ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Summer Semester: 2022-202.
Full Marks: 7:
Time: 1.5 Hour
and 4 are compulsory. Answer I question all marks.

(a).	Briefly describe Well-Conditioned Mesh and Ill-Condition Mesh in finite element					
	method.	(C				
		(P				

(b).	Derive the shape functions of 4-nodal elements for the one-dimensional condition	
	in the local coordinate system using the Lagrange Polynomials. Draw also the	(C
	currier for all four chang functions	- (E

1(c).	Briefly describe the limitations of the Jacobian Matrix in mapping between the local	
	and global coordinate systems.	(C

(a).	Derive the shape functions and Jacobian matrix of a 3-nodal triangular element in	
	the tree discovering Land Stiller Coults Land Land Land	

17.	Answer the	following question	recarding a	triancular element	having coordinates	

of (0,0), (4, 0), and (2	. 3) -			

		coordinates						global	coordinate	system	
correspond	ing t	o the local co	ord	na	te (0.3,	0.5).				

	(ii) Determine Jacobian matrix.
200	Paris and Paris

3(b). Derive general stiffness matrix using the principle of virtual work

		(CO (PO
4.	Calculate axial forces at both nodes of a truss element for the nodal displacements	(2:

of 5.0 mm at node 1 and 3.0 mm at node 2. Show the calculations of the Jacobian matrix, strain-displacement matrix [B], and stiffness matrix [K] for elastic condition The cross section of the truss is circular having a diameter of 50 mm, and the lenoth is 8.0 m. Here, the elastic modulus of the truss material E = 200 GPa