ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SUMMER SEMESTER, 2022-2023

MID SEMESTER EXAMINATION

DURATION: 1 HOUR 30 MINUTES FULL MARKS: 75

Math 4643: Probability and Statistics II

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions with

b) Suppose the random variables X,Y, and Z have the multivariate joint probability density func $f_{XYZ}(x, y, z) = \begin{cases} 8xyz, & \text{if } 0 \le x, y, z \le 1 \\ 0, & \text{otherwise} \end{cases}$

a) Suppose that the joint probability density function of X and Y is:

 $f_{XY}(x, y) = \begin{cases} k \times 10^{-6}e^{(-0.001x-0.003y)}, & \text{if } x > 0, y > 0 \\ 0, & \text{otherwise} \end{cases}$ ii. Determine the probability P(X < 1000, Y > 1000).

i. Show that X and Y are independent

produce diameters larger than 5 millimeters. i. Determine the mean and variance of the diameter of the holes. ii. Determine the probability that a diameter exceeds 5.1 millimeters. a) Suppose that, the sodium content of twenty 300-gram boxes of organic cornflakes was determined. The data (in milligrams) are as follows: 131.15, 130.69, 130.91, 129.54, 129.64, 128.77, 130.72, 128.33, 128.24, 129.65, 130.14, 129.29, 128.71, 129.00, 129.39, 130.42, 129.53,

130.12, 129.78, 130.92. Now, answer the following questions:

ii. Check that sodium content is normally distributed.

Determine the following i. $P(X \le 0.5, Y = 0.5, Z = 0.7)$ ii. Marginal probability distribution of X. iii. Conditional probability distribution of Y given x = 0.5, z = 0.8c) The probability density function for the diameter of a drilled hole in millimeters is: $f_X(x) = \begin{cases} 10e^{-10(x-5)}, & \text{if } x > 5 \\ 0, & \text{otherwise} \end{cases}$ Although the target diameter is 5 millimeters, vibrations, tool wear, and other nuisances

Page 1 of 2

i. Can you support a claim that mean sodium content of this brand of cornflakes differs

iii. Compute the power of the test if the true mean sodium content is 130.5 milligrams.

Math 4643

- b) The titanium content in an aircraft-grade alloy is an important determinant of strength. A sample of 20 test coupons reveals the following itianium content (in percent): 8.28, 8.05, 8.23, 8.46, 8.52, 8.35, 8.46, 8.45, 8.45, 8.47, 8.47, 8.48
 - i. Use the sign test with $\alpha=0.01$ to investigate this hypothesis. ii. Use the normal approximation for the sign test to test $H_0=8.5$ versus $H_1\neq 8.5$, with
- $\alpha=0.01.$ a) Regression methods were used to analyze the data from a study investigating the relationship
- a) Regression methods were used to analyze the data from a sauly interaction (y). Summary quantities between roadway surface temperature (x) and pawement deflection (y). Summary quantities were n=20, $\sum y_i=12.75$, $\sum x_i=1478$, $\sum x_i^2=143$, 215.8, and $\sum x_iy_i=1083.67$. Answer the following:
 - i. Calculate the least squares estimates of the slope and intercept. Graph the regression
 - Use the equation of the fitted line to predict what pavement deflection would be observed when the surface temperature is 85°F.
 - iii. What is the mean pavement deflection when the surface temperature is 90°F?
 - iii. What is the mean pavement deflection would be expected for a 1°F change in surface temperature?
 - h) Answer the following:
 i. Test for significance of regression using α = 0.01. What is the P-value for this test? State
 - the conclusions of the results from this test. ii. Estimate the standard errors of the slope and intercept. iii. Test the hypothesis $H_0: \beta_1 = 10$ versus $H_1: \beta_1 \neq 10$ using $\alpha = 0.01$. Find the P-value
 - for this test. iv. Test H_0 : $\beta_0=0$ versus H_1 : $\beta_0=0$ using $\alpha=0.01$. Find the P-value for this test and
- (PO2)

(PO2)

