ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Semester: Mid Semester Examination
Course No.: CEE. 4413
Course Title: Mechanies of Solids II

Summer Semester: 2022-23
Full Marks: 75
Time: 1.5 hours

There are three Questions. Answer all questions. All questions carry equal marks. Progrummable calculators are nok ullowed. Do not write on this questions paper. The symbols have their usual meaning. Assume reasonable values for any missing information,

I(a) Discuss the boundary conditions related to the following support conditions:
i) fixed support, ii) end rollar suppont, iii) rollar support in between two other rollar supports, iv) internal hinge.
(b) Develop equation of deflection at midspan of the beam in Figure 1. The beam has
span L. constant EI, and loading of $w-m x+c(x=0$ at A and $x-L$ at $B)$.

(Figure 1)
2(a) An 8 -meter beam has two loads acting on it as shown on Figure 2. Find deflections at point B and D. $\mathrm{E}=200 \mathrm{kNmm} \mathrm{m}^{2} . \mathrm{I}-4000 \times 10^{4} \mathrm{~mm}^{4}$. Use ary method.

(Figure 2)
(b) A $5-\mathrm{m}$ long simply supported beam is supported at two ends and carries a trapizoidal load of $5 \mathrm{kN} / \mathrm{m}$ (at left end; lowest value) and $10 \mathrm{kN} / \mathrm{m}$ (at right end: maximum value), Find the muximum deflection using singalarity function:
3(a) A beam of 30-it is supported by two fixed supports at ends. Find deflection at the midspan if there is a downward $40-\mathrm{kip}$ load acting at $20-\mathrm{ft}$ distance of left support. Use any methad, $\mathrm{EI}=5000 \mathrm{k}-\mathrm{ft}^{2}$.
(b) A concentrated load of 50 kip is acting at midspan of a 25 -lt simply supported beam, which is additionally loaded over the whole span with uniformly distributed load of $2 \mathrm{kip} / \mathrm{ft} . \mathrm{E}=29000 \mathrm{ksi}$ and $\mathrm{I}=250 \mathrm{in}^{4}$. Find maximum deflection. Use any method.

