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Abstract

The diagnosis of blood cancer with the use of any leukemia microarray gene se-

quence data and a machine learning approach is one of the most important fields

of medical research. More advancements are needed to obtain the requisite accu-

racy and efficiency notwithstanding research efforts.

Our work’s major goal is to present a method that, using microarray gene data,

can accurately predict blood cancer. By increasing the classification accuracy for

automated analysis of microarray data analysis, our research seeks to suggest a

deep learning model to identify and categorize various types of leukemia.

We will use the Leukemia GSE28497 dataset for training our model which contains

281 samples consisting of 22,285 genes (features) of 7 target classes. We preprocess

the dataset by deleting null items before training our models. For the prediction

of the blood cancer classes, we investigate three classification algorithms: logistic

regression, single-layer neural networks, and TabNet. We use a variety of met-

rics, such as model accuracy, model loss, confusion matrix, train value accuracy,

train value loss, and ROC curve, to measure the performance of our models. The

outcomes of our studies analyze the effectiveness of deep learning models for clas-

sifying different forms of blood cancer from microarray gene data.
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1 Introduction

1.1 Overview

Leukemia is one type of blood cancer that is distinguished by the prompt increase

of abnormal blood cells. This uncontrolled growth happens in bone marrow, which

is where the majority of the blood in a body is made. Leukemia cells are often

young or still under development white blood cells. Leukemia cells divide quickly,

causing the disease to spread quickly. If a person has acute leukemia, he will start

to feel sick within several weeks of the leukemia cells forming. It is a dangerous

illness that requires prompt treatment. It is also the most prominent type of

malignancy in children. Acute lymphocytic leukemia (ALL) is the most common

kind of leukemia in kids, teenagers, and young adults up to age 39. ALL can have

an effect on adults of any age. Acute myelogenous leukemia (AML) is the most

common kind of acute leukemia in adults. Over 65s are more prone to it than

younger people. Young people can also be affected by AML.

Bioinformatics is the area of computer science that is most pertinent to our study.

Bioinformatics is the study of the methods used to collect biological data, trans-

form it into useful formats, and then analyze the collected data. The diagnosis of

cancer is a major area of bioinformatics research. One of the cutting-edge tech-

nologies used to assess the amount of gene expression in a large number of genes

is the DNA microarray. This method can establish whether a person’s DNA con-

tains a gene for mutation or not. Numerous forms of leukemia can be analyzed

and predicted using microarray technology. Hospitals also produce a significant

amount of DNA expression data thanks to microarray technologies.

1.2 What is Microarray Gene Expression

The fundamental structural and functional component of heredity is a gene. DNA

is a component of genes. Some genes function as blueprints for producing pro-

teins. Many genes, however, do not code for proteins. Several hundreds of DNA
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nucleotide to over 2 million bases can make up a human gene. Humans have

20,000 to 25,000 genes, according to the Human Genome Project, an international

research endeavor to comprehend the human genome’s sequence and catalog its

genes.

Gene expression is the process through which a gene’s information is converted

into a function. The main cause of this is transcription of RNA molecules that

code for proteins or non-coding RNA molecules that have other functions. Gene

expression is analogous to a “on/off switch” that regulates both the location and

timing of protein and RNA synthesis as well as a “volume control” that regulates

the relative quantities of each. Environment-related variables and cell type have

a big impact on how genes are expressed. The RNA and proteins that regulate

the expression of other genes are made by several genes.

An experimental method for concurrently detecting the expression levels of thou-

sands of genes is called a microarray. The tens of thousands of tiny dots on the

microscope slide each stand for a recognized gene or DNA sequence. We call them

DNA microarrays. DNA or gene chips are common names for these slides. The

messenger RNA (mRNA) transcriptome, also known as the collection of messenger

RNA (mRNA) transcripts expressed by a set of genes, is detected by the DNA

molecules linked to each slide as probes.

1.3 Microarray Gene Expression Data for Leukemia De-

tection and Classification

The need for early detection and appropriate treatment for blood cancer has in-

creased during the past ten years. The diagnosing procedure is expensive, time-

consuming, and involves a number of tests and medical professionals. Therefore,

an automatic diagnosis system is crucial for making an accurate forecast. Today,

one of the most significant areas of medical study is the diagnosis of blood can-

cer combining leukemia microarray gene data and a machine learning approach.
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Figure 1: Steps involved in cDNA-based microarray

Despite research efforts, more improvements are required to achieve the desired

accuracy and efficiency.

Up until the advent of Next Generation Sequencing (NGS) methods, microarray

technology was the most frequently utilized gene quantification technology in the

last 20 years. Due to the inexpensive cost of this technology in comparison to

RNA-seq, Microarray is still in use today. The first technology to measure all

genes’ levels of expression concurrently was the microarray. Numerous Microarray

systems or manufacturers can also be considered.

Aggressive cancer detection techniques, including bone marrow biopsy, which is

employed in the precise diagnosis of acute myeloid leukemia, can take the role

of microarray. The invasive, uncomfortable, and potentially dangerous procedure

known as a bone marrow biopsy can result in bleeding and infections. [12] Because

they provide very accurate diagnostic techniques, microarrays improve clinical

diagnosis. It can serve as a gold standard for diagnosis, advanced therapy research,

and cell biology comprehension, particularly in oncology studies. [16] Automated

gene data classification based on machine learning is crucial for diagnosing any
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genetic disorders and diseases. The need for a good classifier that can handle

massive amounts of data is critical given the quantity of the data. One of the

cutting-edge machine learning methods to address these issues is deep learning.

Because there are more hidden layers, it can process large amounts of data with

ease.

1.4 Motivation and Problem Statement

Blood cancer cases have increased over the past ten years, and early detection

is essential for successful treatment to start. The diagnosing process is pricy,

drawn out, and requires a variety of tests and medical experts. Consequently, a

system for autonomous diagnosis is essential for producing precise forecasts. One

of the most important fields of medical research nowadays is the diagnosis of blood

cancer using a machine learning approach using leukemia microarray gene data.

More advancements are needed to obtain the requisite accuracy and efficiency

notwithstanding research efforts.