	RD NORM									
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	_51994	.52392	52790	.53188	.53580
0.1	.53983	.54380	.54776	.55172	55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62931	.63307	.63683	.64058	.64431	.64803	.6517
0.4	.65542	.65910	.66276	.6664)	.67003	.67364	.67724	.68082	.68439	.6879.
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75491
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.7852
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.8132
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.8389
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.8621
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.8829
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.9014
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.9177
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.9318
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.9440
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.9544
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.9632
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.9706
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.9761
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.9816
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.985
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.9889
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.991:
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.993
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.995
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.996
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.997
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.998
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.998
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.999
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.999
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.999
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.995
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.995
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.995
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.995
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.999
3.8	.00003	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.999

.99996 .99997

Chi-square Distribution Table

	.995	.99	.975	.95	.9		.05	.025	.01
	0.00	0.00	0.00	0.00	0.02		3.84	5.02	6.63
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
1.4	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	4.60	5.23	6.26	7.25	8.55	22.31	25.00	27.49	30.58
16	5.14	5.81	6.91	7.95	9.31	23.54	25.30	28.85	32.00
17	5.70	6.41	7.56	8.67	10.09	24.77	27.50	30.19	33.41
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19
20	7.43	8.25	9.59	10.85	12.44	28.41	31.41	34.17	37.57
22	8.64	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40.29
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89
32	15.13	16.36	18.29	20.07	22.27	42.58	46.19	49.48	53.49
34	16.50	17.79	19.81	21.66	23.95	44.90	48.60	51.97	56.06
38	19.29	20.69	22.88	24.88	27.34	49.51	53.38	56.90	61.16
42	22.14	23.65	26.00	28.14	30.77	54.09	58.12	61.78	66.21
46	25.04	26.66	29.16	31.44	34.22	58.64	62.83	66.62	71.20
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15
55	31.73	33.57	36.40	38.96	42.05	68.80	73.31	77.38	82.29
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38
65	39.38	41.44	44.60	47.45	50.88	79.97	84.82	89.18	94.42
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.43
75	47.21	49.48	52.94	56.05	59.79	91.06	96.22	100.84	106.39
80	51.17	53.54	57.15		64.28	96.58	101.88	106.63	112.33
85	55.17	57.63	61.39	64.75	68.78	102.08	107.52	112.39	118.24
90	59.20	61.75	65.65	69.13	73.29	107.57	113.15	118.14	124.12

t Table											
cum, prob	f.m	f.24	f ac	f.as	f. eq.	f.so	f 275	7.96	f.965	£ 300	f 2000
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.385	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.633	2.132	2.776	3.747	4.904	7.173	8,610
5	0.000		0.820	1.155	1,476	2.015		3.365	4.032	5.893	6.869
553,02555516					1,440	1,943				5.003	5,959
25555557											9418
CONTRACTOR (SA)											5.041
100000000000000000000000000000000000000											476)
0.0000000000000000000000000000000000000				1 000		S2 212	2.223	2764	3,3690	6.584	4567
	0.000	0.697	0.876	1.068	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1,771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
\$8300E0016						19746	2 123				4.015
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS											3,96,9
353333335											9386
12/03/5/07/00											3333
200			0.760	1.061	13.5	17725	2085	2533	55/45		
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1,714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3,450	3.725
FEB. 30. 25		0.538	0,855	1.058	1315	4 706				8 495	5 00
35556652T											
100000000000000000000000000000000000000											
050000029											3,645
(65 mm) 30	0.000	OBES	0.654	1865	1.310	0.397	2 042	2.57	2 750		
40	0.000	0.681	0.851	1.050	1.303	1,684	2.021	2.423	2.704	3.307	3.551
60		0.679	0.848	1.045	1.295	1.671	2.000	2.390	2.660	3.232	3.460
80		0.678	0.846	1.043	1.292	1.864	1.990	2.374	2,639	3,195	3.416
100		0.677	0.845	1.042	1.290	1.660	1.984	2.364	2,626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z				1.095	1.282	1645	1.960	2326	2.576	2010	
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Conf	dence I	Level				