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Abstract

The art of mathematical reasoning stands as one of the most fundamental pillars

of intellectual and scientific advancement, being a central catalyst in the culti-

vation of human ingenuity. Researchers have recently published a plethora of

research works centered around the task of solving Math Word Problems (MWP).

These existing models are susceptible to dependency on shallow heuristics and

spurious correlations to derive the solution expressions. In order to ameliorate

this issue, in this paper, we propose a framework for MWP solvers based on the

generation of linguistic variants of the problem text. The approach involves solv-

ing each of the variant problems and electing the predicted expression with the

majority of the votes. We use DeBERTa (Decoding-enhanced BERT with dis-

entangled attention) as the encoder to leverage its rich textual representations

and enhanced mask decoder to construct the solution expressions. Furthermore,

we introduce a challenging dataset, ParaMAWPS, consisting of paraphrased,

adversarial, and inverse variants of selectively sampled MWPs from the bench-

mark Mawps dataset. We extensively experiment on this dataset along with

other benchmark datasets using some baseline MWP solver models. We show

that training on linguistic variants of problem statements and voting on can-

didate predictions improve the mathematical reasoning and robustness of the

model. We make our code and data publicly available at — https://github.

com/Starscream-11813/Variational-Mathematical-Reasoning

Keywords — math word problem, natural language processing, paraphrasing,

challenge dataset, DeBERTa, GPT-3, mathematical reasoning, linguistic variant
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Chapter 1

Introduction

1.1 Overview

Math word problem solving is one of the long-standing research problems in general

artificial intelligence and a lot of research papers about them, from both industry

and academia, have been published recently. A typical Arithmetic problem or

Math Word Problem (MWP) is a textual narrative that states a problem descrip-

tion and poses a question about one or more unknown quantities. An NLP model

capable of solving such problems has to translate the human-readable problem

statement to a valid mathematical expression which can be evaluated to obtain

the numeric answer. An example of a classic MWP is portrayed in Table 1.1,

where the reader is asked to infer the revenue of a boutique shop.

Table 1.1: An example of a Math Word Problem.

Problem: 69 handbags are sold for $13 each. There are a total of 420
handbags in a boutique and the remaining handbags are sold for $7
each. How much did the boutique earn after selling all the handbags?
Expression: x = 69× 13 + (420− 69)× 7
Solution: 3354

Such problems are generally found in math textbooks of 1st to 8th grade students

and are easily solvable by humans with decent mathematical aptitude. However,

1
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a lot of challenges manifest while designing an automated system for performing

these tasks. The challenges that need to be addressed in the case of MWPs are:

1. Understanding the quantities in the problem and capturing their complex

mathematical interconnections from a linear textual sequence, which can

sometimes be ambiguous.

2. Diverse range of MWPs with differing difficulty levels, i.e., varying number

of unknown values and depth of the relationships between quantities.

3. Absence of crucial information and presence of irrelevant information in the

problem statements [2].

4. Chronological and temporal ambiguities of the events happening in the prob-

lem statements.

5. MWPs that significantly differ from the training set in terms of semantic

and syntactic structure.

In order to solve the problem described in Table 1.1, an ideal MWP solver model

must be able to associate the quantity, i.e., 69 handbags, with its price attribute

of $13, and understand the relative arithmetic order by deriving 351 remaining

handbags, i.e., 420− 69, before associating the price attribute of $7.

A lot of psychological studies have been done on how human beings learn to

solve mathematical problems and improve their aptitude [3–5]. The frontier of

research involving MWP solving is considered a crucial step towards general AI and

so researchers have dedicated their efforts to replicating these complex cognitive

patterns exhibited by human beings within the frameworks of AI models. The

existing methods that are considered strong baselines for MWP solving can be

demonstrably shown to use shallow heuristics to solve many of the MWPs in the

benchmark datasets [2] creating a faux impression of their mathematical reasoning

capability.
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1.2 Research Challenges

The prominent research challenges that are present in the realm of Math Word

Problem solving are,

• The pre-trained language model-based approaches discussed in the Deep

Learning subsection of the Literature Review section suffer from spurious

correlations between input problem statement and output math expression.

• The existing models depend on shallow heuristics to yield high degree of

accuracy in benchmark datasets, thus masquerading under the guise of faux

mathematical reasoning. They can even infer solutions to problem state-

ments just by looking at the superficial patterns present even if it is lacking

word-order information or lacking the actual question text [2].

• Absence of large-scale English datasets with adversarial, challenging and

inverse versions of MWP samples that require multiple deductive steps and

operations to solve and have a good number of unique math expression

templates.
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1.3 Thesis Contributions

To account for the aforementioned limitations, we present our thesis work that

yields the following contributions —

• We propose a framework for solving simple math word problems by gener-

ating paraphrased linguistic variants of the input problem statement using

OpenAI’s latest Generative Pre-trained Transformer (GPT-3) [6] models,

namely text-davinci-003 and gpt-3.5-turbo. The problem statement vari-

ants along with the original problem text then undergo the appropriate pre-

processing steps and are fed to an MWP solver model with a DeBERTa-based

encoder and Enhanced Mask decoder.

• We also generate a large, augmented version of the Mawps [1] dataset,

namely ParaMAWPS (Paraphrased MAth Word Problem Solving Repos-

itory), as a challenging dataset by the introduction of paraphrased structural

variations of almost all categories of problems, but emphasizing more on the

categories that the strong baseline models find difficult to solve.

DeBERTa (Decoding-enhanced BERT with disentangled attention) [7] is currently

one of the most popular language models due to its effectiveness in achieving state-

of-the-art results on a variety of natural language processing tasks, including lan-

guage translation, text classification, and question answering. It is significantly

more efficient in language translation tasks compared to architectures with recur-

rent or convolutional layers.
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1.4 Motivation

Although there is a debate in the scientific community on whether or not we can

model our consciousness using Artificial Intelligence due to Gödel’s Incomplete-

ness Theorem [8], computer scientists are very confident in being able to model

the mathematical aptitude of humans in machines. The frontier of research involv-

ing Math Word Problem Solving is, therefore, a crucial step toward general AI.

Deep Learning models capable of solving such problems can be of great utility in

smart desktop and mobile applications for teaching students math. This was the

principal talking point in the most recent Neural Information Processing Systems

(NeurIPS) conference titled ”Math AI for Education (MATHAI4ED): Bridging

the Gap Between Research and Smart Education.” One of the most popular chal-

lenges in the AI community at present is the International Mathematical Olympiad

(IMO) Grand Challenge[9] where the challenge is to create AI models capable of

solving Math Olympiad problems. The collective inspiration that we got from

being avid problem-solvers ourselves as well as from the IMO Grand Challenge,

incentivized us to pursue learning about NLP models for solving mathematical

problems. So we are optimistic about the future of this domain of research and

hope to try our best to work and contribute to this domain.
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1.5 Problem Formulation

A Math Word Problem S is a sequence of word tokens and numeric values, where

the VS = {v1, . . . , vm} denotes the word tokens in S and the set nS = {n1, . . . , nl}

denotes the set of numeric quantities in S. The set of word tokens VS consists of

entities such as names of people, objects, units, and rates while the set of quantities

nS consists of the numerical amount relevant to those entities.

The goal of an MWP solver model is to map S to a valid mathematical expression

E, consisting of the quantities in (nS ∪C), where C is a set of constants, and the

fundamental mathematical operators O = {+,−,×,÷}, which can be evaluated

to obtain the correct answer.
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1.6 Thesis Layout

The thesis is thoughtfully structured, adhering to a well-crafted layout that encom-

passes the following 6 chapters — In Chapter-1, we set the context for the reader

by introducing the research problem and delineating the challenges encountered

in this domain of scholarly inquiry. We formulate the research problem in precise

terms, pristinely list down the contributions of this thesis work, and write about

the circumstances that inspired us to pursue the topic in this chapter. This the-

sis layout section is a constituent of the chapter that aids in the readability of

the thesis book by recapitulating a cohesive narrative of the work. In Chapter-2,

we critically examine the existing scholarly works, theories, and empirical studies

related to the research topic, establishing a strong theoretical foundation for the

study. We provide a proper taxonomy and chronological development of the mod-

els used in the existing literature in this chapter and perform comparative analyses

among them. In Chapter-3, we outline our proposed methodology with the aid

of intuitive diagrams and explain the underlying mechanisms of the components

that are present within the architecture. Chapter-4 elaborates on the experimental

setup or procedures undertaken to collect empirical data. We provide a detailed

statistical analysis of our dataset and delineate the criteria that we have taken

into account whilst constructing the dataset. We also mention the models that

we use as baselines and the intricate details pertaining to the training process in

this chapter. Chapter-5 presents an in-depth analysis and interpretation of the

obtained results along with a critical discussion of their implications and relevance.

We also bring to light some of the weaknesses of the existing models and provide a

comprehensive ablation study to convey a deeper understanding of the pipeline’s

working process to the reader in this chapter. The epilogue of our thesis work,

Chapter-6, provides a concise summary of our research findings and insights into

potential future directions for further exploration towards the apotheosis of this

research domain.



Chapter 2

Literature Review

2.1 Math Word Problem Solving

The dawn of research on MWP solving was in the mid-1960s [10, 11]. Since

then, numerous research papers attempting to perform the MWP task by adopt-

ing a multitude of approaches have been published. We categorize these existing

MWP solvers into seven categories: Rule-based, Statistical, Tree-based, Semantic

Parsing-based, Similarity-based, Template-based, and Deep Learning (DL)-based

methods. Rule-based methods [12–14] are chronologically some of the earliest ap-

proaches to solving MWPs. These methods use a set of manually hard-coded

rules about the language they are analyzing to find out regularities in the data.

Statistical methods [15–21] use generic ML classifiers to extract the entities, quan-

tities, and operators from the problem statement and infer the numeric answer

with simple logic. Tree-based methods [22–25] utilize the inherent binary tree-

like structure of expressions/equations and focus on constructing the structure

of the resultant expression/equation’s equivalent tree in a bottom-up manner.

Other primitive categories of approaches that have now been rendered somewhat

obsolete are Parsing-based methods [26, 27], Similarity-based methods [28], and

Template-based methods [15, 18, 24, 29, 30].

Currently, the landscape of Deep learning models for the MWP solving task

is primarily comprised of five distinct paradigms, Seq2Seq-based, Seq2Tree-

8
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based, Graph2Tree-based, complex relation extraction-based, and Large Lan-

guage Model (LLM) prompt-based approaches, each of which has demonstrated

remarkable levels of performance and efficacy. Wang et al. [31] were the pioneers

of introducing deep learning to solve MWPs with their proposed Seq2Seq model.

To improve the Seq2Seq model, researchers resorted to alternative strategies,

such as reinforcement learning techniques [32, 33], using dense problem represen-

tation [34], adopting template-based methodologies [35], and incorporating group

attention mechanisms [36]. Xie and Sun [37] were the progenitors of the novel

Goal-driven Tree-Structured (Gts) model, designed to generate expression trees

using the tree-based decoder in order to imitate the goal-driven problem-solving

approach of humans. The use of this tree decoder along with pre-trained language

models, such as BERT [38], BART [39], RoBERTa [40], as the encoder in some

of the Seq2Tree approaches [41–49] brought about substantial performance im-

provements over the previous Seq2Seq methods. Cao et al. [50] devised a directed

acyclic graph (Seq2DAG) model of the equations for the purpose of extracting the

expression. Zhang et al. [51] incorporated the idea of Knowledge Distillation (KD)

[52] in their proposed model where the teacher network is pre-trained to guide the

learning behaviors of the student networks. Yu et al. [53] introduced 2 types of en-

coders in their model, which are Pre-trained Knowledge encoder and Hierarchical

Reasoning encoder. Hong et al. [54] modified the work of [37] by incorporating a

symbolic reasoning based Learning-by-fixing (Lbf) framework. Qin et al. [55] pro-

posed a model that performs 4 auxiliary tasks, Number Prediction, Commonsense

Constant Prediction, Program Consistency Checking, and Duality Exploitation,

to integrate different levels of symbolic constraints. Huang et al. [56] attempted

to emulate human-like analogical learning in their proposed memory-augmented

model. Graph2Tree-based approaches [57, 58] fused the merits of Graph-based

Transformer [59, 60] encoders with multiple Graph Convolutional Network (multi-

GCN) modules [61], and tree-based decoders to solve MWPs. Chatterjee et al.

[62] introduced a weakly supervised approach for MWP solving. [48] introduced a

contrastive learning approach with pattern divergence to solve MWPs. Jie et al.
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[63] formulated the MWP solving task as a complex relation extraction problem

and leverages explainable deductive reasoning techniques to iteratively construct

the desired target math expressions.

With the advent of LLMs, many innovative prompt-based methods [64–68]

of solving MWPs that capitalize on the models’ exceptional few-shot learning

capability came into the limelight and demonstrated good performance across nu-

merous benchmark datasets. Cobbe et al. [69] used verifiers with their GPT-3 [6]

model to check the correctness of model outputs. Although LLMs excel at nat-

ural language understanding and have serendipitous emergent reasoning abilities

[70], they are still lackluster in complex reasoning tasks [71]. Numerous studies

on complex reasoning tasks have empirically demonstrated that the approach of

fine-tuning smaller models is more effective [72] than adopting LLM prompting

techniques like Chain of Thought (CoT) prompting [73]. Accordingly, our work

attempts to leverage the strengths of GPT-3 to generate a more linguistically di-

verse pool of problem statements to fine-tune a relatively smaller DeBERTa solver

model on the downstream task of MWP solving (which falls under the rubric of

complex reasoning tasks).

2.1.1 Rule-based Methods

Rule-based methods are chronologically some of the earliest approaches to solv-

ing MWPs. Fletcher [12] proposed a computer program WordPro coded in

Interlisp-D, which could solve one-step arithmetic problems with 4 types of pre-

defined schemata after translating the problem statement to a set of propositions.