In the modern medical world, early leukemia prediction is a difficult task that

can be accomplished by implementing computer-aided automated illness diagnosis

systems. To create a smart diagnosis method, many machine learning algorithms

had been used for medical datasets. Huge amounts of data are being generated

from the medical sectors as a result of the digital revolution and improvements

in information technologies. Machine learning algorithms are highly adapted for

the processing of these enormous amounts of data, and numerous techniques have

also been used for disease diagnosis. [8]

The main objective of our work is to put forth a better deep learning model that

can more accurately predict blood cancer utilizing larger microarray gene sequence

datasets. Our research aims to develop a deep learning model to diagnose and

classify different types of leukemia by improving the classification accuracy for

automated analysis of microarray data analysis.
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2 Literature Review

Due to the significance of the healthcare industry, a number of research studies

on leukemia cancer prediction employing machine learning, deep learning, and

image processing can be found in the literature. A class of machine learning

algorithms known as “deep learning” is capable of accurately analyzing data with

many features and samples as well as identifying patterns with high complexity in

huge datasets.

2.1 Machine Learning Approaches for Leukemia Classifi-

cation

The 22,283 gene leukemia microarray gene dataset is used in the research of Rupa-

para et al. [13] Problems with imbalanced and high-dimensional datasets are solved

using ADASYN resampling and Chi-squared (Chi2) features selection methods. To

balance the dataset for each target class, ADASYN creates synthetic data, then

Chi2 chooses the top 22,283 characteristics to train learning models on. A hybrid

logistics vector trees classifier (LVTrees) that combines logistic regression, support

vector classifiers and additional tree classifiers is proposed for classification. For

assessing the significance of the suggested methodology, extensive experiments

on the datasets and performance comparisons with cutting-edge methods have

been done. With significant 100% accuracy, LVTrees exceed all other models us-

ing ADASYN and Chi2 methods. A statistical significance T-test is also run to

demonstrate the effectiveness of the suggested strategy. Results from k-fold cross-

validation show that the suggested model is superior. On the basis of microarray

gene data, the effectiveness of well-known machine learning methods is examined.

These algorithms include RF, logistic regression (LR), support vector classifier

(SVC), KNN, Naive Bayes (NB), extra tree classifier (ETC), DT, and Adaboost

classifier (ADA). LVTrees, a hybrid model that makes use of RL, SVC, and ETC

through majority voting, is suggested. Chi2 is used to choose the ideal collection

of characteristics for classification while the influence of ADASYN is examined for

6



data balance. Extensive tests to determine the effectiveness of the suggested strat-

egy. Modern techniques are contrasted with the suggested strategy. The proposed

approach’s validity is examined using the statistical significance test. Utilizing

k-fold cross-validation, results are further validated.

Figure 2: The Methodology Applied for the Rapapura et al. Study

Figure 3: The Architecture of the Hybrid LVTrees Model

The study by Abdullah et al. [2] provides a method for predicting leukemia

subtypes from microarray gene expression data using an ensemble classifier called

EODClassifier, which has just been published. A classification accuracy of over

96% is established over numerous cross-validation studies, demonstrating consis-

tency and robustness.

In the work of Castillo et al. [3], several Microarray and RNA-seq platforms have
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been integrated, and this has allowed for the construction of a multiclass study

using samples from the main four kinds of leukemia to measure gene expression.

Then, a novel parameter known as coverage is introduced here in order to identify

a set of differentially expressed genes with the best ability to distinguish between

various forms of leukemia. This measure enables evaluation of the variety of disor-

ders that a certain generation can identify. It has been assessed along with other

well-known criteria using an ANOVA statistical test, which confirmed its filtering

ability when the identified genes are put through a multiclass level machine learn-

ing process.

42 highly relevant expressed genes were chosen as a result of the statistical test’s

statistical evaluation of the criteria for gene extraction. These genes were reordered

and evaluated using four different classification strategies using the minimum-

Redundancy Maximum-Relevance (mRMR) feature selection algorithm. Exclud-

ing all other factors and considering only the top ten genes in the ranking led to

exceptional results. After consulting specialized literature, it was discovered that

almost all of the genes in this last subset were involved in biological processes

connected to leukemia. These findings highlight the importance of taking into ac-

count a new criterion that makes it easier to identify highly valid expressed genes

for simultaneously differentiating between numerous forms of leukemia.

In the Kilicarslan et al. study [7], a hybrid approach is proposed that combines

support vector machines (SVM) and convolutional neural networks (CNN) for clas-

sification with Relief and stacking autoencoders for dimension reduction. Three

microarray datasets for the ovary, leukemia, and central nervous system (CNS)

were utilized in the study. There are 60 samples, 7129 genes, and 2 classes in

the CNS dataset, 253 samples, 15,154 genes, and 2 classes in the ovarian dataset.

There are 72 samples, 7129 genes, and 2 classes in the leukemia dataset. SVM

had the best classification accuracy without dimension reduction when applied

to the three microarray datasets, with values of 96.14% for the ovarian dataset,

94.83% for the leukemia dataset, and 65% for the CNS dataset. In comparison to
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existing methods, the suggested hybrid ReliefF + CNN method fared well. For

the ovarian, leukemia, and CNS datasets, it provided classification accuracy of

98.6%, 99.86%, and 83.95%, respectively. Results indicate that dimension reduc-

tion techniques increased the classification precision of SVM and CNN techniques.

Human acute leukemia is used as a test case for a general approach to cancer

categorization based on gene expression monitoring using DNA microarrays in

the work of El-Nasser et al. [1] When these classes were known in advance, a

class discovery technique automatically determined the distinctions between acute

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The two pri-

mary goals of this research are to introduce the SMIG (Select Most Informative

Genes) Algorithm and to create and implement an enhanced classification algo-

rithm (ECA) system to improve the classification of leukemia cancer utilizing the

SMIG module and ranking process. The proposed strategy and trials revealed

that, when preprocessing and classification are completed using the suggested

ECA system, an accuracy of 98% may be attained in 0.1 seconds, which is faster

than previous methods in previously published studies.

