10] CO3 PO1
	(b) Determine the region of the w plane into which the region bounded by $x = 1, y = 1$, and $x + y = 1$ is mapped by the transformation $w = z^2$.	[8] CO3 PO1
	(c) Evaluate $\oint_C \frac{e^x}{(x^2 + \pi^2)^2} dx$ where C is the circle $ x = 4$.	[7] CO3 PO1
6.	(a) Evaluate $\int_{0}^{2\pi} \frac{1}{3-2\cos\theta + \sin\theta} d\theta$.	[15] CO3 PO2
	(b) Find a bilinear transformation that maps the upper half of the z plane into the unit circle in the w plane in such a way that $z = i$ is mapped into $w = 0$ while the point at infinity is mapped into $w = -1$.	(10) CO3 PO2