Later in 2007, Bakman [13] proposed a system named Robust, which could con-

ceptualize free-format multi-step MWPs with extraneous information by building

upon the work of [12] and introducing 6 types of predefined schemata. In 2010, [14]

proposed Mswpas which could solve multi-step addition and subtraction problems

by converting the problem statements into Problem Frames consisting of the whole

semantic information of the problems. The principal drawbacks of these methods

is high dependency on manual features and inability to generate novel templates
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Math Word Problem
Solvers

Rule-based Methods
[12–14]

Statistical Methods
[15–21]

Tree-based Methods
[22–25, 74–76]

Parsing-based Methods
[26, 27]

Similarity-based Methods
[28]

Template-based Methods
[15, 18, 24, 29, 30]

DL-based Methods

Seq2Seq Methods
[31, 34]

Deep RL Methods
[32, 33]

Improved Seq2Seq Methods
[33, 35, 36, 75, 76]

Graph-based Methods
[37, 41, 57, 58, 77–79]

Complex E/D-based Methods
[42–46, 51, 53–56, 69, 80]

LLM-based Methods
[65, 66]

Figure 2.1: Classification of MWP Solvers.
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for new problems. This paper provides a brief overview of these outdated methods

but interested readers can check out [81] for detailed descriptions.

2.1.2 Statistical Methods

The Statistical methods use generic ML models to extract the entities, quan-

tities and operators from the problem statement and infer the numeric answer

with simple logic. Kushman et al. [15] proposed an algorithm that could reason

across sentence boundaries and define a joint log-linear distribution over systems

of equations including the interrelations between those equations and the problem

text. They adopted a two-step process to map the word problems to equations,

namely, selecting a template that defines the overall alignment of the equation

set and instantiating that template with numerical values and entities from the

problem statement. Using a newly procured corpus of 514 math word problems

taken from www.algebra.com, they used supervised and semi-supervised learning

methods to derive the equations. Although [15] is one of the earliest and pio-

neer works incorporating Semantic Interpretation and Information Extraction in

MWP solving, it falters in cases of problems with new compositional language

due to lack of sufficient background or world knowledge. Roy et al. [17] proposed

a Quantity Entailment scheme which could solve word problems with a single

operator. They used a cascade of 3 classifiers in their approach. The Quantity

Pair Classifier outputs the pair of quantities required to obtain the answer, the

Operation Classifier outputs which of the 4 fundamental mathematical operations

O = {+,−,×,÷} is required and the Order Classifier (relevant for − and ÷)

decides the most likely order of quantities in the operation. The obvious limita-

tion of this QE scheme is the ability to produce only single operator expressions

while incurring a huge computational overhead. Hosseini et al. [16] proposed a

system Aris, which was an early attempt at introducing more advanced logic

templates to statistical methods of solving multi-step problems. Aris could solve

only addition (+) and subtraction (−) type MWPs by representing the problem

text as a world state tuple ⟨E,C,R⟩, where E is the set of Entities (objects and
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attributes), C is the set of Containers (owners of the entities) and R is the set

of Relations among the containers, entities, attributes and quantities. They were

the first to introduce a 7-category Verb Categorization and synsets for predict-

ing verb categories in sentences using syntactic and semantic features. They also

introduced an addition-subtraction based dataset, named Ai3, consisting of 395

problems. A lot of manual effort is required to annotate each split sub-text in the

training data with one of the 7 verb categories while training a classifier like Aris.

Another obvious drawback of Aris is its inability to work with mathematical op-

erators other than + and −. Zhou et al. [18] proposed an algorithm that considers

all possible equation systems in the hypothesis space and obtains a robust deci-

sion hyperplane using Maximum Margin Classifiers or Support Vector Machines

(SVMs). They compared their model with the then state-of-the-art baseline [15]

and stated that the latter’s beam search fails to utilize all the training samples,

making it a sub-optimal approach. In order to solve this constrained optimiza-

tion problem of maximizing the margin between correct and incorrect assignments

[18] used Quadratic Programming (QP). Although their accuracy trumped that of

[15], the algorithm was still unable to resolve MWPs with complex noun phrases

and lexical features. Mitra and Baral [19] proposed a novel system of learning

to apply formulae on the higher level representation of MWPs to reach solutions.

They categorized the formulae into 3 categories, part whole, change and compari-

son which are sufficient to deal with the MWPs in the AddSub data set, a corpus

of standard primary school test arithmetic problems. The system learns to gener-

ate a scored ⟨formula, variables⟩ pair from the higher level representation of the

problem statement during the training phase. Just like the previously discussed

statistical methods, the obvious drawback of this system is that it cannot work

with mathematical operators other than + and −.

The ideas proposed by Liang et al. [20, 21] are somewhat similar ideas of

annotation to solve MWPs. The core idea is to analyze the problem state-

ment and transform both the problem scenario and the question at the end

of the problem statement into their tag-based logic forms and eventually infer
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the solution. The main advantage of the approach taken by such MWP solvers

is that they are less sensitive to irrelevant entities and quantities in the prob-

lem statement. Suppose, the problem statement contains the sentence ”Jor-

dan bought 69 books.”, then the logic form mapping would look something like,

verb(v1, buy) & nsubj(v1, Jordan) & dobj(v1, n1)

& head(n1, book) & nummod(n1, 69).

2.1.3 Tree-based Methods

Algebraic and arithmetic expressions/equations have an inherent binary tree-like

structure. Such binary trees are defined as expression trees and equation trees

respectively.

+

×

n5−

n4n3

÷

n2n1

Figure 2.3: Expression Tree representing n1 ÷ n2 + (n3 − n4)× n5.

=

n3÷

n2+

n1x

Figure 2.4: Equation Tree representing (x + n1)÷ n2 = n3.

The terminal nodes which are also known as leaf nodes, represent the constants

or the variables in the expression/equation, whereas, the internal non-leaf nodes
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represent the mathematical operators. The operators’ precedence/priority increase

the lower/deeper they are in the tree. In expression trees, the root node represents

the operator with the least priority and in equation trees, the root node represents

the equal (=) sign and one or more of the leaf nodes represent unknown variable(s).

Tree-based methods of solving MWPs focus on constructing the structure of

the resultant expression/equation’s equivalent tree in a bottom-up manner. Roy

and Roth [23] were the pioneers in using the concept of expression trees in MWP

solvers. The first step of their proposed algorithm is to use a binary classifier to de-

cide if an extracted quantity is relevant or not and thereby lessen the search space.

The relevant quantities are later represented by the leaf nodes of the expression

tree and the irrelevant quantities are discarded. The tree composition procedure

is an aggregation of simple prediction problems, where the goal is to determine the

Lowest Common Ancestor (LCA) of pair of quantities mentioned in the problem

statement. The score of the expression E represented by the monotonic expression

tree T is calculated as,

Score(E) =wIrr

∑
q∈I(E)

Irr(q)+

∑
qi,qj ̸∈I(E)

Pair(qi, qj,⊙LCA(qi, qj, T ))
(2.1)

where, wIrr is a scaling parameter, Irr(q) is the likelihood of quantity q being an

irrelevant quantity, Pair(qi, qj, op) is the likelihood score given by a multi-class

classifier for predictions of LCA operations and I(E) is the set of all quantities

that can be extracted from the problem statement but are not relevant in inferring

the final solution. The final inference problem then becomes,

argmax
E∈C

Score(E) (2.2)

where C is the set of all valid expressions. [23] also introduced another concept

called quantity schema which parses out the information relevant to each quantity

mentioned in the problem statement and discards unnecessary portions of the text.
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For evaluating their proposed system, they experimented on 3 datasets, which

are, the Ai2 dataset, the Il dataset and the CommonCore dataset. Interested

readers can try out an online version of this system which was implemented by

Roy and Roth [74]. Koncel-Kedziorski et al. [22] introduced a new system, Alges,

capable of generating equation trees from multi-sentence MWPs. Alges adopts

a more brute-force approach to take into consideration all the possible equation

trees, generated using Integer Linear Programming (ILP), and scores them in

terms of likelihood by learning local and global discriminative models.

As evident in the comparative analysis done by Wang et al. [32], Alges pos-

sesses a significantly large computational overhead compared to [23]. Alges uses

a compact representation of each node referred to as a Quantified Set or Qset for

modelling the correspondence between the quantities and their properties. The

”best” equation tree t∗ is computed as,

t∗ ← argmax
ti∈T

∏
tj∈t

Llocal(tj|w)

×Gglobal(t|w) (2.3)

scoring each tree ti ∈ T , where Llocal(tj|w) is the likelihood score of subtree tj,

forming pairwise Qset relationships, Gglobal(t|w) is the likelihood score of the root

node of tree t, representing the whole equation.

[24] proposed an efficient algorithm to parse the problem text to projective

equations. It assumes the final output equation to consist of at most 2 variables

and utilizes each quantity extracted from the problem text at most once in the

final equation. These assumptions were made to simplify the tree composition pro-

cess at the cost of sacrificing the extent of applicability. The relevant quantities

and variables are determined using structural SVM classifiers with superset super-

vision and customized feature selection. The tree is constructed in a bottom-up

manner by considering the quantities and variables as leaf nodes and combining

the adjacent child nodes to form their parent node as an attempt to lessen the

search space.

Roy and Roth [23] built upon their work in the following year and proposed
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the integration of Unit Dependency Graphs (UDG) for improving the scoring

function[25]. They found UDGs to be very helpful in capturing the relation-

ships and dependencies between the units of quantities mentioned in the problem

statement thus alleviating the brittleness of extracting units.

A total of 6 types of edge associations are taken into consideration while deter-

mining whether two quantities are related with the same unit. The construction

of UDGs introduce an extra computational overhead because of training binary

SVMs and multi-class SVMs for nodes and edges respectively. The likelihood score

of a Unit Dependency Graph G is computed as,

Score(G) =
∑
v∈V

Label(G,v)=Rate

Vertex(v,Rate)+

λ×
∑

vi,vj∈V,i<j

Edge(vi, vj,Label(G, vi, vj))

(2.4)

where λ is a scaling parameter, Label(F, vi, vj) determines if a node v is a Rate

or Not Rate. After finding the set of all possible Unit Dependency Graphs

Graphs, the final inference problem becomes,

argmax
G∈Graphs

Score(G) (2.5)

Their proposed algorithm then mimics their previous algorithm[23] finds out the

expression tree with the highest likelihood score following (2.1) and (2.2).

Wang et al. [75] and Chiang and Chen [76] used implicit tree structures and

Seq2Seq models to improve expression tree generation. [75] took into consid-

eration the uniqueness of expression trees and introduced an equation normal-

ization method combined with an ensemble model comprising of a Bidirectional

Long Short Term Memory (BiLSTM)[82], a ConvS2S Convolutional Seq2Seq

model[83] and a Transformer model[84] and named it MathEN. This equation

normalization process proves to be helpful in significantly increasing the perfor-

mances of the models.

The common advantage of the tree-based models discussed in this section
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is that additional manual annotations e.g. template, tags, or logic forms are

not required. Researchers further worked upon this tactic of forming expres-

sion/equation trees or Abstract Syntax Trees (AST) and these works are discussed

in the Deep Learning (DL) based methods section.

2.1.4 Parsing-based Methods

Shi et al. [26] were the first to build upon the tree-based approaches to solve a set

of multiple equations by presenting a semantic parsing and reasoning approach

based on a newly designed meaning representation language referred to as Dolphin

Language (DOL). Their proposed system, namely SigmaDolphin, transforms the

MWP text into DOL trees. The reasoning module of SigmaDolphin then derives

the final expression from the constructed DOL tree representation.

The parsing algorithm implemented in SigmaDolphin is based on a math-

ematical system of modeling constituent structure in Natural Language (NL),

known as Context-free Grammar (CFG)[85, 86]. This CFG parser is imbued with

a total of 9600 grammar rules and the associations between the math concepts

and these grammar rules were done manually in a semi-supervised manner. Every

node of the DOL tree is scored during the parsing phase and the DOL tree with

the maximum aggregate score is passed to the reasoning module of SigmaDol-

phin to obtain the final answer. The score of a tree T is the weighted mean of the

scores of its sub-trees,

Score(T) =

∑k
i=1 L(Ti) · Score(Ti)∑k

i=1 L(Ti)
· p(T ) (2.6)

where, Ti is a sub-tree, L(Ti) is the number of total words to which Ti corresponds

in the original problem statement and p(T ) is the type-compatibility property of

the tree T . Shi et al. [26] also prepared a dataset consisting of 1878 math problems

collected from two websites—algebra.com and answers.yahoo.com.

Zou and Lu [27] proposed a model named Text2Math which can semanti-

cally parse the MWP text to math expressions using end-to-end latent variable
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predictions without any a priori knowledge of the operators. Text2Math lever-

ages a novel joint representation to automatically learn the association between

the words in the problem text and math expressions which possesses semantic

”closeness”.

The common weakness of these parsing-based methods is that their applica-

bility is limited to Number Word Problems. They show incompetence in grasping

the complex relationships between quantities and entities seen on general MWPs.

2.1.4.1 Similarity-based Methods

Huang et al. [28] introduced a simple statistical method of MWP solving, called

Sim, which works by calculating the similarity between a test set sample with sam-

ples in the training set. The equation system of the most similar training sample

(template selection) is applied to the test sample problem under consideration

(template slot filling). In the template selection step, each MWP is represented

using a vector of word Term Frequency - Inverse Document Frequency (TF-IDF)

scores and the similarity between two MWPs is computed by the weighted Jaccard

Similarity Coefficient of their representative vectors. Huang et al. [28] also cre-

ated a large-scale dataset called Dolphin18K which consists of 18,460 annotated

MWPs collected from online fora and web pages. The drawback of such similarity-

based methods is that they fail to work out problems that do not necessarily follow

the same structural template as the problems in the training set.

2.1.5 Template-based Methods

The core idea behind template-based approaches is to identify a candidate tem-

plate from a pre-defined corpus of equation templates and plug in the numeric and

variable slots with quantities extracted from the problem statement. Some of the

research works [15, 18, 24] discussed in the Statistical Methods section adopt this

template-based idea. As the search space is exponential to the number of slots due

to the fact that each quantity in the problem statement is a potential candidate for

the numerical slots and each name/entity is a potential candidate for the variable



Chapter 2: Literature Review 21

slots, these researchers used Beam Search inference procedure to find the opti-

mal template. The suitable candidates for each slot in the template are selected

based on an a priori canonicalized ordering where the top-k partial derivations

are considered. Upadhyay et al. [29] proposed an algorithm called MixedSP,

which stands for Mixed Supervision, i.e., it learns from both explicit supervision

(e.g. equations) and implicit supervision (e.g. solutions) based in Structured-

output Perceptron[87]. MixedSP takes as input both kinds of training signals

and iteratively improves the model while using the intermediary model to figure

out candidate equation sets for problems. Upadhyay et al. [29] also created a

new dataset, named Sol2k, without any annotated equation sets containing only

the problem text and the final numeric solution. The mapping strategy from the

MWP to the equation template of MixedSP resembles the strategy proposed in

[15] and [18]. One obvious drawback of such template-based methods is that they

fail to work well in sparse training samples. Another weakness is that the learning

process of the models used in such methods heavily relies on lexical and syntac-

tic features with huge and sparse feature space, e.g., the dependency edge/path

between two slots of a template.

