ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Course Title: Power System Operation and Control

Time: 90 Minutes Full Marks: 75

(S/MBtu)

There are 3 (three) questions. Answer all of them. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are

1. a) Explain the following terms with examples:

no (COL

16 (CO3, PO2)

50	200	78+7.97Pg3+0.00482Pg3 ²	1.2
		and a maximum of two units are al	

due to crew constraints, determine the most economic unit combination. Describe the necessity and rules of keeping spinning reserve in a nower system.

(CO1. POD (CO3. PO2)

All illicrotillic	cica power	system mas the ro	mowing set of dat
Region		Unit Capacity	

Region	Units	Unit Capacity (MW)	Unit Output (MW)	Regional Load (MW)
	1	1000	800	1700
	2	800	600	
	3	1200	1100	1300

The maximum transfer capacity of the interconnector is 550 MW. Find out the cases

iiree-u	init system i	sata is give	i below:			(CO3
	P _{mix} (MW)		Inc. Heat Rate (BTU/kWh)			PO2
1	80	25	10000	200		
	250	60	9000		2.0	

	No.	Status	Costs (\$)
	1	ON	150
	2	OFF .	170
	3	ON	500
The load pattern for a tw	o-hour	operation is	given below:

Tr. 10.000

		450				
		330				
Consider a simplified co	st characteristic	s for the units	as F(P) =	No-load	cost	+

Incremental cost x P. Follow enumeration scheme, ignore minimum up time and minimum down time constraints, and adopt dynamic programming approach to find the most economic unit combinations for the given load pattern.