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Abstract

Detecting malware is crucial for safeguarding various devices, ranging from per-

sonal computers to large-scale systems,because computer systems continue to

face serious security concerns from an increasing number of malware occurrences.

Static analysis offers the ability to extract multiple file characteristics across var-

ious categories of information, eliminating the expenses and risks associated with

dynamic analysis. By leveraging PE header information in machine learning classi-

fiers, an efficient feature extraction method can be developed to minimize the time

required for feature extraction and therefore improve the analysis process. The

objective is to enhance extraction time while maintaining a reasonable balance

with other parameters, such as execution time, accuracy, and f measure.
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1 Introduction

This chapter covers the fundamentals of malware, its varieties, notable historical

attacks, and malware analysis classification.

1.1 Overview

Finding out a piece of malware’s functioning and purpose is done through malware

analysis.This procedure will show you what kind of malicious software has invaded

your network, the harm it may do, and—most importantly—how to get rid of it.

In this research we covered several malware analysis techniques, their approaches

as well as malware detection techniques, android malware etc.

The whole paper can be summarized to these following works proposed by us

• We provide a fresh and effective feature extraction technique which can

reduce the feature extraction time using PE header files in static malware

analysis.

• We create and publicize our own dataset using the malware executable files

from malware bazaar.abuse website.

• We implement it in such a way that it would not affect the existing param-

eters such as execution time etc.

1.2 Malware

The term ”malware,” which stands for ”malicious software,” is any software or

program created with the intention of damaging, exploiting, or being able to access

computer systems, networks, or user data without authorization. It is produced

with malice on the part of people or organizations referred to as ”cybercriminals.”

1.2.1 Types of Malware

Malware can use a variety of attack techniques and manifest in many ways, in-

cluding:

3



1. Virus: Viruses are self-replicating computer programs that affix to healthy

files and propagate throughout a computer system when the infected files

are run.

2. Worms: Worms are self-replicating programs, similar to viruses, but they

can propagate without a host file. Instead, they take advantage of holes in

computer networks and spread via network connections.

3. Trojans: Trojans are malicious programs that trick users into installing or

running them by imitating legal software. Once within a system, they have

the ability to build backdoors, steal confidential data, or grant unauthorised

access to outside adversaries.

4. Ransomware: The files of the victim are encrypted by ransomware, mak-

ing them unobtainable, and the victim is then asked to pay a ransom in

exchange for a key for decryption. Usually, infected websites or malicious

email attachments are how ransomware spreads.

5. Spyware: Without user knowledge or permission, spyware tracks and gath-

ers data about their activity. It has the ability to monitor keystrokes, seize

passwords, record surfing patterns, and send the stolen data to unauthorized

parties.

6. Adware: Adware is created to display a lot of unwelcome and excessive

advertising, frequently in the form of pop-up windows. Although not always

malevolent, adware can harm system efficiency and jeopardize user privacy.

7. Botnets: Botnets are hacked computer networks that are frequently man-

aged by a central Command-&-Control (C&C) server. This compromised

machines, referred to as ”bots” or ”zombies,” can be used to conduct coor-

dinated attacks, send unsolicited emails, or mine cryptocurrencies.

Data loss, financial losses, identity theft, system breakdowns, and unauthorized

access to private data are just a few of the negative repercussions that malware can

have. Up-to-date antivirus software, safe browsing practices, avoiding downloading
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files from dubious sources, and routine operating system and application updates

are all necessary for malware protection.

1.2.2 Example of significant Malware Attacks

Malware analysis focuses on gaining an understanding of the malware’s functional-

ity from the data that has been extracted, how the malware got onto the computer

& how to prevent future attacks that are similar to this one.Following are some

significant malware attacks-

1. Emotet: For many years, Emotet has been a sophisticated financial Trojan.

Virus-ridden documents and spam emails are the main methods of distribu-

tion. Emotet has the ability to download and install more malware onto

affected PCs as well as steal sensitive data, including banking credentials.

