

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF NATURAL SCIENCES

Mid Semester Examination

Summer Semester, A.Y. 2022 - 2023 Full Marks: 100

Course Number: Math 4241 Course Title: Integral Calculus and Differential

Time : 1.5 Hours

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all <u>3 (three)</u> questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are
written within parentheses

		Figures in the right margin indicate full marks of questions w thin parentheses.	hereas corresponding Co	O and PO are
l.	a)	Define antidifferentiation with examples.		(5) (CO1)

a)	Define antidifferentiation with examples.	
		(CO1)
		(PO1)
	#/2	(12)
b)	Find the value of (i) \[\tan^4 x \sec x dx. \] (ii) \[\in \sin^5 x dx \]	(CO2)

b) Find the value of (i)
$$\int \tan^n x \sec x dx$$
, (ii) $\int \sin^n x dx$ (c)

Determine the value of $\int_{-\infty}^{\infty} \log(\cos x) dx$ and hence compute $\int_{-\infty}^{\infty} \frac{\log(x + \frac{1}{x})}{1 + \frac{1}{x}} dx$.

Use the properties of Gamma function to find the value of
$$\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1+x^4}}$$
.

c) Consider
$$\frac{dy}{dx} = -x^2y$$
. Draw the direction field. Hence sketch an approximate solution curve when $y(1) = 1$.

exact. Then solve the transformed equation.

$$xdx + (x^2y + 4y)dy = 0$$
, $y(4) = 0$.

$$-ydx + (x + \sqrt{xy})dy = 0$$
 by using an appropriate substitution

Solve the initial value problem
$$x^2 \frac{dy}{dx} - 2xy = 3y^4$$
, $y(1) = 1/2$.

Find the solution of $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 6x^2 + 2 - 12e^{2x}$ using an appropriate method.