ISL AMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISL.AMIC COOPERATION (OIC)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid-Semester Examination
Course No. IPE 4639
Course Title: Enginecring Economy and Finance

Summer Semester, A. Y. 2022-2023
Time : $11 / 2$ hours
Full Marks : 75

There are 3 (Three) Questions. Answer all of them.
Use the graph paper wherever necessary. Marks in the margin indicate the full marks:

1a) You are going to be an engineer. Discuss the engineering profession from the point of its
meaning/s, roless, and process. How are you going to be ready for this profession? Use the
keywords or key points but write adequately.
Give reason on the relevance of registering this course (Engineering Economy and Finance)
for Mechanical Engineering students.
c) Explain the scope of engineering costs and cost estimation.
d) Explain the purpose of engineering education and profession from the points of ethical and
moral orientation to all concerned. Give due focus on the key aspects.
5 $T C=0.005 Q^{2}+4 Q+20000$. labor, and direct overhead costs per unit have been estimated to be Tk50, Tk8 and Tk4 respectively. The selling price is decided to be 138 percent of the variable cost per unit. The maximum capacity of the firm is 160,000 units per year. Its fixed cost is Tk2,024,000 per year. For this firm:
i.Find the breakeven quantity in units and in percentage of total capacity:
ii. Calculate the percentage reduction in breakeven point if fixed costs are reduced 10 percent.
iii.... if variable cost per unit is reduced 10 percent.
IV.... if both costs are reduced 10 percent; and if the selling price is increased by 10 percent.
b) When the revenue and the total cost functions are respectively $R=1000 Q-0.001 Q^{2}$, and
i. Formulate the profit function. State the fixed cost.
ii. Calculate the quantity you must produce to maximize profit.
iii. Determine the break-even volume, $B E P(Q)$ and break-even cost.
iv. Find the quantity to be produced to maintain the average cost. Make comment/s on acceptable result.
c) Explaining the meaning and purpose of present value of money, highlight its significance in engineering economic analysis. Give the answer sufficiently.

- in tabular form.
ii. Construct a cash flow diagram (column graph) that shows the original amount and total amount due to after these years when applied the given interest rate (side-by-side both simple and compound amounts). Comment on the differences.
b) An investment of $\$ 10,000$ can be made that will produce uniform annual revenue of $\$ 5,310$ for five years and then have a positive salvage value of $\$ 2.000$ at the end of year 5 . Annual operating and maintenance expenses for the project will be $\$ 3,000$ at the end of each year.
Draw a cash flow diagram for the 5 -year life of the project. In a table, show the net cash flows and cumulative cash flow from beginning to the end of the project. Determine the present worth when the discounted rate is 9%.
c) A man plans to invest the money by depositing $\$ 500$ year from now. He has ensured that this deposit will increase by $\$ 100$ yearly for ten years. All possible cash flow diagrams and compute
i. The present value of this investment when the rate of interest 5% per year, and
ii. The value of the annual amounts equivalent to this annually invested money.

$$
00000
$$

608: APPENDIXCICOMPOUND INTEREST TABLES

5l Cempound Intarect Fixction

9月	Sompound interestractors								95
	Smale Payment		Uniform Poyment Series				Atithmetic Gradient		
n	Compound Amount Factor Find F tiven P Fif	Present Worti Factor Fend p Given F P/F	Sinking Fund Factor Find A Given F A. F	Capital Recovery Factor Find A Given ${ }^{\circ}$ A P	Compound Ampunt Facter Fied F Givent FA	Present Worth Factor Find P Gren A P.A	Gadieat Uniform Series Find A Given G A/G	Gradient Present Wortil Fisal P Givea G P/G	\%
1	1.090	4172	1.0006	1.0900	1.000	11.917	0	11	1
3	Lisk	3417	47×5	S6S5	2990	1.754	0.478	(1) K3)	2
3	1.295	7122	3051	2951	3278	2531	0.941	2.386	3
4	L4!2	.7004	2187	3057	4573	2.240	1399	4.511	4
5	1589	64490	1671	2571	5.985	3,890	1.828	7.111	5
6	1.677	34 h 3	1330						
7	1.828	5470	1087	1987	4.200	5.038	2n9\%	13.375	7
8	1.993	5019	(0)M	.1807	11025	5.535	1.051	16.888	8

Factor by which to multiply the "Given"	Factor fimctional symbol	Fattor by which to multiply the "Given"	Fector functional symbol
$\begin{gathered} {\left[(1+i)^{n}-1\right] / i} \\ {\left[(1+i)^{n}-1\right] /\left((1+i)^{n}\right.} \end{gathered}$	$\begin{aligned} & (F / A,(\%, n) \\ & (P / A, 196, n) \end{aligned}$	$\frac{\frac{2}{(1+i)^{n}-1}}{\frac{(1+b)^{n}}{(1+i)^{n}-1}}$	$(A / F, 1 \%, n)$ $(A / P,(\%, n)$