2. WannaCry: In 2017, the ransomware outbreak known as WannaCry was

widely publicized. It quickly moved across networks by taking advantage

of a Windows operating system flaw. After infecting a machine, WannaCry

encrypted the files on that system and demanded a Bitcoin payment to

decrypt them.

3. NotPetya: In 2017, businesses and organizations became the target of

another ransomware outbreak called NotPetya. It employed several methods

to spread among networks and was largely propagated by a corrupt software

update. Significant inconvenience and monetary damages were brought on

by NotPetya.

4. Mirai: The virus attack known as Mirai specifically targeted Internet of

Things (IoT) devices. By taking advantage of default or weak credentials,

it attacked susceptible devices like routers and webcams. Mirai developed

a botnet for the purpose of carrying out widespread distributed denial-of-

service (DDoS) attacks.

5. Stuxnet: In 2010, researchers found the highly advanced worm Stuxnet.

Systems utilized in nuclear reactors and other industrial control systems were
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specifically targeted. PLCs were exploited by Stuxnet in order to destroy

centrifuges used in uranium enrichment.

1.2.3 Types of Malware Analysis

Next three sections are the various types of malware analysis.Static analysis, dy-

namic analysis and lastly hybrid analysis. Each malware analysis method has

benefits and drawbacks.

1.2.4 Static Analysis

Figure 1: static analysis

Here ?? shows the steps in malware static analysis. In this figure, the suspicious

programs have to go through anti-forensic code analysis along with malicious code

behaviour analysis. For application analysis, it is necessary to look over all of

the manifest file’s information (which includes Meta data for things like the re-

quested permission, services, broadcast receivers, content provider, activity, and

SDK version), as well as to look at the byte code and extract all of the objects and

methods.There are certain anti-forensic methods that make it difficult for analysts

to locate questionable code. Defeating Anti-Forensic code is an intermediate step
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in static analysis process as shown in Figu re1. The method for anti-forensics are:

• Code Obfuscation

• String Encapsulation

• Environment verification

• Self-define communication protocol

• Sensitive data access

1.2.5 Dynamic Analysis

Typically, we use dynamic analysis to examine how an application behaves. Here,

we keep track of the file system and network activity as well as incoming SMS

calls, the loading of extra Dex or native code during execution, and file system

and network movement.

For analysing malware there are lots of framework are available now a days

such as :

Taintdroid : Taintdroids is an Android solution that employs various granularity

taint tracking.First, TaintDroid recognizes all data from sensitive sources as sensi-

tive data and automatically taints that data. Taint droid records the labels of the

data as it leaves the system or when it is transported via the network, identifying

who transmitted the data.

DroidScope : DroidScope exports three-tiered APIs that correspond to the hard-

ware, operating system, and Dalvik Virtual Machine layers of an Android device.

Profile Droid : There are four levels in the Profile Droid framework analysis por-

tion.User interaction, operating system, and network are static specifications.The

first and second parts of each of the four levels are monitoring and profiling.

1.2.6 Hybrid Analysis

Hybrid analysis refers to the fusion of static and dynamic analysis. Malware

identification is made easier with the use of hybrid analysis, and its accuracy also

rises.

7



Mobile Sandbox : Here, static analysis is performed on an APK file.Therefore,

it must first scan the manifest.xml for suspicious code and run anti-virus, user

permission, and manifest.xml scans. Additionally, an emulator is utilized to run

the code and see how it behaves during dynamic analysis.

Andrubis :

In this method first static analysis should be done and then that result is used

for dynamic analysis.In static analysis Andrubis is concentrated of android mani-

fest.xml and bytecode and in dynamic analysis Stimulation, taint tracing,method

tracing, system level analysis should be followed.

Figure 2: Andrubis

1.3 Portable Executable File

Portable Executable file headers are one of the key components in malware analy-

sis, particularly in static analysis. The reason PE header files were chosen is that

they are virtually universally present in Windows OS files and executables.
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1.3.1 Portable Executables (PE)

What is PE :

The executable file format for Windows is called Portable Executable, or PE. This

format is used by many binary files, including as core dumps, DLLs, and object

code. It is merely a data structure that houses details about the file. It is divided

into two sections: a pe header and a section.