Huang et al. [30] integrated a finer granularity in the learning process to over-

come this sparseness drawback. They proposed a novel approach to capture rich

information from templates by parsing them into tree structures. In a constructed

tree, they defined a template fragment as any subtree with at least a single opera-

tor and 2 operands. The mapping procedure was “fine grained” based on Longest

Common Substring (LCS). Suppose, an excerpt from the problem statement is

something like ”69% discount”. This portion of the problem text can be mapped

to a template fragment 1 − v1 where v1 = 0.69. The template extraction process

of this proposed method, namely FGExpression, is a semi-supervised process

done using a RankSVM model[88] which selects the top-k templates and reduces

the search space by a lot as a consequence.
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2.1.6 Deep Learning-based Methods

The excellence of Deep Learning for which it is practised with such gravitas in the

realm of Computer Science is due to its ability to learn effective feature represen-

tations without the need for any human intercession in a data-driven manner. The

general pipeline of DL-based MWP solving approaches is portrayed in Figure-2.5.

2.1.6.1 Seq2Seq Methods

Wang et al. [31] were the pioneers of introducing deep learning to solve Math Word

Problems (MWPs). Without resorting to any feature engineering, they used a Re-

current Neural Network (RNN) model combined with a similarity-based retrieval

model in their proposed Seq2Seq model. They also created the first large-scale

MWP dataset suitable for training Deep Neural Networks, Math23K, which con-

sists of 23,161 problems labeled with their corresponding equations and answers.

The RNN-based Seq2Seq model is primarily responsible for transforming the

problem statement into a math equation. The encoder uses Gated Recurrent

Units (GRUs) [89] and the decoder uses Long Short-term Memory (LSTM) cells

[90]. GRU works better as an encoder than LSTM because it has a lesser propen-

sity to overfit the dataset. The Seq2Seq model is 5 layers deep, having 1 word

embedding layer, a 2-layer GRU encoder, and a 2-layer LSTM as the decoder.

The encoder and decoder both consist of a total of 512 nodes. In order to identify

significant and insignificant numbers in the problem text, [31] also proposed a

Significant Number Identification (SNI) model which is basically an LSTM-based

binary classification model. It consists of 128 nodes and a length 3 symmetric

window. The retrieval model computes the lexical similarity using Jaccard’s Sim-

ilarity Coefficient between the test sample and each problem in the training data.

The equation is,

J(PT , Q) =
|PT ∩Q|
|PT ∪Q|

=
|PT ∩Q|

|PT |+ |Q| − |PT ∩Q| (2.7)
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where, PT is the test problem and Q is a problem from the training data. The

equation template with the highest similarity score is applied to that test sample.

Mishra et al. [34] introduced a novel method of dense representation of MWPs

and they used that representation to generate appropriately ordered operands and

operators. Their model, namely EquGener, is composed of an end-to-end mem-

ory network encoder and an equation decoder.EquGener is equipped to handle

all 4 kinds of fundamental mathematical operations, O = {+,−,×,÷}. The input

sequence is a sequence of word vectors which are a concatenation of vector rep-

resentations of pre-trained GloVe embeddings[91] and embeddings obtained by

the network from the training corpus. The attention-based encoder and decoder

used in the model possess Long Short-term Memory (LSTM)[90] cells.

2.1.6.2 Deep Reinforcement Learning (RL) Methods

Wang et al. [32] were the first to apply Deep Reinforcement Learning to solve

MWPs. They proposed a Deep Q-network model named MathDQN with newly

designed states, actions, reward function, and a 2-layered Feed-Forward Neural

Network. In Reinforcement Learning (RL), given a set of internal states S =

{s1, . . . , sm} and a set of actions A = {a1, . . . , an}, an agent takes action a at

state s and transitions to a new state s′ over multiple iterations till a termination

condition holds true. This learning procedure is governed by policies or rules π

extracted from the environment E. The true value of an action a in state s is

computed as,

Qπ(s, a) = E[R1 + γR2 + . . . |S0 = s, A0 = a, π] (2.8)

where γ ∈ [0, 1] is discount factor for future rewards. The action which yields a

positive Q-value will be rewarded. MathDQN’s first step is to extract, re-order

and sort the relevant quantities. It uses the sorted quantities as the bottom level

and the partial tree constructed up to this step is taken as a state. A positive

Q-value that is worth rewarding is yielded if the next state or partial tree bears a

closer resemblance to the final ground-truth tree otherwise a negative Q-value is
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yielded and is returned as punishment. The loss function that the model tries to

minimize is,

Lt(θt) = Es,a[(yt −Q(s, a; θt))
2];

yt = r + γ max
a′

Q(s′, a′; θt−1)
(2.9)

where yt is the optimal Q-value, r is current reward and θ is the set of parameters.

These parameters are learnt using the Gradient Descent optimization technique of

the Loss function in 2.9. The Bellman Equation from which the optimal Q-value

is determined is,

∇θtLt(θt) = E[(yt −Q(s, a; θt))∇θtQ(s, a; θt)] (2.10)

The strategy that MathDQN adopts to choose which action to explore is the

ϵ-greedy strategy. The goal is to obtain a balanced trade-off between exploration

and exploitation after selecting a random action with probability ϵ.

The Seq2Seq models discussed in this section have 2 potential drawbacks—

• Generation of spurious numbers.

• Generation of numbers at wrong positions in the resultant equations.

2.1.6.3 Improved Seq2Seq Methods

Huang et al. [33] attempted to overcome these conundrums by proposing a model

that incorporates Copy and Alignment mechanism to the Seq2Seq models, namely

Cass. And just like MathDQN [32], this model also uses Reinforcement Learn-

ing and policy gradient to train itself. [33] also showed with empirical evidence

that RL is a better approach than calculating Maximum Likelihood Estimation

(MLE) as the objective function.

Li et al. [36] proposed a group attention[84] mechanism which aggregates 4

types of attention mechanisms with their Seq2Seq model, GroupATT. These

4 kinds of attention mechanisms are—Global Attention to extract global infor-

mation, Quantity-related Attention to form relationships between quantities and

adjacent/neighboring words, Quantity-pair Attention to model relationships be-
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tween quantities, Question-related Attention to model the relationships between

the problem statement and the quantities. The input problem is at first pre-

processed to X = {x1, . . . , xm} and then morphed into He = {he
1, . . . , h

e
m} using

Bidirectional Long Short-term Memory (Bi-LSTM). The group attention layer

consists of 4 different types of multi-head attention modules. The output of this

layer is,

O′ = GroupAtt(Q = He, K = He, V = He) (2.11)

The decoding process is similar to that of [75] which is,

yt = Softmax(Attention(hd
t , oj)) (2.12)

where, hd
t is the hidden state at step t, oj is the jth entry or jth vector from output

matrix O of the group attention layer. The problem statement is at first di-

vided and masked into the 4 inputs of group attention, {Qg, Kg, Vg}, {Qc, Kc, Vc},

{Qp, Kp, Vp}, {Qq, Kq, Vq} for Global Attention, Quantity-related Attention, Quantity-

pair Attention, and Question-related Attention respectively. Then, using Scaled

Dot-Product Attention (SDPA) modules {Og, Oc, Op, Oq} are computed and the

output O is formed by concatenating these as,

O′ = Concat(Og, Oc, Op, Oq) (2.13)

The pre-trained word embeddings used in GroupATT are 128-dimensional and

the 2-layered Bi-LSTM has 256 hidden units.

Wang et al. [35] proposed a template-based approach using Recursive Neural

Network (RNN) by combining the merits of [31] and [32]. Their model, namely

T-Rnn, at first predicts a tree-structured template using a method similar to

Seq2Seq models. The tree’s leaf nodes are numerical values and internal nodes

are unknown operators. Then, an RNN is used to encode the quantities with

Bi-LSTM and self-attention for inferring the unknown operators in the internal

nodes of the tree in a bottom-up manner. The encapsulation of the operators in

the tree template as ⟨op⟩ (e.g. predicting n1⟨op⟩(n2⟨op⟩n3) instead of n1×(n2−n3))
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and normalizing the equation as done in [75] aid in reducing the template space

by a lot and makes the whole expression generation process computationally less

expensive compared to [31]. In the RNN, given every quantity’s embeddings Wq,

every non-leaf node’s representation is calculated as,

qc = tanh(Wq[ql, qr] + b) (2.14)

where ql and qr are the left and right child’s representations respectively. After this,

the probability of an operator for each internal node is computed using softmax

as,

P (oc|ql, qr) = softmax(Wq · qc) (2.15)

The calculations of (2.14) and (2.15) are performed recursively till all the operators

of the internal nodes of the initial tree template is determined. Then, the in the

answer generation module, the loss function that is minimized is,

J(θ) = −1

k

k∑
i=1

P (oc(i)|ql(i), qr(i)) (2.16)

where k is the total internal nodes in the tree. The expression generation process of

T-Rnn is still faulty as it is not good at predicting large tree templates and solving

problems that require more external knowledge and semantic understanding.

Chiang and Chen [76] proposed a neural symbolic model based on an encoder-

decoder framework, namely S-Aligned which works with the semantic meanings

of operators and operands and has a novel decoding process. The decoding process

generates equations using stack operations which mimics the way human beings

solve such problems. The Encoder extracts the contextual semantic representation

of every numeric value required for solving the MWP and for this, Bi-LSTM [90]

is considered as the encoder layer.

In order to imitate the reasoning process of a human, the decoder at first

generates the equation in a post-fix manner using a stack. The stack consists of
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both the symbolic and semantic representations of the operands as,

S = [(vSlt , e
S
lt), (v

S
lt−1, e

S
lt−1), . . . , (v

S
l1
, eSl1)] (2.17)

where, each vS is the symbolic portion and each eS is the semantic representation.

There are 4 types of stack actions that the stack does—Variable Generation which

generates variables with attention mechanism, Push which pushes the operand se-

lected by the Operand Selector to the stack, Operator ⋄ Application which pops the

top 2 elements, (vi, ei) and (vj, ej), forms vk = vi ⋄ vj and calculates the semantic

transformation function ek = f⋄(ei, ej) following (2.18), Equal Application which

completes the equation by popping the top 2 elements (vi, ei) and (vj, ej), and

records vi = vj contingent on the condition that one of them is an unknown vari-

able. The semantic representation of a new symbol is calculated by the proposed

Semantic Transformer as,

f⋄(ei, ej) = tanh(U⋄ ReLU(W⋄[ei; ej] + b⋄) + c⋄) (2.18)

where, W⋄, U⋄, b⋄ and c⋄ are the parameters of the model. In the case of Semantic

Transformers, the parameters are different for different operators which results in

modelling different transformations. Although S-Aligned is one of the more so-

phisticated models, it falters in cases of language ambiguity and operand ordering

in complex comparison problems.

2.1.6.4 Graph-based Methods

Xie and Sun [37] also proposed a novel neural model that tries to imitate the hu-

mans. The model, namely Gts, focuses on the goal-driven mechanism in problem-

solving. It generates a recursive expansion tree where the root node is the main

goal and each node gets subdivided into two child nodes with simpler goals until

the goal is simple enough. At first, in the Encoding step, a left-to-right, then a

right-to-left Gated Recurrent Unit (GRU) over word embeddings of problem text

is used to encode the problem. Then, in the Root Goal Initialization step, the
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root goal is initialized as the sum of final hidden states of forward and backward

sequence respectively. Next, in the Token Embedding step, token embeddings are

generated using matrices for operators and constants and encoded numerical val-

ues from problem statements. Then, in the Top-Down Goal Decomposition step,

each goal is decomposed into two simpler goals until the predicted tokens are nu-

meric values. Then, in the Subtree Embedding step, a subtree is encoded using

bottom-up manner using RNN. Gts trumps over Seq2Seq models due to its

ability to avoid mathematically invalid equations and spurious numbers. Gts’s

Subtree Embedding module prevents generating the same subtree as its left sibling

when the internal node is + or ×. The main drawbacks of Gts are — it doesn’t

recognize various mathematical laws such as Commutative Law in Addition and

Multiplication and it fails to generate more than one valid solution expression for

a problem.

Liu et al. [41] proposed a tree-structured top-down hierarchical Seq2Tree

model with a decoding method that generates the Abstract Syntax Tree (AST)

of the equation by utilizing an auxiliary stack. The encoder layer of this model,

namely AST-Dec, is a Bi-LSTM layer which encodes the sequential information.

The tree-structured decoder uses LSTM to generate the final equation template

maintaining a top-down approach and due to the use of auxiliary stack in the

decoding process the resultant equation is of prefix notation. AST-Dec falters in

the case of problems with long equation templates and Profit/Geometry problems

of the Math23K dataset due to the lack of better external knowledge.

Meng and Rumshisky [77] pioneered the use of Transformer as a decoder to

generate math equations. Their proposed model, namely D-Decoder, has two

Transformer decoders operating in opposite directions. Unlike [33], D-Decoder

doesn’t resort to any Copy and Align modules.

The canonical Transformer model is used as the encoder in D-Decoder and

its training performance improves by a significant margin due to the use of two

decoder transformers, very similar to the masked language model in Bidirectional

Encoder Representations from Transformers (BERT)[38].
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Zhang et al. [57] proposed a novel deep learning model, namely Graph2Tree,

that fuses the merits of Graph-based Transformer[59, 60] Encoders and Tree-based

Decoders to solve MWPs. The principal advantage of using Graph-based Encoder

is that it can capture the relationships and associations between quantities bet-

ter than Sequence-based Encoder. Graph2Tree uses Quantity Cell Graph and

Quantity Comparison Graph to improve the quantity representations and model

the relationships among the attributes and quantities (along with their numer-

ical quality) respectively by leveraging certain heuristics. In the encoding step,

Graph2Tree encodes the given MWP statement using Bi-LSTM and builds the

Quantity Cell Graph and the Quantity Comparison Graph using the word-level

representations of the Bi-LSTM as their nodes. The multiGCN (Graph Convo-

lutional Networks)[61] module of the Graph Transformer then learns the entire

graph representation of the MWP based on the Quantity Cell Graph and the

Quantity Comparison Graph. Then, pooling is used to combine all the nodes into

a pool-based graph embedding vector which is output of the Graph Transformer.

