B. Sc. Engg. (CEE) $/ 4^{\text {th }}$ Sem.

11 March, 2024.
(Monday, Afternoon : 2:30 PM - 4:00 PM)
ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
ORGANISATION OF ISLAMIC COOPERATION (OIC)
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
TERM : MID SEMESTER EXAMINATION COURSE NO, : CEE 4411
COURSE TITLE: Engineering Materials and Concrete Technology
There are 4 (Four) questions. Answer ALL questions. Programmable calculators are not allowed. Do not write on this question paper. CO-PO mapping and marks are shown accordingly. The Symbols have their usual meaning.

1. The sieve analysis data of a sand sample and a stone aggregate sample for a bridge construction project are summarized below:

ASTM Sieve	Sand Sample Material Retained (g)	Stone Aggregate Material Retained (g)
3 inch	0	0
1.5 inch	0	0
$3 / 4$ inch	0	100
$1 / 2$ inch	0	1000
$3 / 8$ inch	0	1600
$\# 4$	0	1800
$\# 8$	90	0
$\# 12$	92	0
$\# 16$	2	0
$\# 30$	2	0
$\# 40$	44	0
$\# 50$	45	0
$\# 100$	65	0
$\# 200$	50	400
Pan	100	100

(i) Calculate the FM of the sand and stone aggregate samples, (18)
(ii) Draw the grading curves of the samples (in one graph), (6)
(iii) Make a brief discussion on the FM, sieve analysis data, and grading curves, (3)
(iv) What measures are necessary to improve the grading of the samples? (3)
(v) If the required FM of the sand is 2.65, in what ratio the sand sample is to be mixed with another sand sample of $\mathrm{FM}=3.0$ to maintain the required FM. (3)
(vi) For a sand sample, all materials are passed through the \#12 sieve and retained on \#16 sieve; calculate FM of the sand sample? (3)

Sand to cement ratio (weight ratio) $=3 ;$ W/C=0.45; Specific gravity of cement $=3.1 ;$ Specific gravity of sand $=2.65 ;$ Air content $=1 \%$; Mortar thickness $=1$ inch.
(i) Design a mixture proportion for mortar (the unit contents of sand, cement, and water), (15)
(ii) Calculate the cost of materials for I cubic meter of mortar (assume cost for 1 cft of sand $=40 \mathrm{TK}$, cost for 1 bag of cement $=500 \mathrm{TK}$, cost for 100 liter of water $=20 \mathrm{TK}$), (3)
(iii) Calculate the unit weight of mortar, (2)
(iv) Estimate the amount of each ingredients of mortar necessary for the plaster work of the both surfaces of the wall. Assume 15% extra volume of material is necessary due to the loss of mortar during application on the wall, (3)
(v) If there is 3% (by weight) surplus amount of water (in addition to SSD) in sand, how will it be adjusted with the mixing water of mortar? (3)
(vi) Calculate the volumetric ratio of cement to sand. Assume unit weight of cement $=1400 \mathrm{~kg} / \mathrm{m}^{3}$ and unit weight of sand $=1450 \mathrm{~kg} / \mathrm{m}^{3}$. (2)
(vii) "Map cracks are commonly observed on the plaster surface" - Explain the reasons with remedial actions to avoid such cracks. (2)
(viii) Explain the influence of sand to cement ratio on the compressive strength of mortar. (2)
3. (a) List some properties of good quality bricks.
(b) "We need to look for the alternative construction materials to brick" - Why?
(c) Explain the methods that can be used to determine the yield strength of steel
from stress-strain curve.
4. (a) "Civil Engineers need to focus on Sustainability of Construction Materials"- $\mathrm{CO1-}$
POI
Justify.
(b) List the mineral admixtures that are spocified in BDS EN 197-1-2010.
EOI-
Explain the method of storing cement at a project site.
(c) Explain hydration of cement with reactions.

Traditional American and British Sieve Sizes

Aperture mm or $\mu \mathrm{m}$	Approximate Impwial oquivalant in．	Previous designation of operest size	
		BS	ASTM
125 mm	5	－	5 in ．
106 mm	4.24	4 in．	4.24 in ．
90 mm	3.5	$3 \frac{1}{2} \text { in. }$	$3 \frac{1}{2} \mathrm{in}$ ．
75 mm	3	3 in．	3 in ．
63 mm	2.5	$21 . \mathrm{in}$ ．	$2 \frac{1}{2} \mathrm{ln}$ ．
53 mm	2.12	2 in ．	2.12
45 mm	1.75	$1 \frac{1}{1} \mathrm{in}$ ，	11 in ．
37.5 mm	1.50	$1 \frac{1}{2}$ in．	$1 \frac{1}{2} \mathrm{in}$ ．
31.5 mm	1.25	$1 \frac{1}{4} \mathrm{in}$ ．	$1 \frac{1}{i n}$ ．
26.5 mm	1.06	1 in．	1.06
22.4 mm	0.875	$\frac{1}{3} \mathrm{in}$ ．	7 ln ．
19.0 mm	0.750	$\frac{3}{3} \mathrm{in}$ ．	$\frac{7}{} \mathrm{in}$ ．
16.0 mm	0.625	f in．	f in．
13.2 mm	0.530	$\frac{1}{2}$ in．	0.530 in ．
11.2 mm	0.438	－	foin．
9.5 mm	0.375	$t \mathrm{in}$	$\hat{i n}$ ．
8.0 mm	0.312	合 in	点 in．
6.7 mm	0.265	$\frac{1}{4} \mathrm{in}$ ．	0.265 in．
5.6 mm	0.223	\cdots	No． 31
4.75 mm	0.187	寿 in．	No． 4
4.00 mm	0.157	－	No． 5
3.35 mm	0.132	No． 5	No． 6
2.80 mm	0.111	No． 6	No． 7
2.36 mm	0.0937	No． 7	No． 8
2.00 mm	0.0787	No． 8	No． 10
1.70 mm	0.0661	No． 10	No． 12
1.40 mm	0.0555	No． 12	No． 14
1.18 mm	0.0469	No． 14	No． 16
1.00 mm	0.0394	No． 16	No． 18
850 mm	0.0331	No． 18	No． 20
$710 \mu \mathrm{~m}$	0.0278	No． 22	No． 25
$600 \mu \mathrm{~m}$	0.0234	No． 25	No． 30
$500 \mu \mathrm{~m}$	0.0197	No． 30	No． 35
425 mm	0.0165	No． 36	No． 40
355 رmm	0.0139	No． 44	No． 45
$300 \mu \mathrm{~m}$	0.0117	No． 52	No． 50
250 mm	0.0098	No． 60	No． 60
212 mm	0.0083	No． 72	No． 70
180 mm	0.0070	No． 85	No． 80
150 mm	0.0059	No． 100	No． 100
$125 \mu \mathrm{~m}$	0.0049	No． 120	No． 120
106 mm	0.0041	No． 150	No． 140
90 mm	0.0035	No． 170	No． 170
75 jm	0.0029	No． 200	No． 200
$63 \mu \mathrm{~m}$	0.0025	No． 240	No． 230
$53 \mu \mathrm{~m}$	0.0021	No． 300	No． 270
$45 \mu \mathrm{~m}$	0.0017	No． 350	No． 325
$38 \mu \mathrm{~m}$	0.0015	－	No． 400
32 mm	0.0012	－	No． 450

Page 3 of 3

