

(PO1)

B.Sc.TE (2Yr): 4th Semester B.Sc. in EEE: 8th Semester

Date: 05 March 2024 Time: 02:30pm - 04:00pm

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination	Summer Semester: 2022 - 20
Course Number: EEE 4801/4895	Full Marks: 75
Course Title: Power Generation	Time: 90 Minutes

There are 03 (three) questions. Answer all the questions. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in the brackets.

a)	Define a nuclear power station.	station. Justify	the site	selection for a nuclear power	(12.5 (CO) (PO)

- b) A 75 MW steam power station uses coal of calorific value of 6400 kcal/kg. (12.5) Thermal efficiency of the station is 30% while electrical efficiency is 90%. (CO2) Calculate the coal consumption per annum when the station is delivering its (PO2) full output.
- 2. a) Sketch a block diagram of a solar PV system and briefly discuss about the use of its various components. (CO1) (PO1)
- b) If you need to design a solar PV system to pump 25000 liters of water every day from a depth of about 10 meters (the drawdown is about 2 meters), then (CO2) determine the required number of 75 Wp solar PV panels (operating factor is (PO2) 0.75, mismatch factor is 0.85 and number of hours of peak sunshine/day is 6)
- and power rating of the pump (efficiency is 30%). 3. a) Define and explain the importance of the daily load curve. (CO1)
 - A generating station has a maximum demand of 25MW, a load factor of 60%. (12.5)a plant capacity factor of 50% and a plant use factor of 72%. Find (i) the reserve (CO2) capacity of the plant (ii) maximum energy that could have been produced daily (PO2) if the plant running as per schedule, were fully loaded.