Figure 3: Sections of PE Header

PE headers : This contains all the data that the operating system needs to

run the executable file. It includes details such as necessary libraries, an import

table, code, and metadata, among other things. All of these are broken down into

sections, some of which are listed below.

• Mz-dos: The supplied type is specified as being an executable file by

Mz Dos.The magic number value is range from 0x54AD in all MS-DOS-

acceptable exe files.

• Dos stub:Used to test compatibility, it does nothing more than report ”pro-

gram cannot run in dos.”

• PE file header: he PE file header, which includes the file’s md5 and sha256

signatures, machine information, the number of sections, and the size of the

optional header.

• Imageheader:Information about the exe file, including entry points and

components, is contained in this section.
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• Section Table: Provides details on the loading of executable files into

memory. Containers, virtual size sections, raw data size, a link to raw data,

and section attributes.

• data: This part contains the initialized data that will be used by the appli-

cation later on during execution, such as strings or constants.

• Rdata: Consists of a debug directory that houses several forms of file-related

debug information, including its size, type, and location.

• .idata: Components that will be imported from DLLs are contained in the

section idata that contains the import table.

• .edata: The information and functions that will be transferred to DLLS are

also included in the export table for sections.

• .rsrc: Resources, including photos and other assets, are kept in this area

(rsrc).

• .bss:The uninitialized data for the application is represented by this.
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2 Literature Review

In this section first we discussed about the explored area (such as : malware

detection, android malware, ML-DL based malware, dynamic and static analysis

etc) so far and then our related works which contains our main working direction

2.1 Explored Areas

The concept of cyber security[1] has come to attention after the massive growth

of data transfer online. The motive of Cyber security using ML/DL is not lightly

constrained to ensuring safeness of the data but also to maintaining the integrity

of the legislative society.

Over the years, numerous cyber crimes have been reported. Preventive measures

to these have not been derived drastically. This study, particularly, makes a re-

view on cyber crimes and their effects on the socio-economy structure. Moreover,

probable technological threats due to the incapabilities of the derived preventives

have been presented.A major portion of this literature concentrates on defining

cyber security and terrorism. The motivation behind cyber terrorism and the

trends of cyber security are marked particularly. Social media, a potential gate-

way to cyberbullying, has been reviewed. Several case studies, presented in this

paper, analyses the incident and the after-effects. Solutions to cybercrime have

been proposed based on the security flaws extracted from the case studies. How-

ever, the main motivation of this paper was to establish effective solutions.The

solutions would be–firewall, data authentication, malware, strong encryption al-

gorithms, deep learning-based algorithms to provide security etc.This paper opens

up the scope of exploration is cyber security fields, its components and prevention

of cyber terrorism to secure a much more protected cyberspace.But no analytical

formulation or intensive studies have been incorporated in this paper.

This document emphasizes banking malware[2] and the anti-analysis trends in
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detecting and classifying banking malwares. The frequency and complexity of

banking malware has increased since the emergence of the Zeus malware kit in

2007. This analysis is presented in the manuscript, which also looks at patterns

in the development of anti-analysis tools. It includes various malware families e.g.

Zeus V2, Citadel, Vawtrak, Dridex, Rovnix, Neverquest2.In this paper, first the

malware families , their behaviors are discussed. Then after analyzing these fami-

lies the challenges are included in the latter part of the paper.Most Zeus samples

exit by using the exitProcess API after failing the hardware locking check.To get

past this anti-analysis measure, a solution was created.A programmed debugger

was utilized to execute the malware.A breakpoint was established on the ExitPro-

cess API following the loading of the malware sample. Automatic analysis tools

are required in the Citadel for malware. Citadel does not establish a connection to

its C2 server when it determines that it is executing in a VM or a sandbox.Instead,

it tries to connect to a C2 name that was chosen at random.The analysis system

will receive a false negative when the connection to the random C2 name fails.A

malware analyst can conclude from this that the sample is no longer active and

that no more research is necessary.Similarly the vawtrak and dridex malware also

react differently to these analysis methods.But Dridex makes this kind of analysis

harder, by implementing its own GetProcAddress. Therefore, this paper depicts

the banking malware families and their analogy when applied analysis methods.

