BBA in TM, 2nd Sem.

Date: March 5, 2024 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF NATURAL SCIENCES

Mid Semester Examination Course No. : MATH 4261 Course Title : Mathematics II

Summer Semester, A. Y. 2022-2023 Time : 1.5 hours Full Marks : 75

Answer all 3 (three) questions. All questions carry equal marks. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

- a) The tolid waste generated each year in the cities of Bangladesh is increasing. The solid (5) (700) (700)
 (700) (700) (700)
 (701) (700) (700) (700)
 (701) (7
 - (b) Regs. Ltd., a clothing firm, Jun. Tried costs of \$1(000) or year. These costs, such as rent, maintenance and so on, most be gaid to matter how much the company produces. To produce x units of a certain kind of said, it costs 320 per unit (unit) in addition to the fixed costs. That is, the variable costs for producing x of these suits are dollars. These costs are due to be mount produced and sams from items such as matterial, wages, faul, and so on. The total cost C(x) of producing x units in a year is given by a function C:

C(x) = (Variable costs) + (Fixed costs) = 20x + 10,000.

Graph the variable-cost, the fixed-cost, and the total-cost functions. Determine the total cost of producing 100 suits and 400 suits?

- e) The Custom Office Company makes an executive line of desks. It is estimated that the (5) cross total cost of making x units of their Senor Executive Model desk is L(x) = 100x + 200,000 dollars per year, so that the average cost of making x units of the desks is given by $A(x) = \frac{C(x)}{x} = 100 + \frac{200,000}{x}$ dollars per desk. Deduce $\lim_{n\to\infty} A(x)$ and interpret your results.
- d) Marcy works at the B & O department store, where on a weekday, she is paid \$6 per (5) (CO2) hour for the first eight hours and \$9 per hour for overtime. You may verify that the

function $f(x) = \begin{cases} 6x ; 0 \le x \le 8\\ 9x - 24 ; 8 < x \end{cases}$ gives Marcy's earnings on a weekday in which she

worked x hours. Discuss the continuity of the function at x = 8 using graph.

a) Find values of the constants k and m, if possible, that will make the function f (10) (CO2) continuous everywhere.

$$f(x) = \begin{cases} x^2 + 5, x > 2\\ m(x+1) + k, -1 < x \le 2\\ 2x^3 + x + 7, x \le -1 \end{cases}$$

b) The demand function for the Sicard wrist watch is given by

$$d(x) = \frac{50}{0.01x^2 + 1} (0 \le x \le 20)$$

where x (thousand) is the quantity demanded per week and d(x) is the unit price in dollars. Find d'(x). Hence compute d'(5), d'(10) and d'(15) and interpret your results.

- c) If y = a cos(lnx) + bsin(lnx), then applying Leibnitz's Theorem find the value of (7) (CO1) x²y_{n+2} + (2n + 1)xy_{n+1} + (n² + 1)y_n. (PO1)
- 3. a) Apply L'Hospital's Rule to evaluate the following limit (10) (CO3) $\lim_{n \to 0} \frac{1}{(n^2 \frac{1}{nn^2})}.$

b) The number of major crimes committed in the eight of Dhaka from 2010 to 2017 is approximated by the function N(t) = −0.1t² + 1.5t² + 1.00, 0.5t ≤ 7.7; where N(t) denotes the number of crimes committed in yare, with t = 0 corresponding to the beginning of 2010. Find where the function N is increasing and where it is derivative.

c) If $V = \sqrt{x^2 + y^2 + z^2}$ then show that $V_{gg} + V_{yy} + V_{zg} = 2/V$. (9) (CO2 (P0)

(8) (CO3