B.Sc. Engg. (CEE)/ 4th Semester

Mid Semester Examination

05 March, 2024 (Afternoon)

Summer Semester: 2022-2023

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Course No.: CEE 4431 Course Title: Water Supply Engineering						Full Marks: 75 Time: 1.5 hours (2:30-4.00 PM)				
que	re are 03 (Three) Questions. A stions are also shown. Program symbols have their usual mean	nable ca								
1(a)	Groundwater is the preferre the impurities generally pre- treatment of the groundwate	ent in p							CO1, PO1: (06)	
(b)	What are the differences between primary and secondary standards? A diminity water has the following characteristics: Turbidity of water ~ 20 RUU, Flowdde $\simeq 52$ mg L, Fe = 1.2 mg/L, As $= 65$ µg/L, Nimte $\simeq 20$ mg/L and $E_{OU} = 15$ No. (100 nL. List the health problems (short and long term) may arise from the drinking of this water.							CO1, PO1: (06)		
(c)	What are the differences between potable water and palatable water? What are the criteria of a safe water and list the impurities that must be removed from the raw water through water treatment in order to make water safe for drinking?						CO1, PO1: (05)			
(d)	The following is the popul records. Determine the po- method. Year Population (Lakhs)	pulation 1961	1971	e area 1981		1 by 1	Least S		CO1, PO1: (08)	
	If the per capita water com- water treatment plant and 2041. Also calculate the vol	the dist	ributio	n netw	ork for	water	supply	in the area for		
(c)	(i) If colliform bacteria is not detected in a water sample, what can you conclude about the possibility of recent sewage pollution? If the colliforms are detected, will the water definitely cause disease among the popole who drink if? Explain your answer. (i) Why completely hardness free water is not desirable for drinking purpose?						CO1, PO1: (05)			
2(a)							CO2, PO2: (07)			
	Time (min) Conc. remaining (mg/L)	0 220	3 116	5 98	10 75	20 35	40 10	60 2		
	Colculate the removal affici	anex of	a cattl	ine has	in that		aina th	is companyion if		

Calculate the removal efficiency of a settling basin that will receive this suspension, if the SOR is 435 m³/m².day.

1

- (i) Aeration of groundwater prior to chemical softening can save a significant amount CO2. PO2 (b) of chemical required for softening-explain how? (0.4)
 - (ii) Suppose that the depth of a sedimentation tank is reduced by 50%. Assume discrete particle settling, what is the effect on particle removal efficiency if the flow rate is unchanged? Explain your answer.
- A groundwater sample has the following ionic constituents in at 200C.

Cations	Conc. (mg/L)	Anions	Conc. (mg/L)
Ca ⁺²	180	HCO3"	300
Mg ⁺²	65	CO3-2	40
Na ⁺	60	SO_4^{-2}	60
K ⁺	20	Cl	348
Fe ⁺²	0.5	NO ₃ "	35

- (i) Check the completeness of the chemical analysis using a bar diagram.
- (ii) Classify the water in terms of hardness.
- (iii) This water is required to soften by Caustic Soda (NaOH). Based on appropriate chemical reactions, calculate the amount of NaOH (in meg/L) required to remove all hardness from the water.
- The influent particles settling characteristics of a rectangular horizontal flow CO2, PO2: sedimentation basin is given below: (07)smension, No./mL

0+0.4	460
0.4-0.8	578
0.8-1.2	891
1.2-1.6	1285
1.6-2.0	1748
2.0-2.4	1577
2.4-2.8	719

Calculate the particles counts at the outlet zone and the overall particle removal efficiency in this settling basin, if flow rate is 19,000 m3/day and the length and width of the basin are 60 m and 8 m, respectively,

A natural water with a flow rate of 3800 m³/day is to be treated with an alum dose of 60 mg/L. Determine the chemical feed rate for the alum, the amount of alkalinity (04)consumed by the reaction and the amount of precipitation produced in ke/day.

Design a rapid mix and flocculation process to meet the following requirements: 3(a) Flow Rate = 20,000 m3/day

Rapid mix detention time = 30 sec and velocity gradient = 800/sec

Flocculator detention time = 3 stages at 12 min each

Flocculator velocity gradient: 1st stage = 50/sec, 2nd stage = 35/sec and 3rd stage = 20/sec.

Calculate the number of basins and basin geometry, also sketch the layout of your design. Assume water temperature is 20°C (u = 1.005x10°3 kg/m-sec and density of water = 998.23 kg/m3).

- (i) Design a rectangular setting basin for type-II setting to treat about 15,000 m³/day CO3, PO3; of water. Flocculating particles are produced by coagulation and a column analysis indicates that an overflow rate of 20 m/day will produce satisfactory removal at a denth of 2.5m.
 - (ii) A circular sedimentation tank is to be designed for a detention time of 4 hrs and a maximum SOR of 20 m3/m2.day. Determine the diameter and depth of the tank, if the average flow rate through the tank is 6 ML/day.

(09)

CO2 PO2-(08)