12 March 2024 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

SUMMER SEMESTER, 2022-2023 FULL MARKS: 75

SWE 4805: Software Verification and Validation

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions with

corresponding COs and POs in parentheses.

1. Consider the Alloy code shown in Code Snippet 1 and answer the subsequent questions.

1	sig		
2	abst	ract sig Person ()	
3	sig	Faculty extends Person ()	
4	abst	ract sig Student extends Person (
5		id: one ID,	
6		transcript: set Course	
7	}		
8	sig	Graduate, UnderGraduate extends Student	13
9		Instructor in Person ()	
10		Course {	
11		taughtBy: one Instructor,	
12		enrolled: some Student,	
13		waitlist: set Student,	
14		prerequisites: set Course	
15			

Code Snippet 1: An Alloy code for Question 1

a) Describe Code Snippet 1 in plain English.	5 (CO1) (PO1)	
) Explain the following facts in plain English.		
i all i: Instructor i in Faculty + Gra H. all c: Course c.taughtBy not in c.en H. all c: Course some c.wait1st => some N. all s: Student s.transcript.prerequi V. all s: Student (wait1st.s + enrolle .prerequisites in s.transcript	colled + c.waitlist > c.enrolled sites in s.transcript	
c) Assuming all the facts mentioned in Code Snippet 1 and Qualyze the following assertions independently and justify whe or not. i. some Graduate & Instructor ii. all c: Course c tin c.*prerequisites	stion 1.b are incorporated, an- her a counterexample is found (CO2) (PO2)	

```
H all c: Course | no (c.taughtBy & c.waitlist)
```

```
iv all c: Course | all s: c.enrolled | s not in c.waitlist
```

```
one c: Course | some c.prerequisites and some c.enrolled
```

```
2. Consider the JavaScript function in Code Snippet 2.
```

```
1 [nuction getFrime(istart, end) (
lat prime - [];
for (let i = start; icend; i**) (
    let prime 'troop ';
    let prime 'troop 'troop ';
    let prime 'troop 'troo
```

Code Snippet 2: A JavaScript code for Question 2

a)	How would you automatically generate test cases to verify Code Snippet 2?	5 (CO1) (PO1)
b)	Create three types of mutants using Code Snippet 2 and a test suite of five test cases, and calculate the mutation score.	2×5 (CO1) (PO1)
c)	Mutation testing takes a lot of time to execute if you have several test cases. How can we	10

- speed up mutation testing? Give your opinion and explain with examples that can be explored in the future.
- 3. The specification of a social network system (SNS) is given below:

SNS has three main entities: User, Email, and Post. A user has a unique identifier (id), a username, a set of emails and a set of friends, who are also users. Each email has an address and is associated with a provider, which can be either Google or Microsoft. A post includes an id, content, timestamp, and the user who authored it. Additionally, there is a set of likes, each having an id, timestamp, and the user who liked the post.

Apart from these, there are the following constraints:

- Every user must have a unique ID and a non-empty username and email.
- Friendship is symmetric; if User A is friends with User B, then User B is also friends with User A.
- · Each post must belong to a single user's posts.
- · Users can have multiple email addresses, but each email address must be unique.
- Friendship is transitive; if User A is friends with User B, and User B is friends with User C, then User A is friends with User C.

You are hired to verify and validate the following statements:

- · Every user must have at least one post, and each post must have at least one like.
- · There should be no friendship between users who haven't liked each other's posts.
- · Users can not like their own posts

- · Every user of the social network is somehow connected to each other.
- Users with email addresses from Google's service provider have a higher count of posts than those from Microsoft's service provider.
- a) Analyze the specification and constraints and write the signatures with their associated 5+10 fields and facts. (CO1)
- b) Write the given statements as assertions to verify and validate in Alloy. Justify whether a 5×2 counterexample is found or not for each one. Assume that all the facts mentioned in Ques. (CO3) (PO3)