Name of the Program: B.Sc. in EEE Semester: 8th

ISLAMIC UNIVERSITY OF TECHNOLOGY (UT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination Course No.: EEE 4841 Course Title: Microwave Engineering Summer Semester, A. Y. 2022-2023 Time: 90 Minutes Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

l.	a)	Formulate the following expressions for voltage ν and current i on an ideal transmission line with characteristic impedance, Z ₀ and phase velocity, $\eta_{p.}$	13 (CO1, PO1)

$$\begin{split} v\left(z,t\right) &= f_1\left(t-\frac{z}{v_p}\right) + f_2\left(t+\frac{z}{v_p}\right) \\ &: (z,t) = \frac{1}{Z_0}\left[f_1\left(t-\frac{z}{v_p}\right) - f_2\left(t+\frac{z}{v_p}\right)\right]. \end{split}$$

- b) The load Z_L = 40 j30 Ω is connected to a transmission line with characteristic 12 impedance 50 Ω. A and B are two points on the line and they are 3 cm and 10 cm away (CO2, from the load, or respectively. At the reflected voltage is V_L = 10.20¹⁷ µ d. PO2) A. The operating frequency is 6 GHz. Determine incident voltage, incident current, and reflected current at B at t⁺/r³.
- a) Show that the propagation constant, γ = √(R + jωL)(G + jωC) = α + jβ, where V(z) = Ve^{-γz} represents the voltage wave equation for lossy transmission line. Mention the similicance of the attenuation constant, α.
 - b) A transmission line is connected to the load 40 j30 Ω. The line has characteristic impedance 50 Ω. The operating frequency is 6 GHz. The maximum voltage amplitude (CO2, on the line is 10 V. Determine: PO2)
 - i) input impedance at a point 2 cm away from the load,
 - (i) insertion loss (IL) at the point of the load,
 - (iii) the minimum current amplitude on the line and
 - iv) the shortest distance from the load in cm for which the impedance is nurely resistive.
- a) Show that the same Smith chart can be alternately used as either impedance Smith chart 10 or admittance Smith chart by simply rotating halfway (180⁶) on SWR circle. (CO1, PO1)
 - b) Determine the necessary distances and lengths for designing a single-stub series tuner for matching a load Z₄⁻⁻ (30 - i40) Ω. The characteristic impedance of the transmission line is 50 Ω. Use short circuited stubs. Show distances and lengths in terms of wavelength (h).