In the study of Xiao et al. [15], we present a novel approach that integrates a

variety of machine learning models into an ensemble approach using deep learning.

Using differential gene expression studies, we provide valuable gene information to

five different categorization models. After that, a deep learning technique is used

to combine the results from the five classifiers. Three publicly available RNA-seq

data sets representing three different cancer types—stomach adenocarcinoma, lung

adenocarcinoma, and breast invasive carcinoma—were used to test the proposed

deep learning-based multi-model ensemble technique. The test findings show that,

in comparison to employing a single classifier or the majority voting algorithm,

it improves the accuracy of cancer prediction for all the evaluated RNA-seq data

sets.
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2.2 Deep Learning Approaches for Leukemia Classification

To comprehend how deep neural networks train, Mallick et al. [10] have provided

a categorization algorithm (DNN). The network is over-parameterized and the as-

sumptions are that the inputs do not degrade. Additionally, the quantity of hidden

neurons is sufficient. DNN was utilized by the authors of this study to categorize

the gene expression data. The expressions for bine marrow of 72 patients with

leukemia are included in the dataset used for the study. For acute lymphocyte

(ALL) and acute myelocytic (AML) samples classification, a five-layer DNN clas-

sifier is created. 80% of the data is used to train the network, while the remaining

20% is used for validation. In comparison to existing classifiers, the proposed DNN

classifier is producing results that are satisfactory. With 98.2% accuracy, 96.59%

sensitivity, and 97.9% specificity, two kinds of leukemia are identified. Future gen-

erations of genetic and virology researchers may benefit from the various sorts of

computer-based analyses of genes.

Figure 4: The Architecture of the Mallick et al. Study

The Gene Expression Omnibus repository’s leukemia microarray gene data,

which included 22283 genes, was taken for the study of Nazari et al. [11] Python’s

normalization test and main component analysis were used for the initial prepro-
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cessing. Following the design and implementation of a DNN neural network using

the data, classifiers cross-validated the results. Their results demonstrate that the

PCA gene segregation capacity and cancer cells and healthy cells independence.

Their normalization test was much significant (P¿0.05). Their results accuracy for

deep neural learning network with three hidden layers and a single-layer neural

network are 63.33 and 96.67, respectively.

The potential for the identification of hundreds of novel biomarkers may be con-

strained by Gupta et al.’s [5] investigation of the use of generative models to

recapitulate and expanding scientific knowledge utilizing microarray data. On a

dataset with a TB emphasis, they look at the potential of these generative models

and assess the effectiveness of generative adversarial networks (GAN), gaussian

mixture models (GMM), and variational autoencoders (VAE). They further in-

vestigate whether previously referred to axes genes can be used as an efficient

method to use domain knowledge while designing those generative models, in or-

der to further reduce biological noise and enhance signals that can be verified by

conventional enrichment techniques or functional experiments. The likelihood of

identifying hundreds of novel biomarkers may be constrained by Gupta et al.’s

investigation on the ability for generative models to replicate and improve scien-

tific knowledge utilizing microarray data. We examine the possibilities of gen-

erative models and evaluate the performance of generative adversarial networks

(GAN), gaussian mixture models (GMM), and variational autoencoders (VAE)

on a dataset with a TB emphasis. To reduce biological noises and enhance sig-

nals that can be verified by conventional enrichment techniques or functional an

experiments, we investigate whether previously referred to as axes genes can be

used as an effective strategy to employ domain knowledge while designing those

generative models.

Shen et al. [14] give a succinct overview of several deep learning applications

to genomic research in this review paper. As a group of machine learning tech-
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niques, deep learning can be divided into supervised learning and unsupervised

learning. We begin by outlining the fundamentals of supervised, unsupervised,

and semi-supervised learning. We then go over common deep learning techniques

and how they are used in genomic research. The evaluation primarily focused

on traditional deep learning techniques, particularly those with the potential to

be employed for genomic data analysis because of the enormous number of deep

learning techniques that are now accessible and the space constraints.

2.3 Image-based Approaches for Leukemia Classification

In order to classify the 33 tumor types, Lyu et al. [9] employed a convolutional

neural network to integrate the high dimensional RNA-Seq data into 2-D pic-

tures. 95.59% was the final accuracy we obtained. Additionally, using the concept

of Guided Grad Cam, we created important heat maps for every gene according to

each class. The success of our method was demonstrated by methodical analysis

of the genes with high intensities in the heat maps, which confirmed that these

top genes are associated with tumor-specific pathways and some of thepathways

have already been used as biomarkers.

Using 85 microscopic blood pictures obtained from bone marrow sequence of Mul-

tiple Myeloma (MM) patients, and the suggested research by Kamma et al. [6]

offers a reliable method for the disease’s prediction among the many types of blood

malignancies. The proposed work uses Convolutional Neural Networks (CNN) to

eliminate the possibility of errors in the manual feature extraction process. This

follows the training the model using Artificial Neural Networks (ANN), Support

Vector Machines (SVM), and Random Forest algorithms for classification. We

used Random Search Optimizer in conjunction with SVM and Random Forest

to identify the optimal set of hyperparameters for improved outcomes. For the

CNN-ANN model, the overall accuracy was noted to be 100%. As a result, the

model can be deployed to determine the Multiple Myelomas from the images of

cells.
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3 Dataset

We have used the Leukemia GSE28497 dataset that contains 281 samples consist-

ing of 22,285 genes (features) of 7 target classes. The Leukemia GSE28497 dataset

is a gene expression dataset that has been used widely in the field of cancer re-

search, specifically for studying leukemia. This dataset is publicly available and

can be accessed from various repositories, such as the Gene Expression Omnibus

(GEO).

Here are some key points about the Leukemia GSE28497 dataset:

1. Dataset Origin: The dataset was generated from gene expression profiling

experiments using the microarray technology. It includes gene expression data

from bone marrow samples of patients who are diagnosed with acute lymphoblas-

tic leukemia (ALL) and acute myeloid leukemia (AML), as well as samples from

healthy individuals serving as controls.

2. Dataset Size: The Leukemia GSE28497 dataset typically contains gene ex-

pression measurements for thousands of genes (features) across multiple samples.

