05 March 2024 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

SUMMER SEMESTER, 2022-2023 FULL MARKS: 75

Math 4641: Numerical Methods

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all <u>3</u> (three) questions. Figures in the right margin indicate full marks of questions with corresponding COs and POs in parentheses.

- 1. a) Explain how numerical approaches differ from analytical approaches to solving a problem.
 - b) Derive the formula for the Secant method geometrically,
 - c) Figure 1 portrays the orbital geometry of planet Earth around the Sun, where S denotes the position of the Sun and E denotes the position of planet Earth.

Figure 1: Geometry of the planetary orbit of Earth around the Sun for Question 1.c

Let θ denote the angle defined by $\angle E'OA$, measured in radians. The dotted circle is concentric to the ellipse and has a diameter equal to the major axis of the ellipse. Let T be the total period of planet Earth, and let t be the time it takes for Earth to go from A to E. The relationship between θ and t is dictated by Krohler's equation from orbital mechanics.

$$\theta - \epsilon \sin(\theta) = \frac{2\pi t}{T}$$
(1)

Here ϵ is the eccentricity of the elliptical orbit. In the case of planet Earth, the conventional value is $\epsilon = 0.017$.

 Formulate a function f(θ) such that its root will yield the value of the angle θ for a given value of t.

(PO2)

ii. Apply the Newton-Raphson method to estimate the value of θ corresponding to $t = \frac{\pi}{4}$. 11.5 The initial guess is $\theta_0 = \pi$. Demonstrating the step by-step mathematical procedure, 0.000conduct i iterations, and find the relative approximate error ($e_{10}^{(2)}$) and the number of (POI significant digits that are at least correct (m) at the end of each iteration. Draw Table 1 and fill it out after performing the necessary calculations.

Table 1: The relevant values obtained in the answer of Question 1.c

Iteration	0.	$f(\theta_i)$	$f'(\theta_i)$	θ_{i+1}	E. %	773
1						
2						
3						
4						

- a) Define Truncation Error. What are the different avenues through which Truncation Error can be introduced? Explain with proper examples.
 - b) The Taylor series for a function f(x) is —

$$(x + h) = f(x) + f'(x)\frac{h}{1!} + f''(x)\frac{h^2}{2!} + f'''(x)\frac{h^3}{3!} + f''''(x)\frac{h^4}{4!} + f''''(x)\frac{h^5}{5!} + \dots$$
 (0)

Using the Taylor series (with at least the first 5 terms), derive the Maclaurin series of --

i.
$$\ln(1 + x)$$
 ii. $\ln(1 - x)$ iii. $\ln(\frac{1 + x}{1 - x})$ iv. $\log_{(1-x)}(1 + x)$

 a) Compare and contrast the following interpolation methods: Direct method, Newton's Divided Difference method, and Lagrangian method.

- b) Suppose, there is an unknown function f(x) and you are given 3 points (x₀, f(x₀)), (x₁, f(x₁)), (x₀, f(x₀)), (x₁, f(x₁)), (CO, Wards, f(x)), (A, Wards,
- c) The specific heat capacity C of a substance is defined as the amount of heat that is required to raise the temperature of unit mass of that particular substance by 1 degree. Suppose, you are conducting an experiment to determine how much heat is required to bring some volume of water to its holling point. The values of specific heat capacity C of water that you have calculated at different temperature values T are shown in Table 2.

Table 2: Specific heat	C of water as a:	unction of temper	ature T for Question 3.c
------------------------	------------------	-------------------	--------------------------

Temperature, T (°C)	Specific Heat, C (Jkg ⁻¹ °C ⁻¹)		
22	4181		
42	4179		
52	4186		
82	4199		
100	4217		

Determine the value of the specific heat at $T = 61^{\circ}C$ using the Direct method of interpolation and a second order polynomial.

- d) i. Why is f_g(x) in Figure 2(b) demonstrably worse at capturing the pattern of f(x) compared to S(x) in Figure 2(c) ? Explain with necessary illustration(s).
 - ii. Suppose you want to perform Spline Interpolation on n + 1 data points (x₀, f(x₀)), (x₁, f(x₁)),..., and (x_n, f(x_n)) using Cubic splines of the form f(x) = ax²+bx²+cx+d. (CO How many unknows and how many equations would you have to deal with? Mention how you would obtain those equations and derive them.

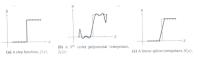


Figure 2: Predicting the nature of f(x) for Question 3.d)i