This graph representation and updated node representations are then used by the

tree-structured decoder to infer the resultant expression tree. Graph2Tree uses

a K-head graph convolution setup. So the parameters that a single GCN learns

are Wgk ∈ Rd×dk , where dk = d
K

, and the learning is done as,

GCN(Ak, X) = GConv2(Ak, GConv1(Ak, X));

GConv(Ak, X) = ReLU(AkX
TWgk), k ∈ [1, . . . , K]

(2.19)

where, Ak is the adjacency matrix of the k-th graph, X is the feature matrix.

Each GCN(Ak, X) operation yields a dk dimensional output which are then con-

catenated together to form the final output.

Z =
K

∥
k=1

GCN(Ak, H) (2.20)

Z is then passed to a Feed-forward network, Layer-norm layer, Residual layer, and
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a Min-pooling layer,

Ẑ = Z + LayerNorm(Z)

Z̄ = Ẑ + LayerNorm(FFN(Ẑ))
(2.21)

where, FFN(x) is a 2-layered Feed-forward Network with the ReLU activation

function between the layers,

FFN(x) = max(0, xWf1 + bf1)Wf2 + bf2 (2.22)

where, f1 and f2 are the notations for the 2 layers and W and b are the weights

and biases respectively. After min-pooling and feeding to a Fully-connected Neural

Network (FC), the encoding process is complete and the graph representation is

generated,

zg = FC(MinPool(Z̄)) (2.23)

The tree-structured decoder of Graph2Tree is very similar to the one in Gts

proposed by [37]. The loss function, which is the sum of the negative log-likelihoods

of probabilities, that is minimized using Adam optimizer[92] is,

L(T, P ) =
E∑
t=1

− log(P(yt|qt, Gc, P )) (2.24)

where, qt is the goal vector, Gc is the contextual Global Graph, yt is the prediction

token of node t, E is the total token present in tree T and P is given problem

statement. Although Graph2Tree is one of the better models to solve MWPs,

it still falters in the cases of long solution expressions and problems that require

complex reasoning to solve.

Li et al. [58] also proposed another Graph2Tree model with a hierarchical

tree decoder consisting of Sub-decoders which perform Parent Feeding and Sibling

Feeding. They also proposed the Separate Attention Mechanism to locate source

sub-graphs in the decoding process.

Liu et al. [78] proposed a novel data augmentation method, namely Roda,

that aids MWP solver models to learn mathematical reasoning logic with better
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effectiveness. This method attempts at mimicking the behavioral proclivity of hu-

mans to double-check their math problem solutions to guarantee their correctness.

This effect is achieved by restructuring the problem statement of the MWP e.g.

the original problem text is “Jeff has 2 apples. Felix gives him 3 more apples.

How many apples does Jeff have?” and the MWP solver finds the solution to be

x = 2 + 3 = 5. Now, to double-check this solution, Roda will reformulate the

original question by converting the interrogative sentence to a declarative sentence

by plugging in the obtained answer and the newly formulated problem text will

ask for one of the known numeric values. So the given example gets restructured

as “Jeff has 2 apples. Felix gave him some apples and now Jeff has 5 apples. How

many apples did Felix give Jeff?”, and the MWP solver will obtain the answer

y = x − 2 = 5 − 2 = 3 which matches with the known value. This reversion-

based data augmentation tactic has 3 distinct merits—it is computationally sim-

ple and reliable, at the same time it helps to garner more knowledge points which

help enhance the model’s mathematical reasoning capability, and moreover MWP

datasets and corpora with greater complexity can be used to train the model.

Hong et al. [79] also attempted to replicate the mental states of a human during

problem-solving in their proposed model Smart. In order to represent situation

models for MWP solving, Smart uses Attributed Grammar. [79] also unveiled

a new dataset Asp6.6K and designed an Out-of-Distribution (OOD) evaluation

procedure. Smart was inspired by the cognitive concept of Situation Model [93]

which is used to get an abstract idea about the mental states of human beings

while problem-solving in the realm of psychology and behaviorism. At first, using

context-free grammar, a hierarchical parse graph is constructed from the problem

text and the nodes of that graph are the world, agents, entities, quantities, and

events mentioned in the problem text. The second stage of Smart’s learning

process is an iterative method to generate pseudo-gold graphs which augment the

supervision for the subsequent iteration. This step helps in strengthening the

information extraction module in Smart and consequently the model achieves

good interpretability.
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2.1.6.5 Complex Encoder-Decoder based Methods

In order to overcome the problems of expression fragmentation and operand-

context separation, Kim et al. [80] proposed a pure neural model, Ept, which

stands for Expression-Pointer Transformer and is the first of its kind for solving

MWPs. The encoder layer in Ept is the ALBERT model[94] which is a pre-trained

natural language model. The decoder uses the encoder’s hidden state vectors as

memories and generates Expression tokens as output. These expression tokens are

then used to construct the final solution expression. The operand-context pointer

aids in differentiating between different expressions as it directly points to the

operands’ contextual information.

Shen and Jin [42] proposed a model with multiple encoders and decoders to fur-

ther enhance text representations and expression derivations. Their model, namely

MultiE/D, uses two types of encoders — Sequence-based and Graph-based en-

coders and also uses two types of decoders — Sequence-based and Tree-based

decoders. Due to the integration of Graph-based encoder alongside Sequence-

based encoder, the model achieves an enhanced representation of the problem

text through a dependency parse tree and numerical comparison information.

The sequence-based encoder layer uses Bi-GRU and the sequence-based de-

coder layer uses GRU. The graph-based encoder is a GraphSAGE model [95]

which is a flexible Graph Neural Network (GNN). The tree-based decoder is sim-

ilar to the one proposed in [37].

Wu et al. [43] proposed a model which can integrate external knowledge and

global expression information. This novel model, namely Ka-S2T abbreviation

for Knowledge-aware Sequence to Tree, is a Seq2Tree model in which there is

a Bi-LSTM encoder that constructs an entity graph using the entities extracted

from the MWP text and passes to a Graph Attention Network which captures the

Knowledge-aware problem representations. The decoder is a tree-based decoder

combined with a state aggregation procedure that is effective in extracting the

long-distance dependency and global expression information and it outputs the

math expression by performing pre-order traversal in the generated tree.
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The research works done in the aforementioned papers consider only one ex-

pression from the dataset and try to fit it. Zhang et al. [51] introduced a new

model, Teacher-Student Networks with Multiple Decoders (Tsn-Md), with a

Teacher network and multiple decoder Student networks to derive multiple correct

expressions for the same problem text. The teacher network is pre-trained to guide

the learning behaviors of the student networks. The student networks participate

in a vote and democratically choose one of the multiple candidate expressions

generated by the decoders. This model can thus generate diversified solutions for

the same problem statement using the idea of Knowledge Distillation (KD)[52]

in the teacher network which is very similar to the Gts model in[37]. Tsn-Md

can produce expressions whose templates are not present in the original dataset

but the model doesn’t penalize the generation of such expressions if they end up

yielding the correct final answer.

Yu et al. [53] proposed a Reasoning with Pre-trained Knowledge and Hierar-

chical Structure (Rpkhs) network which has special encoders. There are 2 types

of encoders in Rpkhs and they are Pre-trained Knowledge encoder and Hierar-

chical Reasoning encoder. The hierarchical encoder uses the textual embeddings

of the problem text to form relationships between word and sentence thus inte-

grating semantics between entity and context. The knowledge encoder extracts

knowledge points from the linguistic world and incorporates them into the input

embeddings to enhance the representation. The outputs of these two encoders

are concatenated and fed to the tree-based decoder to derive the final expression.

Rpkhs holds the highest recorded accuracy of 89.8% in the Mawps dataset.

Hong et al. [54] modified the work of Xie and Sun [37] by incorporating a

novel symbolic reasoning based Learning-by-fixing (Lbf) framework. In essence,

the idea is to traverse through an incorrect expression tree from the root to the

inner nodes and determine the most probable fix that will make the tree yield the

correct expression (exploring stage). In order to generate diverse solutions, Lbf

uses Tree Regularization and to make the process memory-efficient, it also uses

memory buffer.
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Lin et al. [44] proposes a novel Hierarchical Math Solver (Hms) that has a

hierarchical word-clause-problem encoder that imitates the reading habits of hu-

mans and has a novel hierarchical attention mechanism-based tree decoder that

generates the math expressions.

Qin et al. [55] proposed the novel Neural Symbolic Solver (Ns-Solver) that

performs 4 auxiliary tasks to integrate different levels of symbolic constraints (e.g.

commonsense constants and formulation regularization). The model has 3 main

modules—the problem encoder, the symbolic equation generator decoder and a

symbolic executor. The 4 auxiliary objectives are—Number Prediction, Common-

sense Constant Prediction, Program Consistency Checking, and Duality Exploita-

tion. The authors also created the Cm17K benchmark dataset with 4 types of

MWPs.

Huang et al. [56] attempted to emulate human-like analogical learning in their

proposed model Real. They proposed a novel memory-augmented framework

consisting of memory modules that are used for retrieving math problem state-

ments similar to a test sample. Each retrieved problem along with the test sample

is encoded using a representation module. This concatenated problem set is then

fed to the analogy and reasoning modules to obtain the output expression.

Cobbe et al. [69] from OpenAI proposed the use of verifiers to guesstimate

the correctness of model outputs. The incorporation of verifier modules results

in a performance improvement comparable with a 30x model size expansion. The

finetuning baseline method of their model utilizes the same modeling objective as

GPT-3 [6]. The verification process is basically sampling and scoring a multitude

of high-temperature solutions and thereby outputting the highest-scored solution

as the answer.

Liang et al. [46] proposed the MWP-Bert model. It takes advantage of the

perfect Natural Language Understanding done by Bidirectional Encoder Repre-

sentations from Transformers (BERT)[38]. The pre-trained token representations

are used by the model to capture the relationship between the problem text and

mathematical logic. The model has a BERT-based encoder which is further trained
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on the Ape210K dataset to perform Masked Language Model (MLM) so that the

encoder can learn to understand mathematical logic besides natural language. The

resultant problem embedding is obtained after Mean-pooling and then fed to the

tree-based decoder to generate the correct expression tree. In terms of perfor-

mance, to the best of our knowledge, this MWP-Bert is the best among the lot.

It yielded the then highest known accuracy scores of 84.4% (96.2% in evaluation)

and 84.3% across two of the largest benchmark datasets Math23K and Ape210K

respectively. So, in the domain of MWP solving, MWP-Bert was regarded as

the State-of-the-Art (SOTA), especially for the Ape210K dataset. However, it

was surpassed by the Scr model proposed by Xiong et al. [49] which now boasts

accuracy values of 86.8% and 76.7% in the Math23K and Ape210K datasets

respectively. It utilizes a RoBERTa-based encoder and a Tree-based decoder.

A fair inquisitive pursuit is to see if this model eventually learns Math or

Language. Patel et al. [2] carried out significant probing tests to expose the

deficiencies in linguistic and mathematical modeling of the baseline BERT model.

The model can easily solve a simple test sample from Mawps[1] such as, “Jerry

had 135 pens. John took 19 pens from him. How many pens does Jerry have left?”

and provide the correct math expression “x = 135 − 19” as output. However, if

questions are posed in a different manner, for example, “Jerry had 135 pens. John

took 19 pens from him. Who has more pens?” or “What should be added to 19 to

make it 135?” the model fails to provide the correct output, which suggests that

these translation models are not sufficiently adept at modeling either language or

math.

Shen et al. [45] proposed a new “Generate & Rank” method, which is a BART-

based [39] multi-task framework for MWPs. BART is a pre-trained language model

with an illustrious record of achieving SOTA performances in a diverse range of

NLP research domains. In accordance with that, the “Generate & Rank” method

managed to surpass MWPBert by a slight margin and achieved a new SOTA

accuracy of 85.4% in the Math23K dataset. It also achieved an accuracy of

84.0% in the Mawps dataset which is the second highest recorded accuracy as far
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as Mawps is concerned, just behind Rpkhs[53]. The idea here is to generate a

set of candidate expressions from a Math Word Problem (MWP) statement and

rank those candidate expressions to determine the most correct one. The ranking

process is learnt through exposure to training examples from an expression bank

consisting of several correct expressions. This joint training task coupled with tree-

based disturbance and online updates makes the model learn from its mistakes and

learn to generate correct math expressions by improving its ability to discriminate

between math expressions in terms of correctness and validity.

Jie et al. [63] proposed the RoBERTa DeductReasoner model which views

the MWP solving task as a complex relation extraction problem. They developed

a deductive reasoning module at the downstream of their model which yields

human-understandable deductive reasoning steps iteratively and constructs the

final output expression. This procedure of deduction enables the RoBERTa De-

ductReasoner model to make correct equation predictions on problem state-

ments that require a somewhat deep and complex line of reasoning. Their model

boasts the SOTA accuracy on the popular English MWP dataset Mawps [1] and

the challenge dataset Svamp [2] among the non-gigantic language models. The

accuracy values are 97.0% and 47.3% respectively.

Deep Learning-based translation models generally learn some shortcuts by

identifying patterns in the training data[96]. This works as a double-edged sword

because the model may provide an output for a peculiar input by resorting to shal-

low generalizations. Patel et al. [2] duly exhibited how deep learning-based MWP

solvers provide the supposed “correct” output even though the input prompt was

simply a situational context of a problem scenario without any questions posed at

the end. The most obvious reason for this is the high lexical and template overlap

seen in the datasets these models are trained with. It also insinuates some issues

with the internal design of the models as pointed out by Patel et al. [2].

A summary table of some of the Deep Learning Encoder-Decoder based models

is shown in table (2.1).
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Table 2.1: The encoders and decoders designed by various models.