The exact number of samples and genes can vary, depending on the specific version

and processing of the dataset.

3. Purpose: The dataset was collected to investigate the gene expression pat-

terns associated with different types of leukemia. Researchers have used this

dataset to identify differentially expressed genes, discover biomarkers, and gain

insights into the molecular mechanisms underlying leukemia development and pro-

gression.

4. Clinical Information: Along with the gene expression data, the Leukemia

GSE28497 dataset may also include additional clinical information about the pa-

tients, such as age, gender, subtype of leukemia, and treatment response. This

information can be useful for exploring correlations between gene expression pat-

terns and clinical outcomes.

5. Data Availability: The Leukemia GSE28497 dataset is publicly available,

and researchers can access and download the data from repositories like GEO. It is
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typically provided in a tabular format, with rows representing genes and columns

representing samples, along with metadata providing additional information.

4 Proposed Methodology

Figure 5: Our Proposed Methodology

• Data Resampling: Different resampling techniques are being

tested for balancing the imbalanced dataset.

• Feature Selection: For reducing the very high dimensionality of

the data.

• Test & Train Data: Splitting the preprocessed data into test

and train set for feeding into the network.

• Proposed Model: Using a deep learning model to train and test

the processed data. TabNet, 1DCNN, and LSTM are our models of prefer-

ence.

4.1 Data Resampling

Machine learning algorithms do not take class distribution into account since they

prefer to improve accuracy by decreasing the error. Examples of this issue are

common in fraud detection, anomaly detection, facial recognition, etc.

Two of the common methods of Resampling we can use are –

• Cross Validation

• Bootstrapping
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Cross-validation is a technique used to assess a model’s performance by esti-

mating the test error linked to it.

The most fundamental strategy is the validation set approach. The dataset is

simply split into two portions at random: a training set and a validation set or

hold-out set. On the training set, the model is fitted, and on the validation set,

predictions are made using the fitted model.

The validation set approach is inferior to leave-one-out-cross-validation (LOOCV).

One observation is utilized for validation, while the remaining observations are

used to fit the model, rather than splitting the entire dataset in half.

The set of observations is randomly divided into k folds of almost similar size

in the k-fold cross-validation procedure. The model is fitted on the remaining

folds using the initial fold as a validation set. The process is then carried out k

times, with a different group being used as the validation set each time.

4.2 Feature Selection

A machine learning model can only be created using a small subset of the dataset’s

variables; the remainder are either unnecessary or unimportant. If all this use-

less and redundant data is included in the dataset, the overall performance and

accuracy of the model may deteriorate. It is essential to identify and pick the

most appropriate features from the data in order to remove the superfluous or

less important information, which is performed with feature selection in machine

learning.

Feature selection, which can be carried out manually or automatically, is the

process of choosing the subset of the most acceptable and pertinent features to

be used in model creation. The original features of the dataset are kept, and ei-

ther new, significant features are added, or old, unimportant features are removed.
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Figure 6: Feature Selection Methods

Techniques for supervised feature selection that take into account the target vari-

able can be used for the labeled dataset. Unsupervised feature selection methods

may be used to unlabeled datasets and ignore the target variable.

The filter method’s features are selected using statistical measures. In this ap-

proach, the features are chosen during a pre-processing stage that is separate from

the learning algorithm. The filter approach uses various metrics through ranking

to remove unnecessary columns and features from the model. Filter methods have

the benefit of requiring less calculation time and not overfitting the data.

1. Missing Value: When there is no data for one or more features in a dataset,

it is said that there are “missing values.” Because missing values can add bias

and affect how well machine learning models perform, handling them properly is

essential. Examining the connection between missing values and the target vari-

able is one strategy for feature selection. Even if a feature has missing values, if

it has a strong correlation with the objective variable, it might still be valuable

and kept for further study. On the other hand, a feature might be dropped if its

missing values have no bearing on the target variable.

2. Information Gain: The amount of information gained about the target
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variable by knowing the value of a specific attribute is measured by the informa-

tion gain concept from information theory. It is frequently employed in decision

tree-based feature selection techniques. The difference between the entropy (a

measurement of impurity or disorder) before and after the dataset was divided

based on a specific attribute is calculated as information gain. Since they provide

a greater contribution to lowering the uncertainty in predicting the target variable

and are therefore more likely to be chosen, features with higher information gain

are seen as being more informative.

3. Chi-Square Test: A statistical technique called the chi-square test is used

to assess whether two categorical variables are independent or related. The chi-

square test can be used to evaluate the association between each feature and the

target variable in feature selection. It determines the chi-square statistic, which

gauges the discrepancy between the frequency of the feature’s values as seen and

expected. The relevance of the feature for prediction is increased by a larger chi-

square value, which denotes a greater relationship between the feature and the

target variable. As a result, features with higher chi-square values are frequently

chosen for further study since they are thought to be more significant.

4. Fisher’s Score: A feature selection technique that is frequently used in

classification problems is Fisher’s score, also referred to as the Fisher criterion

or Fisher’s discriminant ratio. It seeks to identify traits that show a large mean

difference between classes and a little variance within each class. By dividing the

between-class variance by the within-class variance, the Fisher score is determined.

Higher Fisher scores for features are thought to be more useful for classification

because they help distinguish between various classes more. As a result, features

with high Fisher scores are frequently chosen to be part of the model.

Embedded approaches combined the benefits of the filter methods and wrapper

methods by considering feature interaction and low processing costs. Similar to
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the filter method but faster, these quick processing methods are more precise.

5. L1 Regularization (Lasso): L1 regularization, also known as Lasso regular-

ization, is a technique used to penalize the model for having too many irrelevant

features. It adds a penalty term to the loss function, which encourages the model

to minimize the absolute values of the feature weights. As a result, L1 regulariza-

tion tends to drive the weights of irrelevant features to zero, effectively eliminating

them from the model. This property makes L1 regularization useful for feature

selection, as it helps identify the most important features.

