Date: 08 March, 2024
Time: 10:00 am - 11:30 am

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (IC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid-Semester Examination
Course Number: IPE 4607
Course Title: Control Engineering and Industrial Automation

Summer Semester: 2022-2023
Full Marks: 75
Time: 1.5 Hours

There are 3 (THREE) questions. Answer 3 (THREE) questions. The symbols have their usual meanings. Marks of each question and the corresponding CO and PO are written in brackets. A formula sheet is provided at the end of this question paper. Show all steps and calculations.

1. a) Control system exists in abundance all around us. Select one example of a control system and elaborate on the control system that is present. Include a sketch of the system block diagram to assist your description.
b) The closed-loop control approach offers significant benefits over openloop control. Discuss the benefits of closed-loop control using one example of your choice.
2. a) A rotational system is combined with a translational system using a rack and pinion mechanism as shown in Figure 1. This mechanism converts a rotational movement to a translational movement that displaces the mass, M. Solve for the transfer function of $X(s) / T(s)$.

Figure I: Rotational system combined with a translational system
b) Determine the transfer function for the system below with the following specifications.
i. Find the transfer function of $\theta_{2}(s) / T_{1}(s)$ for the following Figure 2 .

Given: $J_{1}=1 \mathrm{kgm}^{2}, J_{2}-1 \mathrm{kgm}^{2}, B_{I}=1 \mathrm{Nmsrad}, B_{2}=1 \mathrm{Nms} \mathrm{rad}, K_{2}=25$

Figure 2: Rotational modeling system
ii. Find the transfer function, $\mathrm{G}(\mathrm{s})=\mathrm{X}_{3}(\mathrm{~s}) / \mathrm{F}(\mathrm{s})$ for the following Figure 3.

Figure 3: Translational modeling system
3. a) An electrical circuit is shown in Figure 4 . Solve for the transfer function $V /(s) / V(s)$ of the following circuit.

Figure 4: An electrical circuit with three-loop
b) Determine the transfer function $V_{0}(s) / V_{1}(s)$ of the following circuit as shown in Figure 5.

Figure 5: An electrical circuit with two-loop