Model Seq-
Encoder

Graph-
Encoder

Seq-
Decoder

Tree-
Decoder

DNS ✓ ✓
Math-EN ✓ ✓
T-RNN ✓ ✓
S-Aligned ✓
Group-ATT ✓
D-Decoder ✓
AST-Dec ✓ ✓
GTS ✓ ✓
Graph2Tree ✓ ✓ ✓
MultiE/D ✓ ✓ ✓ ✓
TSN ✓ ✓
MWP-BERT ✓ ✓

2.1.6.6 Large Language Model-based Methods

With the advent of Large Language Models (LLM), the landscape of Natural

Language Understanding (NLU) evolved to a great extent. LLMs like GPT-1

with 117 million parameters [97], GPT-2 with 1.5 billion parameters [98], T5

with 11 billion parameters [99], and finally GPT-3 with 175 billion parameters [6]

are some of the gold-standard language models in the industry. They are mainly

prompt-based models which enable them to perform zero-shot, one-shot or few-

shot learning. Wang et al. [66] used OpenAI’s code-davinci-002 model which is

a variant of the GPT-3 model to check its mathematical reasoning performance

on a series of English MWP datasets. With their Self-Consistency prompting

module, they were able to reach astounding accuracies of 91.6%, 100.0%, 87.8%,

52.0%, 86.8% and 78.0% on the datasets AddSub, MultiArith, ASDiv, AQuA,

Svamp and GSM8k respectively. Li et al. [65] developed a DiVeRSe (Diverse

Verifier on Reasoning Step) approach to enable few-shot learning of MWP solving

in LLMs. The approach is essentially prompting the LLM to generate a variety of

reasoning paths to solve a problem statement and then selecting the most voted

reasoning path using a verifier.
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2.1.7 Relevant Features Extraction

A variety of features were proposed in the pre-Deep Learning research works dis-

cussed in this paper. We categorize these features and identify the MWP solvers

that work with those corresponding features.

2.1.7.1 Quantity-related Features

As mentioned earlier in this paper, quantities are determinate numerical values

that signify the amount of some object, entity, rate or unit. As this is the most

obvious feature that needs to be extracted in order to solve a math problem, all the

MWP solvers extract these values as operands in the final expression. However,

an extra effort to determine whether a numerical value is a rate or not has been

adopted in recent works [18, 23, 25, 29, 32]. These rate quantities are generally

associated with the × and ÷ operators. The quantity feature is also important

to determining relevancy of the numerical values. Quantities written in textual

format in the problem statement, e.g., “six”, “nine”, have low likelihood to be

relevant or be included in the final solution equation [15, 18, 29, 30]. For example,

in the statement, “The sum of two numbers is 420.”, the quantity “two” isn’t

relevant to the solution expression of the problem.

2.1.7.2 Context-related Features

The contextual information of the quantities need to be extracted to correctly

solve a math problem. MWP solvers generally leverage the word lemmas, Part

of Speech (POS) tags and dependence types within the text window centered at

a particular quantity. A good rule of thumb used in works like [23, 25, 32] is to

check for comparative adverb terms, such as, “more”, “less”, “than” and these

keywords are generally associated with operators like, + and −.

2.1.7.3 Quantity-pair Features

Some of the operators in the solution expression of a problem is determined by

checking the relative associations between two quantities. As discussed before,
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quantities with the same unit generally have addition (+) or subtraction (−) op-

erations between them, whereas, quantities that are units and quantities that rep-

resent some rate are usually multiplied (×) or divided (÷)[22, 23, 25, 32]. Zhou

et al. [18], Upadhyay et al. [29] introduced two types of quantity-pair features,

namely, Numeric relation and Context Similarity. The numeric relation feature

forms two sets of entity nouns situated in the same sentence of the problem state-

ment and arranges them in terms of distance in the dependency tree. Then, scor-

ing functions like Jaccard Similarity Coefficient is used to measure the similarity

between these lists of entity nouns. The context similarity feature is useful for

determining the expression template needed for the solution of the problem. The

higher the contextual similarity between two quantities is, the more likely they are

to be placed in symmetric slots in the final equation[15, 18]. For example, if the

problem statement says something like, “A pencil costs 10 cents and a pen costs

20 cents.”, the price quantities “10” and “20” are deemed contextually similar.

Another quantity-pair feature that is taken into consideration is to check whether

one quantity from the pair is greater than the other or not[15, 18, 23, 25, 29, 32].

This is done to correctly set the order of the operands in the solution expression

for operators like, − and ÷.

2.1.7.4 Question-related Features

The problem statements of MWPs generally pose a question asking for the value

of one or more unknown variables. In order to figure out what those unknown

variables signify, some question-related features need to be extracted. If the ques-

tion consists of a particular unit or noun phrase, the quantities associated with

that unit or noun phrase throughout the problem statement, are likely to be

relevant[15, 17, 22, 23, 25, 32]. The relevancy of units and noun phrases of a

quantity can also be measured by checking if they have the highest number of

match tokens with the question posed at the end of the problem statement. The

presence of some keywords in the question that insinuate the rate of an entity,

e.g., “each” or “per” are also taken into consideration and are useful for including
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× and ÷ operators in the final expression. Other comparison-related keywords

such as, “more” or “less” are also extracted for inclusion of + and − operators in

the final expression[18, 29].

2.1.7.5 Verb-related Features

Verbs form the main part of the predicate of the sentences in a problem statement

and they generally describe a state, an action or an occurrence. These type of

words have to be extracted and identified for determining the correct operators

in the final expression. For example, in the problem statement excerpt “Rifat

has 20 books. Nafis takes 4 books from Rifat.”, the verb “takes”, which is the

plural form of “take”, implicates a loss of quantity for the entity “Rifat” in the

aforementioned scenario. In terms of operators, it is obvious that the subtraction

operator (−) has to be used to indicate this loss of quantity. The dependent verb of

a quantity, which is used as a feature, is the verb closest to that given quantity in

the dependency tree[22, 23, 25, 32]. If the dependent verb isn’t verbatim present

in the pre-defined set of verbs useful for determining mathematical operators for

the final expression, another feature is used which is a vector representing the

distance between the dependent verb and the constituents of the aforementioned

set of verbs[16, 20, 22]. The quantities that share the same dependent verbs are

deemed closely associated in terms of undergoing the same action or being in the

same state[23, 25, 32]. For example, in the statement “Rachel bought 10 coloring

books last month. This month she bought 5 coloring books.”, the verb “bought”

acts as the dependent verb for for both the quantities 10 and 5. In some cases,

there may be a single presence of the dependent verb but nonetheless acts as

dependent verb for multiple quantities[23, 25, 32]. For example, in the statement,

“Rachel drew 2 cats and 3 rabbits.”, the verb “drew”, which is the past tense of

“draw”, manifests only once but acts as the dependent verb for both quantities 2

and 3.
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2.1.7.6 Global Features

Some of the existing research works[15, 17, 24, 25, 32] define some overarching

global features in the document-level. One part of this feature space is the tally

count of quantities in the problem statement. Another thing to consider for under-

standing the sentences in the problem statement is the n-gram contiguous sequence

of words. In [15, 17] the authors proposed using unigrams (n = 1) or bigrams

(n = 2) for the problem text. These features are indispensable for determining

which quantities are relevant and their relative order in the final expression.

2.1.8 Dataset Repository and Performance Analysis for

MWPs

2.1.8.1 AI2

Hosseini et al. [16] created this dataset consisting of 395 Math Word Problem from

3rd-5th grade children’s books. The problems were scraped from two websites:

www.math-aids.com and www.ixl.com. It is partitioned into 3 subsets based on

difficulty. All in all, the dataset consists of 13,632 words, 118 verbs and 1,483

sentences. This dataset is also referred to as AddSub.

2.1.8.2 IL

It was created by [17] and consists of 562 single step math word problems. The

problems were harvested from two websites k5learning.com and dadsworksheets.com.

The dataset has problems that require various combinations of the 4 fundamental

mathematical operators to solve. All the problem statements were formulated to

keep irrelevant quantities away. So models without any relevance classifier can

train on this dataset.

2.1.8.3 SingleEQ

This is the first dataset to consist of both single and multi-step math word prob-

lems. A subset of the problems in this dataset are also within the Ai2 dataset.
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This was created by [22].

2.1.8.4 AllArith

This dataset is the amalgamation of 4 other datasets which are, AI2, Il, Cc and

SingleEQ. The dataset consists of mostly unique problems as near-duplicate

problems were manually removed. It was created by [25].

2.1.8.5 ALG514

As the name suggests, this dataset consists of 514 problems harvested using web-

crawlers on www.algebra.com. This was created by [15]. They did not include

any problems that required explicit background knowledge or problems whose

templates didn’t appear in the dataset ≥ 6 times. After imposing these data

cleaning criteria on the randomly selected pool of 1,024 problems, the authors

ended up with 514 problems with a total of 1,616 sentences and 19,357 words.

The vocabulary size was 2,352 with an average of 37 words, 3.1 sentences and 13.4

nouns per math problem. There were a total of 28 unique equation templates with

each equation template system having 7 slots on average. The mean derivations

for each problem was 4,000,000. This dataset is also referred to as SimulEq-S.

2.1.8.6 Dolphin1878

The problems of this dataset are from www.algebra.com and answers.yahoo.com.

The dataset also contains manually annotated answers and equations. In total,

the dataset has 1,878 problems as the name suggests and there are 1,183 equation

templates. Shi et al. [26] created this dataset to test out their semantic parsing

based model.

2.1.8.7 DRAW1K

The authors of Draw1KUpadhyay et al. [29] were incentivized to create this

dataset due to the lack of diversity in the Dolphin1878 dataset. This dataset

consists of 1,000 linear equation problems scraped from www.algebra.com.
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2.1.8.8 Dolphin18K

This dataset was constructed semi-automatically with a lot of manual annotations.

Huang et al. [28] prepared this dataset in 4 stages. It is one of the largest bench-

mark datasets consisting of 18,460 math problems with 5,871 equation templates.

The problems were scraped from online fora like, Yahoo! Answers.

2.1.8.9 AQuA

This dataset was published by DeepMind after being created by Ling et al.

[100]. This dataset consists of a total of around 100,000 annotated math problems

of which 34,202 were collected by the authors and 70,318 were collected and an-

notated by volunteers. The problems were collected from Graduate Management

Admission Test (GMAT) and Graduate Record Examination (GRE) question pa-

pers and so they are pretty challenging.

2.1.8.10 MathQA

This dataset was created by Amini et al. [101] and it consists of MWPs in the

form of Multiple Choice Questions (MCQ). A total of 37,295 questions of various

categories were included in this dataset. The categories include Geometry, Physics,

Probability, Gain-Loss, etc. which are domain-specific types of problems that

require some knowledge about the respective domains to solve. For example,

knowing the value of π = 3.1415... for solving geometry problems that ask for the

area of a circle given the radius, diameter, or circumference.

2.1.8.11 HMWP

This dataset was created by Qin et al. [102] with problems extracted from a

Chinese K12 math word problem bank book. The full-form of Hmwp is Hybrid

Math Word Problem. This dataset consists of 3 types of MWPs: arithmetic,

equation-set and non-linear equation problems. Out of the total 5,471 problems,

2,955 are 1-unknown variable linear problems, 1,636 are 2-unknown variable linear

problems and 900 are 1-unknown variable non-linear problems. The creators of this
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dataset claim the sufficiency of this dataset as a testbed for testing the universality

of MWP solver models.

2.1.8.12 CM17K

Qin et al. [55] created this dataset with the same intentions behind creating

Hmwp[102], which is to validate the universality of an MWP solver model. The

problems in this dataset were collected from Chinese math textbooks for grade

6-12 students. An aggregate of 17,035 problems of 4 types are present in this

dataset. These types are, 6,215 arithmetic MWPs, 5,193 1-unknown linear MWPs

and 2,498 equation-set problem statements. The authors claim that Cm17K is

better suited than Math23K[31] to test the reasoning ability and universality of

MWP solver models, due to its problem-type diversity.

2.1.8.13 ASDiv

This dataset was created by Miao et al. [103]. The full-form of ASDiv is Academia

Sinica Diverse MWP Dataset. The incentive behind creating this dataset was the

lack of linguistic and problem-type diversity in the then existing MWP datasets. It

consists of a total of 2,305 problems with varying lexical patterns, difficulty levels

and problem-types collected from 28 websites. There are a total of 19 unique

equation templates and on average each problem requires 1.23 operations to solve.

2.1.8.14 SVAMP

Patel et al. [2] created this challenge dataset to test the robustness of the then

existing MWP solver models. The elaboration of Svamp is Simple Variations on

Arithmetic Math Word Problems. The principal reason for creating this dataset

was to expose the brittle nature of the SOTA MWP solver models and to demon-

strate that those models rely on simple heuristics learnt from the training data

to generate the predicted math expressions. The initial seed examples of this

dataset were taken from the ASDiv-A[103] dataset and certain variations of those

problem statements were used to build the entire dataset. The variations were
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introduced in the form of structural difference, object difference, addition of rele-

vant/irrelevant information, changing entities and quantities, changing the order

of objects, changing the order of phrases and inverting the operations. These vari-

ations test a solver model’s Question Sensitivity, Reasoning Ability and Structural

Invariance. This dataset has a total of 1,000 problems, maintains a single opera-

tion to multiple operations problem ratio of 1.24:1 and has 26 unique templates.

Svamp has a lower Corpus Lexicon Diversity (CLD) score than ASDiv-A[103],

but the creators of Svamp argue that Corpus Lexicon Diversity (CLD) is not a

reliable way to measure the quality of MWP datasets.

2.1.8.15 MAWPS

This is one of the most popular benchmark datasets consisting of 2,373 math

word problems. The problem are of different levels of difficulty and reasoning

complexity. Any model that performs good on this dataset can be considered

quite a robust model as this dataset is a really good testbed. This was created by

Koncel-Kedziorski et al. [22] and Koncel-Kedziorski et al. [1].

2.1.8.16 DolphinS

This dataset is a fragment of the Dolphin18K[28] dataset. It consists of a total

of 7,070 problem out of which 115 are single operator problems and the rest 6,955

are multiple operator problems.

2.1.8.17 GSM8K

Cobbe et al. [69] created this dataset to test their verifier incorporated GPT-

3 based model. It consists of 8,500 math word problem statements manually

annotated and created by human problem authors. These problems are diversified

in terms of number of steps required to solve them but the difficulty level of

the problems is not that high as a generic middle-school student with decent

mathematical aptitude is able to solve all of them.
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2.1.8.18 Math23K

This dataset, created by Wang et al. [31], is an important dataset to test whether

an MWP solver model is language agnostic or not because the problems in this

dataset are written in Mandarin. The problems were taken from Chinese elemen-

tary school text-books and a myriad of educational websites. Although it initially

had 60,000 problems, the authors manually discarded many unabiding problems

and reduced the problem number down to 23,161 with 2,187 templates which still

makes it a huge benchmark dataset suitable for training Deep Learning models.

