ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid Semester Examination
Course No: ME 4203
Course Title: Dynamics

Summer Semester: A.Y. 2022-2023
Time : 1 Hour 30 min
Full Marks : 75

Answer all questions. Each question carries nqual manks. The symbots hove their usual meanings.
Draw the frec-body diagram if required. The right column also indicates the course objective (CO) and Program outcome (PO) addressed by each question

Q-01(a). Neglecting the size of the ball, determine the magnitude \mathbf{V}_{A} of the basketball's initial velocity and its velocity when it passes through the basket.

Q-01(b). The motorcycle is traveling at $1 \mathrm{~m} / \mathrm{s}$ when it is at A. If the speed is then inereased at $\dot{v}=0.1 \mathrm{~m} / \mathrm{s}^{2}$.

Determine its speed and acceleration at the instant t-5s.

Q-02(a). The rod OA rotates clockwise with a constant angular velocity of $6 \mathrm{rad} / \mathrm{s}$. Two pinconnected slider blocks, located at B, move freely on OA and the curved rod whose shape is a limaçon described by the equation $\mathrm{r}=200(2-\cos \theta) \mathrm{mm}$. Determine the speed and magnitude of
12.5 the acceleration of the slider blocks at the instant $\theta=150^{\circ}$.

Q-02(b). At the instant shown, cars A and B are traveling at velocities of $40 \mathrm{~m} / \mathrm{s}$ and $30 \mathrm{~m} / \mathrm{s}$, respectively. If B is increasing its velocity by $2 \mathrm{~m} / \mathrm{s}^{2}$, while A maintains a constant velocity, determine the velocity and acceleration of B with respect to A. The radius of curvature at B is $\mathrm{P}_{\mathrm{n}}=200 \mathrm{~m}$.

$$
\mathrm{N}_{\mathrm{B}}-30 \mathrm{~m} / \mathrm{s}
$$