6. L2 Regularization (Ridge): Ridge regularization, commonly referred to as

L2 regularization, is another method for reducing overfitting and enhancing model

generalization. Like L1 regularization, L2 regularization adds a penalty term that

encourages the model to minimize the squared values of the feature weights rather

than penalizing the absolute values of the weights. In contrast to L1 regulariza-

tion, L2 regularization reduces the weights of less significant features toward zero

but does not require them to be exactly zero. As a result, L2 regularization does

not explicitly perform feature selection, but it nevertheless aids in minimizing the

influence of unimportant characteristics on the model.

Several machine learning methods, including linear regression, logistic regression,

and support vector machines can be regularized using both L1 and L2 techniques.

The exact situation at hand and the desired result determine which L1 or L2 reg-

ularization should be used. While L2 regularization reduces all feature weights

toward zero but typically does not make them completely zero, L1 regularization

tries to yield sparse models by setting some feature weights to zero.

7. Random Forest Importance: The ensemble learning technique Random

Forest mixes several decision trees to produce predictions. A feature selection

method called Random Forest Importance uses the Random Forest algorithm to
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assess the significance of each feature. Random Forest determines the impurity

reduction that each feature achieves when it is utilized to split nodes in the trees

during the training phase. The average impurity decrease across all of the trees in

the Random Forest is then used to calculate a feature’s relevance. The predictions

of the model are thought to be more influenced by features with higher significance

scores.

Given the interactions and connections between features in a dataset, Random

Forest Importance offers a reliable indicator of feature importance. It may be

used for both of the classification tasks and regression tasks and can handle a

variety of data sources, including categorical and numerical data. It enables effi-

cient feature selection by ranking the features according to their relevance ratings,

making it possible to find the features that are most pertinent to the model.

The wrapper methodology treats the selection of characteristics as a search is-

sue, where numerous combinations are made, evaluated, and compared to other

choices. The algorithm is trained by using the subset of features repeatedly.

8. Forward Feature Selection: Starting with an empty set of features, forward

feature selection adds features one at a time based on a predefined criterion. The

algorithm chooses the feature that best improves the model at each iteration by

assessing how well the model performs with the features that are currently picked.

This procedure keeps going until a predetermined stopping criterion has been

reached, such as when the target number of features is attained or performance

starts to decline. A greedy technique called forward feature selection continuously

increases the feature set while prioritizing the most promising characteristics.

9. Backward feature selection: In each iteration, one feature is eliminated

at a time after starting with the entire collection of features. A criterion is used to

assess the performance of the model after each feature has been removed, similar
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to forward feature selection. Based on a criterion that minimizes performance

loss, the algorithm decides which feature to remove. This procedure continues

until a stopping criterion is attained, such as when the target number of features

is attained or when performance starts to noticeably deteriorate. In a greedy algo-

rithm, backward feature selection operates in the opposite manner from forward

selection.

10. Exhaustive Feature Selection: Exhaustive feature selection entails ana-

lyzing every conceivable feature subset from the provided dataset, as the name

suggests. It looks through every possible feature combination and assesses the

model’s performance for each subset. The best subset of characteristics is chosen

using the performance criterion, such as accuracy or error rate. Exhaustive feature

selection can be computationally expensive and is often doable for small feature

spaces due to the combinatorial nature of the process. It is exhaustive, but it

ensures that the best feature subset will be found based on the given criterion.

11. Recursive Feature Elimination (RFE): Recursive feature elimination is

a feature selection technique that iteratively removes features from the dataset

to identify the best ones. It builds a model using the chosen features after start-

ing with the entire collection of features. The feature(s) deemed to be of the least

value are then removed after each characteristic has been evaluated for importance

or weight. Up until the required performance level or predetermined number of

features are met, the procedure iteratively continues. Different criteria, such as

coefficient magnitudes in linear models or feature importances in tree-based mod-

els, can be used in recursive feature elimination to determine how important a

feature is.

4.3 Proposed Models

By using matrix factorization, deep neural network (DNN) models can get past

these issues. For the adaptability of the input layer of the network, DNNs may
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add query characteristics and item features, that can later help identify each user’s

unique interests and increase the probability of relevant suggestions.

4.3.1 Logistic Regression

Using microarray gene datasets, the statistical modeling technique known as lo-

gistic regression is widely used to forecast the presence or the absence of blood

cancer. An easy-to-understand method for examining the connection between gene

expression levels and the likelihood of blood cancer is through the use of logistic

regression.

A mathematical formulation that describes the link between the predictor variables

(gene expression levels) and the probability of the binary outcome (the presence

or the absence of blood cancer) makes up the logistic regression architecture. Let’s

investigate the logistic regression architecture using math:

1. Binary Outcome Representation:

In logistic regression, the binary outcome variable (presence or absence of blood

cancer) is represented as Y, which takes on two values: 0 or 1. Y = 1 indicates

the presence of blood cancer, whileY = 0 represents the absence of blood cancer.

2. Predictor Variables:

The microarray gene dataset provides a set of predictor variables, represented as

X = (X1, X2, ..., Xp), where p is the number of genes or gene expression

levels. Each X corresponds to the expression level of a specific gene in the dataset.

3. Logistic Regression Model:

The logistic regression model gets to assume that the log-odds of the probability

of Y being 1 can be expressed as a linear combination for the predictor variables.

Mathematically, the logistic regression model can be represented as:

logit(P (Y = 1)) = β0 + β1X1 + β2X2 + ... + βpXp

In the equation above, P(Y=1) represents the probability of Y being 1, and
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logit(P (Y = 1)) is the natural logarithm of the odds ratio. The coefficients

β0, β1, β2, ..., βp are the parameters to be estimated by the logistic regression

model. They represent the effect of each predictor variable (gene expression level)

on the log-odds of the outcome variable.

4. Probability Estimation:

To convert the log-odds into a probability, the logistic function (also known as the

sigmoid function) is applied. The logistic function is defined as:

P (Y = 1) = 1
1+e(−logit(P (Y=1)))

The logistic function maps the range of the log − odds(−∞,+∞) to a

probability range between 0 and 1. When the log-odds are positive, the proba-

bility tends towards 1, indicating a higher likelihood of Y being 1 (presence of

blood cancer). Conversely, when the log-odds are negative, the probability tends

towards 0, indicating a higher likelihood of Y being 0 (absence of blood cancer).