2.1.8.19 Ape210K

This huge benchmark dataset was recently created by Liang et al. [46] who imple-

mented the MWP-Bert. This dataset consists of 210,488 math word problems

and is the largest MWP dataset created till date. This dataset consists of problems

that require commonsense knowledge which makes it a good testbed for models

with Keyword-based prompt-matching mechanisms to learn commonsense knowl-

edge points. Many of the problems in the dataset are either not annotated with

the correct equation or not annotated with the correct answer or both. The au-

thors willingly did this to make the test-set more challenging for the models. The

unclean version of this dataset is called Ape210K while the clean version in which

all the problems are annotated is called ApeClean. ApeClean has a total of

125,675 problems out of which 122,588 are training samples and the rest 3,087 are

test samples.

A summary of the datasets is portrayed in table (2.6) and a comparative anal-

ysis of the performance of the discussed models on the benchmark datasets is

portrayed in table (2.7).
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Figure 2.6: Summary of the MWP datasets. Datasets marked with † are in the

Mandarin Chinese language.
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Chapter 3

Proposed Methodology

3.1 System Architecture

Figure-3.3 shows an overview of our proposed architecture. Given a problem

statement S, we prompt the paraphraser model to generate k linguistic variants

of S which are, S1, S2, . . . , Sk. These k variant problems along with the seed

problem S consists of quantities that are tagged appropriately using quantity tags.

Each of the k + 1 text sequences is then tokenized and the content embeddings H

and positional embeddings P of the tokens are fed to the DeBERTa model. The

disentangled self-attention mechanism of DeBERTa’s encoder utilizes H and P to

generate the output Houtput, which is a contextual representation of the content

of each problem statement. Houtput, along with the relative positional embeddings

P and absolute positional embeddings I of each of the problem statements are

used by the Transformer layers of Enhanced Mask Decoder (EMD) of DeBERTa

to generate the k + 1 predicted equations E1, E2, . . . , Ek+1. These equations are

then simplified and the equation that is predicted the most number of times is

elected as the final prediction of the model. This majority voting module is used

only during the validation/testing phase and for inference. During the training

phase, the k + 1 problem statements are deemed as stand-alone training samples,

and the Negative Log-Likelihood loss (NLLLoss) is calculated using the predicted

equations and the ground-truth equation. Consequently, if the training set of the

50
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dataset used to train the model consists of n samples, it is as if the model is trained

with (k + 1) × n = kn + n samples. The knowledge points gathered after being

trained on an extra kn samples contributes to the robustness of the model.

3.1.1 Paraphraser Model

The task of correctly reformulating a Math Word Problem statement requires a

good level of language understanding. We choose text-davinci-003 and gpt-3.5-

turbo, two GPT-3 models from OpenAI, as the paraphrasing models. GPT-3

(Generative Pre-trained Transformer 3) [6] is a large language model with 175

billion parameters, that is capable of performing a wide range of natural language

processing tasks, including paraphrasing a given sentence.

Figure 3.1: Paraphraser Model (GPT-3).

Upon being prompted, it restates a given problem statement in different words

while still maintaining the original meaning. To select the most appropriate para-

phrase, GPT-3 uses a scoring mechanism that evaluates the semantic similarity

between the original sentence and each of the generated paraphrases. The model

assigns a higher score to paraphrases that are more similar in meaning to the

input sentence, based on its understanding of the context and the relationships

between the words. It also allows users to customize the level of complexity and
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the style of writing in the paraphrased version. We generate k variants of the

original problem text by prompting the model. A detailed discussion on the types

of problem variations is delineated in Section-4. Figure-3.1 portrays the problem

variant generation process.

3.1.1.1 Prompts and System Task Description

Prompts and system task descriptions play important roles in guiding the gen-

eration of text in large language models (LLMs) like GPT-3 [6]. By definition,

prompts are initial instructions, questions, or partial sentences that serve as cues

for generating text from a language model. They provide the starting point or

context for the model to produce a coherent response or continuation. Prompts

can be specific or open-ended, depending on the desired output. System task de-

scriptions refer to detailed instructions or specifications provided to a language

model regarding a specific task or objective it is expected to accomplish. These

descriptions outline the desired input-output behavior, constraints, and require-

ments of the task. The prompts that we use for accomplishing our linguistic

variant generation task are,

• system role Task Description —

You are a Math Word Problem rephraser that generates variations of math

word problem statements.

• user role Prompts —

– Generate k1 paraphrased variations of the problem by changing the

sentence structure.

– Generate k2 paraphrased variations of the problem by changing the

named entities and objects.

– Generate k3 paraphrased variations of the problem with irrelevant

numerical information.

Here, the total number of linguistic variants of a problem, k = k1 + k2 + k3 is not

fewer than 5 but not more than 15 i.e. 5 ≤ k ≤ 15.
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3.1.2 Quantity Tagging

All the quantities (written either numerically or in words) in every single variant

of the problem along with the original problem itself, are tagged with unique

quantity tags. This ensures that the same quantity is present in both the input

as well as in the output. The quantity-tagged tokens have their own content and

positional embeddings. For example, if the problem statement is,

“Melanie picked 4 plums, Dan picked 9 plums, and Sally picked 3 plums

from the plum tree. How many plums were picked in total?”

then the quantity-tagged version of the problem statement is,

“Melanie picked [Q1] plums, Dan picked [Q2] plums, and Sally picked

[Q3] plums from the plum tree. How many plums were picked in total?”

We use this quantity tagging for the ground truth equation’s quantities as well.

3.1.3 Encoder

We use the pre-trained language model DeBERTa (Decoding enhanced BERT

with disentangled attention). DeBERTa is a newly developed neural language

model by He et al. [7] that is based on the Transformer architecture. It boasts

a significant advancement over previous state-of-the-art (SOTA) pre-trained lan-

guage models (PLMs) due to the incorporation of two novel techniques. The first

technique is a disentangled attention mechanism and the second technique is an

enhanced mask decoder. Together, these techniques make DeBERTa a highly ef-

fective PLM that outperforms its predecessors on a wide range of NLP downstream

tasks.

3.1.3.1 Disentangled Attention

Contrary to BERT, which utilizes a vector representation for each word in the

input layer by summing its content and position embeddings, in DeBERTa, every

word is represented by two separate vectors that encode its content and position

individually. The attention scores between words are computed using separate
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matrices that are disentangled based on the content and relative position of each

word. This design choice is based on the observation that the attention weight

between a pair of tokens is influenced by both their content and in tandem their

relative positions.

To represent a token xi located at a specific position i within a given sequence,

it employs two distinct vectors, Hi and Pi|j, which are respectively the content

and relative positional representation vectors of xi with respect to a token xj at

position j. The inter-token attention weights between xi and xj can be broken

down into four constituent components,

Aij = ⟨Hi, Pi|j⟩ × ⟨Hj, Pj|i⟩⊤

= HiH
⊤
j︸ ︷︷ ︸

C2C

+HiP
⊤
j|i︸ ︷︷ ︸

C2P

+Pi|jH
⊤
j︸ ︷︷ ︸

P2C

+ Pi|jP
⊤
j|i︸ ︷︷ ︸

P2P
(omitted)

(3.1)

where, the four disentangled matrix attention scores represent their contents and

positions as content-to-content (C2C), content-to-position (C2P), position-to-content

(P2C), and position-to-position (P2P). The P2P portion of (3.1) is somewhat ren-

dered obsolete since DeBERTa uses relative positional embedding which is why

no useful information can be extracted from it.

The self-attention mechanism described by Vaswani et al. [84] has 3 parameters,

Q (Query), K (Key), and V (Value). The non-contextual embedding that is being

contextualized at any point requests for information from its surrounding tokens

within the context window and that is represented by the query token, and the

tokens that the model pays attention to are the key tokens. So, Self-attention

can be trivialized as a soft dictionary lookup which returns a weighted sum of the

values in the corpus. This weight represents the usefulness of a particular token in

embedding/contextualizing the query token. If H ∈ RN×d represents the content

and P ∈ R2k×d represents the positional information of a sentence with N tokens

each having an embedding dimension of d, while k is half the size of the context

window or the maximum relative distance, then the query, key, and values are
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calculated as,

Qc = HWcQ , Kc = HWcK , Vc = HWcV

Qr = PWrQ , Kr = PWrK

(3.2)

where, WcQ ∈ Rd×d, WcK ∈ Rd×d, WcV ∈ Rd×d are the projection weight matrices

for the projected content vectors Qc, Kc, Vc respectively. Similarly, WrQ ∈ Rd×d

and WrK ∈ Rd×d play the role of projection matrices for the projected relative

position vectors Qr and Kr. The metric to calculate the relative distance between

tokens xi and xj is,

δ(i, j) =


0, if i− j ≤ k

2k − 1, if i− j ≥ k

i− j + k, otherwise

(3.3)

which implies, δ(i, j) ∈ [0, 2k). Each element Āij of the attention matrix Ā denotes

the attention score from token xi to the token xj and is computed using the vectors

defined in (3.2) in the following manner,

Āij = Qc
iK

c⊤
j︸ ︷︷ ︸

C2C

+Qc
iK

r⊤
δ(i,j)︸ ︷︷ ︸

C2P

+Kc
jQ

r⊤
δ(j,i)︸ ︷︷ ︸

P2C

(3.4)

The attention score is yielded using the dot-product of the query and key in the

formula to let the model have an idea of how similar the key is to the query. The

output of the self-attention mechanism, which is denoted by Houtput ∈ RN×d is,

Houtput = softmax

(
Ā√
3d

)
Vc (3.5)

The result of the dot-product is normalized by dividing with
√

3d to avoid very

hard softmax with small gradients, which is especially required for training sta-

bility in the case of large-scale PLMs [7, 84].
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3.1.4 Decoder

He et al. [7] postulates that the premature integration of absolute positions, which

is employed by BERT [38] in its decoding phase, could potentially impede the

model’s ability to acquire adequate knowledge of relative positions. With this

as the justification, DeBERTa, being a model that was pretrained using MLM

(Masked Language Modeling), uses the absolute positions of the tokens in the

penultimate layer, right before the softmax layer during the masked token predic-

tion in its decoding phase. This enables all the Transformer layers in the decoder to

work with the relative positional information without the susceptibility of hamper-

ing the learning process of the model. Since the absolute positions of the tokens in

a sentence highly influence the nuanced understanding of the sentence’s semantic

and syntactic structure, and extracting information from only the relative posi-

tions isn’t sufficient, the absolute positions are incorporated in the tail-end of the

pipeline in the case of DeBERTa. This is why DeBERTa’s decoding module (see

Figure-3.2) is dubbed an Enhanced Mask Decoder (EMD) and it demonstrably

outperforms the decoder counterparts of its predecessor PLMs [7].

Figure 3.2: Enhanced Mask Decoder.
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3.1.5 Majority Voting

Since there can be multiple valid equations for a single MWP, each of the k + 1

predictions from the decoder, E1, E2 . . . , Ek+1, is simplified to a reduced nor-

mal form using the python package sympy. These k + 1 simplified predictions,

E ′
1, E

′
2 . . . , E

′
k+1, are then counted and the prediction that is the most frequent or

that is yielded the most number of times is elected as the final answer of the whole

solver model. It is to be noted that this voting mechanism is used only during the

testing/validation phases or during inference.

E∗ ← argmax
E′

Votes(E ′
i); i = 1, 2, . . . , k + 1 (3.6)

Equation-(3.6) states that E∗ is assigned the argument E ′ that maximizes the

Votes function for each value of i from 1 to k + 1, where each i is the index of a

generated expression E ′
i.
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Figure 3.3: Overview of our proposed model.
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Experimental Setup

4.1 Data Acquisition

We introduce a new large-scale dataset, namely ParaMAWPS (Paraphrased

MAth Word Problem Solving Repository), consisting of 16,278 single equation

MWPs. It is generated as a by-product of using one of the most commonly-used

English MWP datasets, Mawps [1] which consists of a total of 2,373 problems,

and the paraphraser model. We save the generated paraphrased variants of selec-

tively sampled problems of Mawps and also manually include inverse versions of

the problems to create our dataset. The dataset contains all the problems from the

original Mawps dataset as well as paraphrased versions of some of the more chal-

lenging problems within Mawps, hence the name, ParaMawps. By generating

variations of some of the more difficult problems, we intend to increase familiar-

ity of challenging concepts found within those problems to any model trained over

this data, as well as more thoroughly challenge existing models trained on datasets

that do not provide said complexity at an equal or higher density.

We generate k problems from each seed problem in the dataset, adding up to

a total of k + 1 problems, where 5 ≤ k ≤ 16. Each of the k generated problems

will be a variation on the original that will feature several changes to the problem

text. We generate 4 types of variations of each seed problem (see Table-4.1).

59
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4.1.1 Linguistic Variations

4.1.1.1 Changed phrase order

Variations with the order of the phrases being changed facilitate a break from the

standard problem statement template where quantities are generally given before

the question formulation. Having a changed ordering of phrases makes apriori

question formulations more common.

4.1.1.2 Changed object and entity names

Object and entity names are altered with interchangeable alternatives (names,

synonyms) in problem variations to prevent fixation on elements of the problem

mostly agnostic to the process of solving the problem. It also serves to prevent an

increase in density for similar terms that originate from the seed problem yielding

good problem samples for language models [104].

4.1.1.3 Added unrelated information

Some variations contain an extra phrase or quantity, or similar additions that are

in excess of the information required to solve a problem and do not affect the

original problem formulation in any meaningful way. These adversarial variations

serve to obfuscate and familiarize the models with only the necessary information,

enhancing deductive abilities [105].

4.1.1.4 Inverted question

Some variations will take a previously known quantity and turn it into an unknown

quantity while revealing the previous unknown quantity of the problem. This, in

many cases, alters the question drastically, changing the needed calculations and

equations, while keeping a roughly similar question body to the seed problem. Liu

et al. [106] used such problem samples in their work.



Chapter 4: Experimental Setup 61

T
ab

le
4.

