B:Sc. in EEE (2nd Sem.)/B.Sc.T.E. (2Y. 2nd Sem.)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF NATURAL SCIENCES

Mid Semester Examination Course No.: Math 4221/Math 4629 Course Title: Mathematics III

Summer Semester, A. Y. 2022-2023 Time: 90 minutes Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

1.	a)	Explain the physical significance of dot and cross product of two vectors.	(12) (CO1) (PO1)
	b)	Show that $\nabla : (\mathcal{V} \times A) = 0$.	(6) (CO1) (PO1)
	c)	$\label{eq:find_point} \begin{array}{ll} \mbox{Find} & \mbox{ϕ} & \mbox{if} \ \mbox{$\nabla \phi$} = (y^2 \cdot 2xyz^3) \mbox{i} + (3 + 2xy \cdot x^2z^3) \mbox{j} + (6z^2 \cdot 3x^3yz^2) \mbox{k}, \end{array}$	(7) (CO1)
2.	a)	Show that Vf is a vector perpendicular to the level surface $f(x, y, z) = c$ where c is constant. Find the unit normal to the surface $3x^2 - y^2 + 2z = 1$ at $(1, 2, 1)$.	(PO1) (12) (CO1) (PO1)
	b)	If $A=(3x+y)i - xj+(y-2)k$ and $B=2i-3j+k$ evaluate $\int_{C} (AxB)xdr$ around the circle	(13) (CO2)
		in the xy-plane having center at the origin and radius 2, traversed in the positive direction.	(PO1)
3.	a)	Find the flow of current through the surface S where S is the part of the plane 2x+3y+6z=12 which is located in the first octant, if the current density is J=10zt+10j+3yk.	(12) (CO3) (PO1)
	b)	State and prove Gauss divergence theorem.	(13) (CO2) (PO1)