
ORGANISATION OF ISLAMIC COOPERATION (OIC)

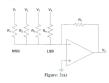
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Summer Semester, A.Y. 2022-2023 Time: 90 Minutes

Course Title: Advanced Electronics Full Marks: 75 There are 4 (four) questions. Answer any 3 (three) questions. All questions carry equal marks. Marks in the margin indicate full marks. Programmable calculators are not allowed. Do not write on this

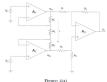
question paper. In Figure 1(a), the op-amp has an open-loop voltage gain of 2 × 105, input 2+4+4=10

For non-ideal model op-amp: Draw the equivalent Circuit diagram.


- Find the closed-loop gain ($\frac{v_0}{2}$).
- Determine current (i) for $v_v = 5V$.
- b) Consider the on-amp of Fig. 1(a) as ideal and determine: Closed-loop gain ($\frac{v_0}{-}$).

- Determine current (i) for $v_c = 5V$. c) Based on the calculation of question 1(a) and 1(b), comment which type of model
 - is preferable and why? Also point out the assumptions that are made to consider
- the model of an op-amp as ideal. Design and verify a three channel inverting amplifier with on-amp. The pains for each channel have been listed in Table 2(a). Select a 10 k Ω resistor for the input resistance of the channel with the highest gain

Table: 2(a)	
Channel number	Voltage gain
1	-20 .
2	-12


b) Design an operational amplifier circuit with inputs v₁, v₂, v₂ and v₄ such that output is $v_0 = 3v_1 + 5v_2 - 10v_3 + 15v_4$

 a) The digital-to-analog converter (DAC) transforms digital signals into analog form. A typical example of a four-bit DAC is illustrated in Figure 3(a), Now, in the operational amplifier of Figure 3(a), Let R_T = 5RR, R_T = 5RR, R_T = 10RR, R_T = 20RR, and R_T = 40RR. Obtain the analog output for binary inputs [00001.100011.] 0.00101. ... [13]

- Construct a single stage op-amp circuit that allows to add a dc voltage to triangular wave.
- a) An instrumentation amplifier shown in Figure 4(a) is an amplifier of low-level signals used in process control or measurement applications and commercially available in single-package units. Show that

$$v_0 = \frac{n_2}{n_1} \left(1 + \frac{2R_2}{n_4} \right) v_2 - v_1$$

ire: 4(a)

b) Design an operational amplifier circuit with inputs v_1 and v_2 such that $v_0=-6v_1+10v_2$. Use only one op-amp in the design.