1:
T

y
p

es
of

V
ar

ia
ti

on
s

w
it

h
ex

am
p

le
s.

T
h

e
p

ro
b

le
m

s
in

th
e
O
ri
g
in
a
l

co
lu

m
n

ar
e

sa
m

p
le

s
ta

ke
n

fr
om

th
e
M
a
w
p
s

d
at

as
et

,
w

h
er

ea
s,

th
e

on
es

in
th

e
V
a
ri
a
ti
o
n

co
lu

m
n

ar
e

fr
om

th
e
P
a
r
a
M
A
W

P
S

d
at

as
et

.

V
a
ri
a
ti
o
n

T
y
p
e

O
ri
g
in
a
l

V
a
ri
a
ti
o
n

C
h

an
ge

d
p

h
ra

se
or

d
er

T
h

er
e

w
er

e
or

ig
in

al
ly

20
81

7
h

ou
se

s
in

L
in

co
ln

C
ou

n
ty

.
D

u
ri

n
g

a
h

ou
si

n
g

b
o
om

,
d

ev
el

op
er

s
b

u
il

t
97

74
1.

H
ow

m
an

y
h

ou
se

s
ar

e
th

er
e

n
ow

in
L

in
co

ln
C

ou
n
ty

?

H
ow

m
an

y
h

ou
se

s
ar

e
th

er
e

in
L

in
co

ln
C

ou
n
ty

n
ow

,
af

-
te

r
d

ev
el

op
er

s
b

u
il

t
an

ad
d

it
io

n
al

97
74

1
d

u
ri

n
g

a
h

ou
s-

in
g

b
o
om

,
w

h
en

th
er

e
w

er
e

or
ig

in
al

ly
20

81
7

h
ou

se
s?

C
h

an
ge

d
ob

je
ct

an
d

en
ti

ty
n

am
es

W
h

il
e

p
la

y
in

g
a

tr
iv

ia
ga

m
e,

M
ik

e
an

sw
er

ed
3

q
u

es
ti

on
s

co
rr

ec
t

in
th

e
fi

rs
t

h
al

f
an

d
5

q
u

es
ti

on
s

co
rr

ec
t

in
th

e
se

co
n

d
h

al
f.

If
ea

ch
q
u

es
ti

on
w

as
w

or
th

3
p

oi
n
ts

,
w

h
at

w
as

h
is

fi
n

al
sc

or
e?

W
h

il
e

p
la

y
in

g
a

ga
m

e
of

H
an

gm
an

,
E

m
il

y
gu

es
se

d
3

le
t-

te
rs

co
rr

ec
tl

y
in

th
e

fi
rs

t
h

al
f

an
d

5
le

tt
er

s
co

rr
ec

tl
y

in
th

e
se

co
n

d
h

al
f.

If
ea

ch
le

tt
er

w
as

w
or

th
3

p
oi

n
ts

,
w

h
at

w
as

h
er

fi
n

al
sc

or
e?

A
d

d
ed

u
n

re
la

te
d

in
fo

rm
at

io
n

A
ca

rp
en

te
r

b
ou

gh
t

a
p

ie
ce

of
w

o
o
d

th
at

w
as

8.
9

ce
n

-
ti

m
et

er
s

lo
n

g.
T

h
en

h
e

sa
w

ed
2.

3
ce

n
ti

m
et

er
s

off
th

e
en

d
.

H
ow

lo
n

g
is

th
e

p
ie

ce
of

w
o
o
d

n
ow

?

A
ca

rp
en

te
r

b
ou

gh
t

a
p

ie
ce

of
w

o
o
d

th
at

w
as

8.
9

ce
n

-
ti

m
et

er
s

lo
n

g.
T

h
en

h
e

sa
w

ed
2.

3
ce

n
ti

m
et

er
s

off
th

e
en

d
an

d
sa

n
d

ed
th

e
w

o
o
d

fo
r

20
m

in
u

te
s.

H
ow

lo
n

g
is

th
e

p
ie

ce
of

w
o
o
d

n
ow

?
In

ve
rt

ed
q
u

es
ti

on
M

ar
y

b
ou

gh
t

3
p

iz
za

s
fo

r
$8

ea
ch

.
W

h
at

w
as

th
e

to
ta

l
am

ou
n
t

sh
e

p
ai

d
fo

r
th

e
3

p
iz

za
s?

If
M

ar
y

p
ai

d
$2

4
fo

r
3

p
iz

za
s,

h
ow

m
u

ch
d

id
sh

e
p

ay
fo

r
ea

ch
p

iz
za

?



Chapter 4: Experimental Setup 62

4.1.2 Seed Problems

Many of the seed problems used to generate variations from Mawps pose suffi-

cient difficulty to even SOTA MWP solvers and often contain numeric information

embedded within the statement itself. An example is the following problem,

“Mary, Sam, Keith, and Alyssa each have 6 marbles. How many mar-

bles do they have in all?”

This problem yields the equation ”x = 4 × 6”, despite the quantity 4 not being

mentioned anywhere in the statement. This quantity had to be inferred from

the other parts of the statement itself, namely, the 4 entities referred to in the

statement; Mary, Sam, Keith, and Alyssa. Another such problem is,

“When the price of diesel rose by 10%, a user reduced his diesel con-

sumption by the same amount. How much would his diesel bill change

in terms of percentage?”

which yields the complex equation of ”x = (1.0 − ((1.0 + (10.0 × 0.01)) × (1.0 −

(10.0×0.01))))×100.0”. This problem, although seemingly simple on the surface in

terms of quantities described, has several calculations dictated through the prob-

lem statement, some of which require additional real-world anecdotal knowledge,

such as the conversion of percentages. Another problem with similar inferences of

a more complex nature is,

“Lauren wants to mix 5 liters of 7% milk with skim-milk (0% fat)

to produce a mixture of 2.9787% milk. How much skim-milk should

Lauren add?”

yielding the equation ”x = (7.0 × 0.01) × 5.0/(2.9787 × 0.01) − 5.0”, containing

similar conversions of percentages, as well as additional knowledge of types of

mixtures. Here, 7% milk is mixed with pure milk, or 100% milk. Yet the only

indication that the milk is of 100% purity is nowhere to be seen in a direct capacity

in the problem, but rather in a roundabout way - by referring to the amount of
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fat (0%) rather than the purity of the milk. Models have to infer a vast amount

of real-world contextual knowledge to be able to solve such problems. Problems

with second-degree unknown quantities are also present as seed problems. For

example, the problem

“The Hudson River flows at a rate of 3 miles per hour. A patrol boat

travels 60 miles upriver and returns in a total time of 9 hours. What

is the speed of the boat in still water?”

that yields the equation ”(60.0/(x − 3.0)) + (60.0/(3.0 + x)) = 9.0”, which is a

quadratic equation. The problem itself deals with calculations of speed, which

requires knowledge of how speed is calculated given certain quantities, as well as

the effect of certain elements in the problem scenario on speed.

We resort to this data generation approach due to the lack of large-scale,

diverse, single-equation English MWP datasets. Other commonly-used benchmark

datasets, Math23K [31] and Ape210K [46] consist of math problems written in

Chinese Mandarin. We also aim to diversify the samples in Mawps to enable

better training for MWP solvers [107, 108]. Svamp, created by Patel et al. [2]

consists of challenging versions of problems and is considered a challenge set for

testing the robustness of MWP solvers. We use the original version of Mawps and

Svamp along with our dataset ParaMAWPS for conducting our experiments. A

comparative summary of the statistics of the datasets used is shown in Table-4.2

and their operator count distributions are portrayed in Figure-4.1.

Table 4.2: Comparison of the datasets used.

Properties Svamp Mawps ParaMAWPS
# of problems 1,000 2,373 16,278

# of unique templates 27 159 215
Avg. # of operators 1.236 1.606 1.68

Avg. # of quantities per prob. 2.81 2.57 2.54
Avg. # of quantities per equ. 2.23 2.59 2.67
# of problems with constants 0 185 3313
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4.2 Model Implementation Details and Training

4.2.1 Baseline Models

We implement the DeBERTa model using Microsoft’s deberta-base that is publicly

available in Hugging Face1. The other baseline MWP solver models are implemen-

tations already available in the open-source MWPToolkit2 developed by Lan et al.

[109]. We use an extensive set of baseline models, Transformer [84], DNS [31],

MathEN [75], GroupATT [36], RNNEncDec [110], RNNVAE [111], BERT [38],

RoBERTa [40], and compare them with the performance of the DeBERTa model.

4.2.2 Dataset Analysis

For the purposes of training and testing the models, we used the Mawps dataset

[1], the Svamp dataset [2] and our dataset ParaMawps. The authors of the

Mawps dataset controlled 3 important data characteristics so that the dataset

can aid in making models robust. These 3 characteristics are — Lexical Over-

lap, Template Overlap and Grammaticality. The reuse of lexemes among problem

statements in a dataset is defined as Lexical Overlap and this characteristic is

reduced to an extent in Mawps. Some of the data samples willingly have small

grammatical errors to emulate real-life scenarios. They also include morphologi-

cal agreement failures, incorrect spellings, and other ungrammatical usage of the

English language.

The pairwise lexical overlap of a dataset’s problem statements p and q is defined

as,

PairLex(p, q) =
|W (p) ∩W (q)|
|W (p) ∪W (q)| (4.1)

where, W (x) is the set of unique unigrams along with bigrams in the problem

statement x. Then, formally, the overall lexical overlap of a dataset D is delineated

1https://huggingface.co/microsoft/deberta-base
2https://github.com/LYH-YF/MWPToolkit

https://huggingface.co/microsoft/deberta-base
https://github.com/LYH-YF/MWPToolkit
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as,

Lex(D) =
1

N

∑
pi,pj∈D

i<j

PairLex(pi, pj)
(4.2)

where, N = |D|C2 is the total number of possible combinations of problem state-

ment pairs in the dataset. The authors constructed the Mawps dataset by mini-

mizing (4.2).

The template overlap of a dataset is pretty similar as well and the Mawps

dataset was created with an attempt to minimize this as well. The pairwise

template overlap of a dataset’s problem statements p and q is defined as,

PairTempl(p, q) =

1, if p and q have the same template.

0, otherwise.

(4.3)

Then, formally, the overall lexical dataset of a dataset D is delineated as,

Tmpl(D) =
1

N

∑
pi,pj∈D

i<j

PairTempl(pi, pj)
(4.4)

where, N = |D|C2 is the total number of possible combinations of problem state-

ment pairs in the dataset. Overall, the arithmetic mean of the values obtained in

(4.2) and (4.4) is reduced and it is expressed as,

H(D) =
1

2
(Lex(D) + Tmpl(D)) (4.5)

The eventual Mawps dataset can then be referred to as D∗, where,

D∗ ← argmin
D

H(D) (4.6)

4.2.3 Dataset Split

We use an 80:10:10 train-validation-test split for our ParaMAWPS dataset. For

Mawps, we use 5-fold cross-validation using the splits provided by its authors
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Table 4.3: Characteristics of the Mawps Dataset[1].

Dataset # Probs |D| # Gramm.
Lexical Overlap (Lex) Template Overlap (Tmpl)

k = |D|/2 k = |D| Reduction k = |D|/2 k = |D|/2 Reduction

AddSub 395 357 6.1 7.9 22.8 33 37.2 11.3
SingleOp 562 491 6.1 7.8 21.8 24.7 25.4 2.8
MultiArith 600 526 7.8 9.4 17.0 19.7 22.1 10.9
SingleEq 508 434 5.4 6.8 20.6 11 17.9 38.5
SimulEq-S 514 437 4.7 6 21.7 2.9 12.5 76.8
SimulEq-L 1155 980 4.4 5.7 22.8 0.1 3.3 97.0

Koncel-Kedziorski et al. [1]. The Svamp dataset is a challenge set and all 1,000 of

its samples constitute the test set while the model itself is trained on a combination

of the Mawps and ASDiv-A [103] dataset.

4.2.4 Performance Evaluation and Metric

We use Negative log-likelihood loss (NLLLoss) for training all the models. For

the baseline models, MWPToolkit uses two metrics of accuracy, Equation Accuracy

and Value Accuracy. Equation accuracy measures the correctness of the generated

equation. Value accuracy measures the correctness of the value yielded from eval-

uating the generated equation. This metric takes into consideration the fact that

models may generate equations that have a different template than the respective

ground truth equations but nevertheless yield the correct answers to the problem

statements.

4.2.5 Hyperparameters

In the DeBERTa model, we use embedding dimension d = 768, FFNsize = 1024,

number of decoder layers N = 4, number of attention heads h = 16, dropout

ratio Pdrop = 0.5, learning rate lr = 10−5, batch size b = 8, and Epochs = 200.

The hyperparameters for the other baseline models are as set on the respective

MWPToolkit implementations.
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4.2.6 Optimizer

We use Adam [92] with a StepLR learning rate scheduler as our optimizer. The

learning rate lr is set according to Vaswani et al. [84], lr = d−0.5·min(n−0.5, n·w−1.5)

where, d is the embedding dimension, n is the step number and w is the number

of warm-up steps. Here, warm-up steps w simply insinuate that the learning rate

rises linearly for the initial w training steps. We set β1 = 0.9, β2 = 0.999, ϵ = 10−8

and w = 1500 for the models’ Adam optimizer. For the StepLR scheduler, we set

γ = 0.5 and step size = 5.

4.2.7 Hardware and Schedule

We have used the NVIDIA RTX 3090 GPU equipped with 25GB of VRAM and

an Intel Core i9 Processor for conducting our experiments. The DeBERTa model

took around 18 hours to fully train on the ParaMAWPS dataset with 5-fold

cross-validation and 200 epochs per fold, which was the highest expense of time

among the lot. The other baseline models took approximately 7 to 9 hours on the

ParaMAWPS dataset and around 5 hours on Mawps and Svamp. The greater

the number of parameters that a model possesses the more time it takes to fully

complete the 5-fold training process. As DeBERTa has an astounding 134 million

parameters [7], it takes the longest time to train.
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Figure 4.1: Operator count distributions of ParaMAWPS, Mawps, and
Svamp. We keep the distribution of ParaMAWPS somewhat similar to that
of Mawps to maintain a proper balance between easy and difficult problems.
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Result Analysis and Discussion

5.1 Experimental Results

Table-5.1 shows the performance comparison of the DeBERTa model and the

baseline models mentioned in Section-4.2.1. The DeBERTa model coupled with

the Paraphrasing model and the Voting Mechanism outperforms all the baseline

models in the Mawps [1] dataset with an accuracy of 91.0%. The Paraphrasing

Model and the Voting Mechanism contributed to a 0.3% increase in accuracy.