5. Parameter Estimation:

The parametersβ0, β1, β2, ..., βp in the logistic regression model are estimated

using the maximum likelihood estimation (MLE). The MLE seeks to find the val-

ues for the parameter that maximizes the very likelihood of observing the given

data. This involves finding the values of β0, β1, β2, ..., βp that maximizes the

joint probability of observing the binary outcomes for the given predictor vari-

ables.

Different optimization algorithms, such as gradient descent or Newton’s method,

can be used to iteratively update the parameter values based on the observed data

until convergence is reached in order to estimate the parameters.

6. Prediction:

Once the parameters are estimated, they can be used to predict the likelihood of

the binary outcome (presence or absence of blood cancer) for new observations.

A decision threshold can be set to classify the observations as either Y = 1 or
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Y = 0, based on whether the predicted probability exceeds the threshold.

Based on microarray gene datasets, logistic regression gives a simple and under-

standable method for predicting blood cancer. Logistic regression can offer useful

insights into the connection between particular genes and the chance of the disease

by simulating the relationship between gene expression levels and the likelihood

of blood cancer.

4.3.2 Neural Networks

In order to forecast blood cancer, neural networks have become potent models

for assessing complicated datasets, such as microarray gene datasets. For the in-

vestigation of gene expression levels and their correlations with disease outcomes,

neural networks are particularly good at capturing complex patterns and interac-

tions within high-dimensional data.

A neural network can be created specifically for the goal of predicting the presence

or absence of blood cancer by learning the underlying patterns in the microarray

gene collection. The nodes (sometimes referred to as neurons) in the layers that

make up the neural network architecture process and transform the input data.

A neural network for blood cancer prediction frequently has an input layer, one

or more hidden layers, and an output layer. Each layer is composed of several

neurons that are connected to the neurons in the layers below by weighted con-

nections. For binary classification tasks, the number of neurons in the output layer

is frequently set to 1, signifying the expected likelihood of blood cancer, whereas

the number of neurons in the input layer is determined by the number of gene

expression features in the microarray dataset.

Mathematically, the neural network architecture can be represented as follows:

Neurons in the input layer are the ones that receive the microarray dataset’s gene

expression levels. Each input layer neuron is associated with a particular aspect

of gene expression, denoted by the symbol Xi, where i is a number between 1 and

the total number of genes in the dataset.

The so-called “hidden layers” are situated between the input and output layers.
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They are composed of neurons that alter the incoming data using activation pro-

cesses. Each neuron in the hidden layer receives input from all the neurons in

the layer above, calculates a weighted total of these inputs, and then applies an

activation function.

A hidden layer neuron’s weighted sum can be written as follows:

zj =
∑

(wji ∗Xi) + bj
where zj is the weighted sum,w(ji) is the very weight connecting the jth neuron

in the hidden layer to the ith neuron in the previous layer, Xi is the input from

the previous layer, and bj is the bias term associated with the jth neuron.

The weighted sum is then passed through an activation function, such as the sig-

moid function, ReLU (Rectified Linear Unit), or tanh (hyperbolic tangent), to

introduce non-linearities into the neural network. The choice of activation func-

tion depends on the specific problem and desired properties of the model.

Output layer: The final prediction is produced by a single neuron in the output

layer. After calculating a weighted sum of the inputs from the last hidden layer,

an activation function is then used. Because it converts the weighted total to a

probability value between 0 and 1, which indicates the chance of blood cancer, the

sigmoid activation function is used in binary classification tasks like the prediction

of blood cancer.

The weights and biases of the neural network are modified during training to

minimize the disparity between the expected outputs and the actual labels in the

training dataset. The weights and biases are iteratively updated throughout this

procedure, called backpropagation, making the use of an optimization method like

gradient descent or its variations.

Similar to other classification models, model performance may be assessed using

measures like accuracy, sensitivity, specificity, and AUC-ROC. Additionally, meth-

ods like cross-validation can be used to evaluate the neural network’s capacity for

generalization on new data.
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Figure 7: Neural Network

4.3.3 TabNet

Sequential attention is used by TabNet, a deep tabular data learning architec-

ture, to choose which attributes to infer from at each step of the decision-making

process. The TabNet encoder consists of a feature transformer, an attentive trans-

former, and feature masking. A split block is used to partition the processed rep-

resentation into portions for the final output and the attentive transformer of the

subsequent phase. By integrating the feature selection masks, which offer com-

prehensible details about how the model behaves for each step, the importance of

a feature can be assessed worldwide. Blocks of the feature transformer make up

the stages of the TabNet decoder.

In order to predict blood cancer, the deep learning model TabNet has attracted

attention for its success in processing tabular data, including microarray gene

datasets. TabNet is an effective tool for deriving critical insights from gene ex-

pression levels and forecasting blood cancer outcomes because it combines the

benefits of deep learning and attention mechanisms to understand key features

and correlations within the data.

The TabNet architecture consists of several key components, including the feature

transformer, the decision step, and the aggregation step. Let’s explore each com-

ponent and its mathematical analysis:

25



1. Feature Transformer:

The feature transformer is responsible for processing and transforming the input

features from the microarray gene dataset. It typically consists of multiple fully

connected layers that learn hierarchical depictions of the input data.

Mathematically, the feature transformer can be represented as follows:

h(0) = X

h(t) = f (W (t)h(t− 1) +B(t))

where h(t) represents the hidden representation at the time step t, X is the input

feature vector, W(t) and B(t) are the weights and biases of the fully connected

layers at the time step t, and f() is the activation function used to introduce non-

linearities.

2. Decision Step:

The decision step incorporates the key idea of TabNet, which is the adaptive and

interpretable attention mechanism. This step uses a sparse attention mask to se-

lect relevant features and suppress irrelevant ones.

Mathematically, the decision step can be represented as follows:

M(t) = g(S(t− 1))

A(t) = softmax(M(t))

where M(t) represents the attention mask at time step t, S(t-1) is the shared

transformation applied to the hidden representation at the previous time step,

and g() is the Gated Linear Unit (GLU) activation function that applies a gating

mechanism to the shared transformation.

