ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (IC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid Semester Examination
Course Code: ME 4659
Course Title: Conventional and Non-conventional Energy Resources

Summer Semester: AY 2022-23
Full Marks: 75
Time: 1 Hour 30 Minutes

There are three questions. Answer all of them. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in the brackets. Assume reasonable design data if necessary. Programmable calculators are not allowed.

Formula Sheet

$$
\delta=23.45 \sin \left(360 \frac{284+n}{365}\right)
$$

$$
\begin{aligned}
& \cos \theta=\sin \beta \sin \phi \cos \beta-\sin \delta \cos \phi \sin \beta \cos \gamma \\
& +\cos \delta \cos \phi \cos \beta \cos a+\cos \delta \sin \phi \sin \beta \cos \gamma \cos \omega \\
& +\cos \delta \sin \beta \sin \gamma \sin \omega \\
& \cos \theta_{2}=\cos \phi \cos \delta \cos \omega+\sin \phi \sin \delta \\
& \gamma_{5}=\operatorname{sign}\left((\omega)\left|\cos ^{-1}\left(\frac{\cos \theta_{2} \sin \phi-\sin \delta}{\sin \theta_{2} \cos \phi}\right)\right|\right. \\
& \cos \omega_{\mathrm{s}}=-\frac{\sin \phi \sin \delta}{\cos \phi \cos \delta}=-\tan \phi \tan \delta \\
& \tan \alpha_{p}=\frac{\tan \alpha_{3}}{\cos \left(\gamma_{A}-\gamma\right)} \\
& H_{n}=\frac{24 \times 3600 G_{90}}{\pi}\left(1+0,033 \cos \frac{360 n}{365}\right) \\
& \times\left(\cos \phi \cos \delta \sin \omega_{3}+\frac{\pi x \omega_{3}}{180} \sin \phi \sin \delta\right)
\end{aligned}
$$

For $10_{y} \leq 81.4$

$$
\frac{H_{d}}{H}= \begin{cases}1.0-0.2727 K_{T}+2.495 K_{T}^{2}-11.951+K_{T}+9.3879 K_{T}^{\frac{1}{T}} & \text { for } K_{T}<0.715 \\ 0.143 & \text { for } K_{T} \geq 0.715\end{cases}
$$

and for $\mathrm{ox}_{4}>81.4$

$$
\frac{H_{v}}{H}= \begin{cases}1.01+0.2832 K_{T}-2.5557 K_{T}+0.8448 K_{T}^{3} & \text { for } K_{T}<0.722 \\ 0.175 & \text { for } K_{T} \geq 0.722\end{cases}
$$