Table 5.1: Value accuracy of the DeBERTa model and various baseline models.
† denotes 5-fold cross validation. PM stands for Paraphrasing Model and VM

stands for Voting Mechanism.

Methods
Mawps†

(%)
Svamp

(%)
ParaMawps† (%)

DNS 59.5 22.1 71.2
Math-EN 69.2 21.8 71.6
GROUP-ATT 76.1 19.2 70.8
RNNEncDec 79.4 25.4 73.6
RNNVAE 79.8 25.9 72.8
Transformer 85.6 20.7 64.6
BERT 86.9 24.8 72.1
RoBERTa 88.4 30.3 72.5
DeBERTa 90.7 63.5 74.1
DeBERTaPM + VM 91.0 - -
DeBERTaVM - - 79.1

69
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The vanilla DeBERTa model also outperforms the baseline models in our Para-

MAWPS dataset by boasting an accuracy of 74.1%. With the voting mechanism

at the tail-end of the pipeline, we are able to yield an improvement of the accuracy

by 5.04% making the accuracy 79.1%. We test the robustness of the vanilla De-

BERTa model on the Svamp [2] challenge dataset and get an accuracy of 63.5%

which is quite higher than that of the other baseline models. The model still

lags a mere 1 ± 0.20% behind the current SOTA model on Mawps, which is

the RoBERTa-DeductReasoner model by Jie et al. [63] (92.0 ± 0.20%) but

supersedes its accuracy of 47.3± 0.20% on the Svamp dataset.

The superiority of the model’s accuracy in ParaMAWPS over Svamp, de-

spite the demonstrably greater difficulty of the MWP samples in ParaMAWPS,

indicates that training a language model on a more diverse set of linguistically var-

ied problem statements leads to a better quality mathematical reasoning ability

after the training phase.

5.2 Enhancing the Reasoning Proficiency

In order to determine the extent to which the model is improving in mathemati-

cal reasoning, we need to perform an “under-the-hood” analysis and determine if

the model is paying attention to the desired keywords or not. Figure-5.1 shows a

cherry-picked problem sample that was wrongly solved before any linguistic vari-

ants were introduced during training but the problem was correctly solved after

the training process involved variant problems. In the first case, we notice that the

model paid a significant amount of attention or gravitas to the wrong entity/object

“baggies”. It also paid considerable attention to the word “each” which caused it

to predict the division operator (÷) in the expression rendering it incorrect.

On the contrary, after being trained with linguistic variants of problem state-

ments, the model assigned nearly equal and non-localized attention scores for all

the tokens throughout the sentence. This translates to the fact that the model is

now taking the whole sentence’s context and meaning into consideration instead
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Figure 5.1: Answer and attention heatmap visualization of last decoder layer
(top 3 values avg. across all heads) [CLS] and [SEP] tokens omitted.

of just looking for superficial keywords. We observe that the correct entity/object

“cookies” now gets a significant attention score, and the keyword “many” incen-

tivized the model to think that a total or aggregate of something is needed which

is why it predicted the addition operator (+) in the expression rendering it correct.
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5.3 Limitations of Existing Models

5.3.1 Understanding Irrelevant Information

In some cases, irrelevant information in the problem statement results in gibberish

and erroneous outputs. Two examples, with irrelevant information in the problem

statement, are shown in table 5.2 and 5.3, where one yields the wrong expression

and another yields the correct expression respectively.

Table 5.2: Understanding Irrelevant Information

Problem Nafis has 4 burgers. Ri-
fat takes 2 burgers from
him. How many burgers
does Nafis have?

Nafis and Rifat are
giving a presen-
tation. Nafis has 4
burgers. Rifat takes
2 burgers from him.
How many burgers does
Nafis have?

Expression x = 4− 2 x = 2− 44
Verdict Correct (✓) Wrong (×)

Table 5.3: Understanding Irrelevant Information

Problem Rifat has 4 books. Nafis
gifts him 2 more books.
How many books does
Rifat have?

Nafis and Rifat are
giving a presen-
tation. Rifat has 4
books. Nafis gifts him 2
more books. How many
books does Rifat have?

Expression x = 2 + 4 x = 2 + 4
Verdict Correct (✓) Correct (✓)

5.3.2 Understanding Grammar

Some models perform poorly when there are issues pertaining to grammatical

correctness/errors in problem text. In Table-5.4, the first problem text contains

grammatical errors and the model correctly gives the expression. But when the

grammar is corrected, it results in a wrong expression output.
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Table 5.4: Understanding Grammar

Problem Donald had some ap-
ples. Hillary took 20
apples from him. Now
Donald has 100 apples.
How many apples Don-
ald had before?

Donald had some ap-
ples. Hillary took 20
apples from him. Now
Donald has 100 apples.
How many apples did
Donald have before?

Expression x = 100 + 20 x = 100− 20
Verdict Correct (✓) Wrong (×)

5.3.3 Understanding Numbers

Since every digit in numbers was tokenized separately, our transformer model

cannot properly understand the concept of numbers. That’s why by changing a

single digit in a number can result in a completely different expression as shown

in table 5.5. However, splitting the numbers into digits and tokenizing them

separately was necessary because without it our model would need to learn every

possible number differently. Separating them ensures our model learns only 10

digits.

Table 5.5: Understanding Numbers

Problem Jerry had 135 pens.
John took 19 pens from
him. How many pens
Jerry have left?

Jerry had 135 pens.
John took 39 pens from
him. How many pens
Jerry have left?

Expression x = 135− 19 x = 135− 399
Verdict Correct (✓) Wrong (×)

5.3.4 Understanding Problems Formulated Differently

The models sometimes fail to generate the correct equations of problems that are

paraphrased or reworded versions of problems they can already solve. In the fol-

lowing Table 5.6, the outputs of the RoBERTaGen model is shown.
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Table 5.6: Understanding Problems Formulated Differently

Problem 2 times the sum of 4 and some
number is 34. What is the num-
ber?

Let X be a number. If 2 multi-
plied by the sum of 4 and X is
equal to 34, what is X?

Expression x = 34.0/2.0− 4.0 x = (2.0 + 4.0)
Verdict Correct (✓) Wrong (×)

5.3.5 Understanding Problems Requiring Constant Values

The models seem to falter at solving problems that require some basic unit con-

version knowledge to solve, e.g., 12 units make a dozen etc. Some problems also

require the derivation of a constant from the number of entities or objects men-

tioned in the problem statement. These types of problems also seem to cause a

lot of trouble for the models.

Table 5.7: Understanding Problems that Require Constant Values

Problem Mary, Sam, Keith, and Alyssa
each have 6 marbles. How many
marbles do they have in all?

Sam saw 1 dozen baseballs on a
shelf. How many baseballs did
Sam see?

Expression x = (6.0 + NUM1) x = (1.0 + NUM1)
Verdict Wrong (×) Wrong (×)

5.3.6 Understanding Irrelevant Quantities

The models seem to perform badly at some of the adversarial samples that contain

quantities not required to solve the problem.

Table 5.8: Understanding Irrelevant Quantities

Problem Sally has 6 blue balloons. Fred
has 3 times more blue balloons
than Sally. How many blue bal-
loons does Fred have now?

Sally has 6 blue balloons and
her favorite number is 8. Fred
has 3 times more blue balloons
than Sally. How many blue bal-
loons does Fred have now?

Expression x = 6.0 ∗ 3.0 x = (6.0 + 8.0)
Verdict Correct (✓) Wrong (×)
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5.3.7 Understanding Inverse Variants of Problems

The models show incompetence in solving the inverse version of problems they can

already solve. This indicates a lack of backward reasoning ability of the models.

Table 5.9: Understanding Inverse Versions of Problems

Problem Recently, the value of Kate’s re-
tirement fund decreased by $12.
If her fund was worth $1472 be-
fore, how much is it worth now?

The value of Kate’s retirement
fund is now worth $1460. How
much was the value of Kate’s
retirement fund worth before it
decreased by $12?

Expression x = 1472.0− 12.0 x =< unk > +12.0
Verdict Correct (✓) Wrong (×)

There are many more types and categories of problems that can prove to be

challenging for the models. Some examples of these types of problems have been

discussed in Section 7.1. The dataset we introduce, ParaMawps, aims to be a

robust testbed for MWP solvers by addressing these limitations. By presenting

problem samples with a diverse range of mathematical concepts and language, this

dataset would challenge the capabilities of the model in a nuanced and sophisti-

cated manner. As such, it would provide a thorough assessment of the model’s

ability to process and solve complex mathematical problems, making it an invalu-

able tool for determining the model’s overall robustness. Additionally, the use of

sophisticated vocabulary in the MWPs would further test the model’s language

processing capabilities, providing a more complete evaluation of its performance.

5.3.8 MWP Task Performance Analysis of Large Language

Models

To test out the assertion made in other studies [71, 72] about the incompetence

of LLMs in complex reasoning tasks compared to fine-tuned smaller models, we

used the GPT-J model and some of the presently used GPT-3 models by Ope-

nAI to perform the task of MWP solving. We use the original version of Mawps

[1] along with our dataset ParaMAWPS for testing the mathematical reason-

ing of these models. One of the most capable models in the GPT-3.5 series of
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Table 5.10: Value accuracy of the LLMs in a zero-shot setup testing. † denotes

evaluation on the whole dataset.

Models
Mawps†

(%)
ParaMawps† (%)

GPT-J (6B) 9.9 5.9
text-babbage-001 (3B) 2.76 3.21
text-curie-001 (13B) 4.09 4.20
gpt-3.5-turbo (154B) 80.3 73.0

models is text-davinci-003, with 175 billion parameters and the ability to follow

instructions consistently and produce lengthy outputs. However, the most capa-

ble and up-to-date model according to OpenAI is gpt-3.5-turbo, with 154 billion

parameters, which is primarily optimized for chat completions but can be tweaked

to follow more specific instructions similar to text-davinci-003. While all models

used were instructed to output in a specific format — ‘Answer: [ANS]’ with

just the numerical value in the place of ‘[ANS]’, the ability to do so consistently

deteriorated with the models with relatively fewer parameters. Out of the base

GPT-3 models, the 13 billion parameters text-curie-001 could output in the given

format relatively consistently, text-babbage-001 with 3 billion parameters could

occasionally produce the output in the correct format, but tried to generate full

sentences more often than not, whereas the 350 million parameters text-ada-001

could barely generate a single output in the correct format, choosing to generate

full sentences almost all of the time. Models tend to try to ‘work through’ the

problem in text form rather than just generating the output, although with gpt-

3.5-turbo this could be mostly mitigated by using very specific instructions for the

prompt. The results in Table-5.10 and Table-5.1 support the current weakness of

LLMs in mathematical reasoning tasks and the suitability of fine-tuning smaller

models. It indicates the improvement in performance for a well-reasoning, but

comparatively small model when it has the option to democratically choose from

a substantial number of solution guesses.
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5.4 Ablation Study

To gain insights into the individual contributions of the Paraphrasing Model and

Voting Mechanism in conjunction with the DeBERTa model, we perform ablation

studies. Table-5.11 shows the effect of increasing the number of generated prob-

Table 5.11: Value accuracy with different numbers of linguistic variants of the
problem samples. † denotes 5-fold cross validation.

# of variants Mawps† (%)
w/ k = 0 90.7
w/ k = 5 90.4
w/ k = 10 90.8
w/ k = 15 91.0

Table 5.12: Effect of Majority Voting on Value accuracy across all 5 folds. † de-

notes 5-fold cross validation.

Voting Mechanism ParaMawps† (%)
w/o VM 72.9, 74.1, 76.5, 72.1, 74.6
w/ VM 78.5, 77.8, 82.4, 77.2, 79.5

lem variants to infer the solution expressions of the problem samples in the Mawps

dataset’s test set. Although there is a slight decrease in the accuracy for k = 5,

we see a minuscule increase in accuracy for k = 10 and k = 15. In Table-5.12 we

see the impact of the Voting Mechanism which contributed to a 5.4% increase on

average in the accuracy of the DeBERTa model on the ParaMAWPS dataset.
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6.1 Avenues of Improvement and Limitations

The research work outlined in this paper still has a lot of limitations. The temporal

overhead due to the problem variant generation by the paraphraser model may

make our proposed architecture unsuitable for real-world applications even though

it takes merely 10 to 12 seconds to generate k = 5 variants for a single sample.

Even though almost all the samples in the dataset that we introduced, namely

ParaMAWPS, have been manually checked for correctness by 3 undergraduate

students, we can’t yet guarantee a foolproof review of it. Another limitation of

our work is the absence of a proper tie-breaking strategy in our Majority Voting

module. Furthermore, we can introduce a system of weighted votes (e.g. semantic

similarity scores such as BERTScore [112], as weights) so that the votes of wrongly

predicted equations don’t trump that of correctly generated predictions as another

frontier of improvement. We also plan to incorporate and experiment with the

Tree-based decoder [37] in our proposed pipeline.
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6.2 Summary of Our Contributions

In this paper, we propose the idea of an MWP solving framework that utilizes the

paraphrased linguistic variations of problem texts to train a DeBERTa model that

generates candidate solution expressions and finalizes the predicted math expres-

sion by employing majority voting on a set of simplified candidate expressions.

We also introduce a large-scale, diverse, and challenging single-equation MWP

dataset, ParaMawps, consisting of paraphrased, inverse, and adversarial vari-

ants of selectively sampled datapoints from Mawps, as a formidable evaluation

test-bed and a proper benchmark for training MWP solver models.

6.3 Future Endeavors

We wish to experiment further with harder problem text variations (e.g. gram-

matical errors) and conduct a thorough error analysis of the models for identifying

their lapses in mathematical reasoning and discovering more scopes of improve-

ment. We also aim to expand our research to encompass the intricate realms of

multi-equation, multi-step deduction, and domain-knowledge problems.

6.4 Epilogue

As we pen down these final words, we are filled with a profound sense of gratitude

and accomplishment. This thesis, a culmination of our efforts, is a testament to a

momentous intellectual odyssey spanning over 2 years of our undergraduate lives.

We hope our efforts are deemed a noteworthy and meaningful contribution to this

domain of research.
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