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ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) d d)
ORGANISATION OF ISLAMIC COOPERATION (OIC) L/

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Semester Final Examination
Course No.: Math 4511

Course Title: Numerical Analysis

Winter Semester: A. Y. 2022-2023
Time: 3 hours
Full Marks: 150

There are 6 (Six) Questions. Answer all of them.
Marks in the Margin indicate full marks. Programmable calculators are not allowed

Assume reasonable values for any missing data(if anYl.
Necessary formulas are provided

1 The location I of the centroid of an arc (Figure. 1) of a circle is given bY:
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Determine the angle a for which
3r

First9 derive the equation that must be solved and then determine the root, using the

Bisection Method. Start with a = 0.5 and b = 1.5, and carry out the first four iterations.
Determine the approximate relative error after each iteration.

Figure. 1

2 Determine the roots of the following simultaneous nonlinear equations using Newton’s
method

y = –12 + x + 0.75
y + 5xy = 12
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Employ Initial guesses of x =y = 1.2



3 An object can be projected upward at a specified velocity. If it is subject to linear
its altitude as a function of time can be computed as

' = „ * T(„ * T)("–'–(£)') – T'
Where z = altitude (m) above the earth’s surface (defined as z = 0),
zo = the initial altitude (m), m = mass (kg), c = a linear drag coefficient (kg/s), vo =
initial velocity (m/s), and t = time (s). Note that for this formulation, positive velocity
is considered to be in the upward direction. Given the following parameter values:
g = 9.81 m/s2 1 zo = 100 m, vo = 55 m/s, m = 80 kg, and c = 15 kg/s, the equation can
be used to calculate the jumper’s altitude. Determine the time and altitude of the peak
elevation with the golden-section search. Perform 3 iterations with initial guesses of tz
= 0 and tu = 10 s.

4 A plane is being tracked by radar! and data are taken every second in polar coordinates (25)
a and r. C02>
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At 206 secondsq use the centered finite-difference (second order correct) to find the
vector expressions for velocity and acceleration The velocity and acceleration given in
polar coordinates are

ti. + rada
(f – r02)4 + (r 0 + 2fO)do

5 The Head Severity Index (HSI) measures the risk of head injury in a car crash. It is
calculated by :

(25)
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HSI = / [ ,(t)]2'5 dt

Wh„, ,(t) i, th, „„m,Ii„d ,ccelerati Sn (acceleration in m/s2 divided by 9.81 m/=2)

during a crash test is given in the following table

t.

and t is time in seconds during a crash. The acceleration of a dummy head measured

30t. S
noa

al 1 20

028
Uni 40 145 150 155 160Dr4a6al a8 ll

Determine the HIS

i) Use the composite trapezoidal method
ii) Use the composite Simpson’s 1/3 method.
iii) Use the composite Simpson’s 3/8 method

6 Consider the following first-order ODE:
dydx y

12
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From x = 0 to x = 2.1 with y(0) = 2.
i) Solve with Eulerts explicit method using h = 0.7
ii) Solve with the classical fourth-order Runge-Kutta method using A = O'7
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656 NUMERICAL DIFFERENTIATION

into Eq. (23.2) to yield

% r r ( x 1 ) = • A ET+ • Deh + 1C} ( h 2 )

or, by collecting terms,

If r ( + 1 1 ) = n1F 1C) ( b 2 ) (23.5)

Notice that inclusion of the second-derivative term has improved the accuracy to

O(hz). Similar improved versions can be developed for the backward and centered for-
mu las as well as for the apprc\imations of the higher derIvatives. The formulas an

summarized in Figs. 23.1 through 23.3 along with all the results from Chap. 4. The

following example illustrates the utility of these formulas for estimating derivatives.

FIGURE 23.1
Forward Finite-divided-diFference formulas: two versions are presented for each derivative' The

latter version incorporates more terrs oF the Taylor series expansion and is, consequentlb more

accurate

First Derivative Error

f(x,} = V 0(h)

0(b2)
rCx, I =

Second DerFvative

f"(*,) =

f" tx,) =

0 th)

O(h2)

Thr d Derivative

fmtxl =
hJ

f’„(xI =

0(b)

O{h2)

Fourth Derivative

f„„(x,) = f(*'*4) – 4f(x"3) + 6::'2 - 4f{x"1) + tx’)

F„„Lx, I =

0 th)

O(h2',
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FCrsF Derivalve
Error

0 th)

O{h2)

fIx,) = =+( h

f’ix,} =
A=x,} – 4f[x,_ I ) + FIx,_

2h

Second De'ivative

f"{x,) = :

f" id = +P
0 lb)

O[h2}

Third Derivutve

f"’(x;) =
I <,) – 3flx,--I1 + 3fCx,-2 1 – fIx,-31

h 1
OIL)

Oth2)fIGURE 23.2

Backward Finitedivided'
diFFerence Formulas: two
versions are presented For each

derivative. The latter version

ncorporares more terms oF the

Taylor series expansion and is,

consequently, more accurate'

f"[x,) =

Fourth Der=varive

f( x,) – 4f(x,_ ) + 6f[x_„,) – zIf{x,_3) + f[x,-_4)

t""Ix' I = –T
f""(x, I =

0(h)

O{h2}

fiGURE 23.3

Centered Finirodivided-

diFterence Formulas: two
versions are presented For each
derivative. The latter version

incorporates more terms of the
Taylor series expansion and is,

consequently, more accurate.

First Derivc'ive Error

O€h2}

O{h41

f’(,,) = ''x"
– ftx,-- 1 >

2h

f’(x,) =
–f{xl+2) + 8ftx,+ 1 – 8ftx- I ) + f(xI-2)

2h

Second Def votive

f„(x,} = -tX'*') – 2T?} t Ix-') 0(b2)

at64)–f(xi,2} + 1 6f{xi,1) – 30f(xi) + 1 6f[xi_1 ) – ftx,_2)
f'’Cx1) = 1 2h2

Third DerFva'Ive

f„(x') = aX"') – 2ftx'' '1 + 2£tx'-'> – Hx'-'I
',b3

f"(x,.) =

O[h21

O{h4)

Fourth Der„/ative

f"’Ix, I = 0(621

0 lb4)
f""[x,} =

–f{x,.+3) + 12f{x+2) – 39ftx,., 1 ) + 56f{xi) – 39flx,-- 1 > + 1 2flx,--2i – ftx,--3;

6h4