The attention mask M(t) is obtained by applying the g() function to S(t-1), which

allows the very model to automatically learn the importance of each feature for

the prediction task. The softmax function is then applied to the attention mask to

obtain A(t), which represents the normalized importance weights for each feature.

3. Aggregation Step:
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The aggregation step combines the information from both the feature transformer

and the decision step to produce the final prediction. It involves a weighted sum

of the hidden representations, with the attention weights from the decision step

acting as the weights.

Mathematically, the aggregation step can be written as follows:

T (t) = A(t) ∗ h(t)
output = sum(T (t))

where T(t) represents the transformed features at time step t, output represents

the final prediction, and sum() computes the sum of the transformed features

weighted by the attention weights.

The aggregation step enables the model to concentrate on the most pertinent fea-

tures while ignoring the less significant ones, enhancing the model’s interpretability

and performance.

To train the TabNet model, a loss function, such as binary cross-entropy, is op-

timized using methods like backpropagation and gradient descent. To reduce the

discrepancy between the anticipated outputs and the true labels, the model learns

to change the weights and biases in both the feature transformer and the decision

phase.

TabNet has shown promising results in predicting blood cancer outcomes by ef-

fectively capturing the complex relationships within microarray gene datasets. Its

attention mechanism enables the identification of crucial features and provides

interpretability, allowing researchers to gain insights into the genetic mechanisms

underlying blood cancer.

4.4 Evaluation Metrics

There are various methods for assessing a machine learning model’s performance,

and the best one will depend on your dataset’s unique properties and the kind of

model you’re employing. Here are some typical evaluation techniques you might

employ:
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Figure 8: Tabnet Architechture

Training and validation accuracy: Comparing a model’s training and validation

accuracy is one method of evaluation. The model may be overfitting to the train-

ing data and not generalizing well to new cases if it has a high training accuracy

but a low validation accuracy.

Training and validation loss: Another way to evaluate a model is to compare

its training and validation loss. If the model has a low training loss but a high

validation loss, it may be underfitting to the training data and not performing

well on the validation set.

Confusion matrix: A confusion matrix can be used to evaluate the performance of

a classifier model. A table called a confusion matrix lists the number of accurate

positive, false positive, accurate negative, and false false predictions made by the

model. Precision, recall, and the f1-score may all be calculated from the values in

the confusion matrix.

ROC curve: If your model is a binary classifier, you can evaluate its effectiveness

using a receiver operating characteristic (ROC) curve. A ROC curve contrasts the
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true positive rate as well as the false positive rate for various categorization crite-

ria. The area under the curve (AUC), which ranges from 0.5 to 1.0 and represents

perfect accuracy, is used to assess the model’s accuracy.

Cross-validation: Another technique for evaluating models is to use cross-validation.

To do this, the dataset is partitioned into a number of folds, the model is trained

on some of the folds, and it is then assessed on the other folds. To give a final

evaluation of the model’s performance, the evaluation scores acquired after several

iterations with different folds are averaged.

These are just a few examples of evaluation techniques that we might apply to

judge how well a machine learning model is performing. The properties of your

dataset and the kind of model we’re utilizing will determine the precise strategy

we go for.

5 Research Challenges

Microarray statistical classifications are challenging due to overestimation and

numerous linearity difficulties, making it challenging to assess microarray data

having to use statistical methods to locate high-dimensional data (p¿n). [4]

The inability to be interpreted is one problem with deep learning. Finding and

interpreting disease-associated genetic markers is of primary interest in genetic

association research. Deep learning is still viewed as a “black box,” which makes

it difficult to use in genetic association studies.

Other significant issues include the data of imbalance and the large dimen-

sionality of the data. The term “data imbalance” describes a situation where a

dataset’s sample distribution across various classes is drastically asymmetrical.

Data imbalance arises when there is an unequal representation of samples among

various blood cancer types or target classes in a microarray gene collection. This

implies that a dataset may be uneven since some blood cancer types may have

a disproportionately higher number of samples, whereas others may have fewer
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samples.

A data imbalance can make it difficult to create reliable predictive models. A

machine learning model that has been trained on unbalanced data may show bias

in favor of the majority class, which will result in subpar performance when pre-

dicting the minority classes. A skewed decision boundary is the outcome of the

classifier’s propensity to emphasize on the accuracy of the majority class while

overlooking the minority classes.

Data imbalance can occur in microarray gene datasets for a variety of reasons,

including sample collection biases, the rarity of specific cancer subtypes, or dif-

ferences in the population’s incidence of particular blood cancer kinds. When

training a model, it’s crucial to manage data imbalance in order to produce pre-

dictions that are accurate and fair for all classes. Predictive model performance

can be enhanced by employing strategies like undersampling the majority class,

oversampling the minority class, or ensemble approaches created especially for un-

balanced datasets.

When there are more characteristics or variables in a dataset than there are sam-

ples, the dataset is said to be high dimensional. High dimensionality occurs in

the context of a microarray gene collection as a result of the enormous number of

genes being measured or profiled.

The simultaneous assessment of thousands of genes’ levels of gene expression is

made possible by microarray technology. Each gene represents a characteristic

or variable in the dataset, and each sample’s expression level corresponds to a

numerical value for that gene. As a result, microarray gene collections frequently

contain many genes and features—possibly up to tens of thousands.

Microarray gene datasets’ high dimensionality poses a number of problems and is-
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sues. First, because analytic methods must process and store a lot of data, working

with high-dimensional data can result in computational and memory limitations.

Second, it may raise the danger of overfitting, which is when a model does well on

training data but stops to generalize to fresh, untested samples.

High dimensionality can also result in the “curse of dimensionality,” a problem

where data sparsity rises as the number of characteristics does. Finding significant

patterns or relationships in the data may become challenging as a result, as the

number of samples becomes limited in the high-dimensional feature space.

Several methods of including feature selection and dimensionality reduction tech-

niques such as t-distributed Stochastic Neighbor Embedding (t-SNE) and Princi-

pal Component Analysis (PCA) are used to deal with high dimensionality. These

techniques try to either project the data into a lower-dimensional space that cap-

tures the main qualities or decrease the number of features while retaining the

most informative ones.

In order to analyze, interpret, and model gene expression patterns effectively and

to improve predictive performance in tasks like disease classification or outcome

prediction, it is essential to manage the high dimensionality of microarray gene

datasets.

6 Result and Discussion

6.1 Preprocessing

To maintain the quality and integrity of the dataset, managing missing values is

frequently a part of preprocessing tabular data. Removing rows or columns that

have null (missing) entries is one method for dealing with missing values. To ex-

clude null items from a tabular dataset, use the dropna() function from scikit-learn

(sklearn).
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Examining the dataset and locating the missing values is crucial before using any

preparation procedures. In tabular data, missing numbers are often shown as NaN

(Not a Number) or None.

It’s a good idea to make a copy of the dataset before making any alterations in

order to preserve the integrity of the original dataset. This enables you to work

with the updated version while maintaining the integrity of the original data.

To delete rows or columns with null entries from the tabular dataset, use the

dropna() function. Rows with any null values are automatically removed by de-

fault (axis=0), effectively removing those samples from the dataset.

You can effectively remove the incomplete data points from your dataset by using

dropna() to delete rows or columns with missing values. However, it’s crucial to

take into account the potential information loss and carefully assess how eliminat-

ing those entries would affect the effectiveness of your study or model. Alternative

approaches to handling missing values may be available depending on the circum-

stance, such as imputation techniques that estimate and fill in the missing values

based on the existing data.

6.2 Evaluation Metrics

FINAL TEST MAE: 1.4253394373676234

FINAL TEST MSE: 3.201251019353927

FINAL TEST MSLE: 0.4609574587660871

The MAE calculates the average absolute difference between the test dataset’s

true values and the anticipated values. The number of 1.4253394373676234 shows

that the absolute difference between the model’s predictions and the actual val-

ues is typically 1.43 units. Lower MAE values signify greater model performance

because they mean that the predictions are more accurate.

The average squared difference of the test dataset’s true values from the pro-

jected values is calculated by MSE. The average squared difference between the
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Figure 9: Confusion Matrix for the Logistic Regression

Figure 10: ROC for the Logistic Regression
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Figure 11: Model Accuracy for the Neural Network

Figure 12: Model Loss for the Neural Network

predicted values and the actual values is 3.201251019353927. Given that the dif-

ferences are squared, MSE is sensitive to greater errors. It consequently tends
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Figure 13: Confusion Matrix for the Neural Network

to penalize significant prediction errors more severely. Lower MSE values signify

higher model performance since, on average, they signal that predictions are more

accurate.

The average squared logarithmic difference between the test dataset’s true values

and the anticipated values is what MSLE calculates. The average squared loga-

rithmic difference of the forecasts from the actual values is 0.4609574587660871.

When the desired variable spans multiple orders of magnitude, MSLE is helpful.

Lower MSLE values signify better model performance since they mean that, on a

logarithmic scale, the predictions are more in line with the true values.

Accuracy: 0.2631578947368421
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Figure 14: Actual Class Distribution for the Neural Network

Figure 15: Train Value Accuracy for the TabNet

A frequently used indicator for classification tasks is accuracy, which quantifies

the percentage of properly predicted occurrences among all examples. According

to the value of 0.2631578947368421, the accuracy of this model on this dataset
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Figure 16: Train Loss Accuracy for the TabNet

Figure 17: Confusion Matrix for the TabNet

or test set it was evaluated on was roughly 26.32%. In other words, for around

26.32% of the dataset’s cases, the model’s predictions were accurate.
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7 Conclusion

In conclusion, the analysis of the Leukemia GSE 28497 gene microarray dataset

was the main focus of our study. We used null entry removal during the prepro-

cessing stage to assure the dataset’s integrity by removing any missing values. The

dataset was then trained using three distinct models: TabNet, single-layer neural

network, and logistic regression.

Our findings showed that all of the models performed well, though to different

degrees of accuracy. The highest accuracy, 87%, was shown using logistic regres-

sion, demonstrating its usefulness in categorizing leukemia subtypes based on gene

expression patterns. With a respectable accuracy of 72.2%, the single-layer neural

network exhibited its capacity to recognize intricate correlations in the data. How-

ever, TabNet only managed a 26% accuracy rate, indicating that it had trouble

identifying the dataset’s underlying patterns.

These results emphasize how crucial it is to choose the right models for classi-

fying leukemia subtypes. In our investigation, logistic regression proved to be the

most reliable method and offered insightful information about the gene expression

profiles linked to various leukemia kinds. The single-layer neural network also

performed well, although not better than logistic regression. However, TabNet’s

relatively poor accuracy suggests that the architecture for this particular dataset

needs more investigation or improvement.

8 Future Plans

There are a number of potential future directions to take into consideration for

further research and project improvement in light of the data and conclusions

from our thesis project. Here is a future plan that identifies possible topics to

concentrate on:
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1. Expansion of the dataset: Even if the Leukemia GSE28497 dataset of-

fered insightful information, it is worthwhile to investigate other freely accessible

gene expression datasets associated with leukemia. Multiple datasets can be used

to increase the generalizability of created models and provide a more thorough

understanding of leukemia subgroups.

2. Investigating feature selection and engineering methods particular to the

gene expression data is vital to improve the performance of the classification mod-

els. Finding the most informative of features for precise classification might be

aided by investigating techniques like differential gene expression analysis, dimen-

sionality reduction, or applying domain knowledge.

3. Model optimization: To further increase the precision of the classification

models, take into account investigating more complicated deep learning architec-

tures or advanced machine learning approaches. To take advantage of the intricate

relationships seen in the gene expression data, methods such as ensemble learning,

deep neural networks, or transfer learning can be researched.

4. Comparative Analysis: Extend the comparative analysis by using more

machine learning techniques which are frequently used in the work of cancer. To

determine the most efficient method for leukemia subtype classification, contrast

the performance of logistic regression, neural networks, and TabNet with alterna-

tive methods like random forests, support vector machines, or gradient boosting.
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