2.1.1 Mobile malware

The concept of selective adversarial learning[3] for mobile malware was proposed

as it has also been demonstrated that overtraining with samples might cause the

analysis to perform less well. That’s why selective adversarial retraining .Ad-

versarial samples are created by carefully introducing minor disruptions to valid

inputs in order to deceive the classifier.Existing research chooses the adversarial

sample in a randomized manner.In this document two approach are proposed-

• Depending on the malware’s cluster center’s proximity to the location.

• Using probability obtained by kernel-based earning (KBL), with a 6% in-
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crease in detection In this paper, selective sampling has proven to be quite

helpful in developing classifiers that can handle imbalance data.

In the malware detection field, it has yet to be used for adversarial retraining.

This study fills that need.Nevertheless, hostile samples put some machine learning

techniques, such as neural networks, at risk. Here the proposed methodologies are-

Androguard tool- for extracting static features

Monkey tool-for dynamic features

meu(x)=[meu0(x),meu1(x)] The first one is the probability of a sample benign, and

the second one is the probability of malware. This equation produces an output

that differs from the initial forecast and corresponds to the attacker’s objective if

the delta(x) perturbation is included.The main goal was to design the adversarial

sample in such a way that the model would recognize it as benign. Crafting has its

own set of limitations. They only permitted features to be added to feature vectors,

for example. It’s also possible to add features to the manifest.xml file without

changing the code. Finally, no changes to dynamic features are permitted.The

two approaches were then thoroughly discussed. Based on distance from cluster

center.

The distance in this case is calculated using the euclidean distance. Malware

samples are taken from the DREBIN collection. then use randomized and selec-

tive sampling to assess adversarial training. 98.3% accuracy was reached when a

DNN was utilized with pure data and 10 fold stratification cross validation. The

accuracy is highest when samples from 58 to 65 percent are used for retraining.

With 65% adversarial samples, the KBL approach increases accuracy by 6% in

comparison to random selection. This work measures and evaluates the impact

of this on the effectiveness of DL models for hostile retraining.The disadvantages

of this approach are Accuracy decreases when the data sample is greater than 65

percent, while accuracy is maximum between 58 and 65 percent.

The prime motive of [4],the goal of this study is to provide a real-time, useful

dataset for malware identification. The research-based datasets that are currently

available are ineffective because-
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• They lack diverse categorization of malware apps

• The datasets are mostly emulated and are assumed to be different than the

obtained datasets when malware is actually installed in the devices.

The authors have developed a new dataset namely CICAndMal2017 that compen-

sates for the above-mentioned shortcomings. The second motive of this paper is

to analyze and classify the benign and malware apps based on the network traf-

fic. Finally, the proposed work is capable of malware binary detection, malware

category classification, and malware family characterization with an 85% average

accuracy and a recall of 88% for three ML classifiers RF, KNN, and DT used

in this paper.Sample datasets for this research have been collected from different

open sources. To categorize the malware into different categories, the authors have

used different actions to trigger the malware. Thus the authors have extracted

specific feature sets for organized classification.In the end, the authors have con-

cluded that the network traffic feature is useful for detection but not good for

classification if solely used.

2.1.2 Deep learning Based Detection

The paper[5] proposed to use a deep learning model to develop a classifier based

on several characteristics of Android applications so that malicious Android apps

may be appropriately distinguished from good Android apps.Here, a deep learn-

ing method is used to meet the critical requirement for malware detection using

an Android malware characterisation and identification technique. There have

been recent research efforts on static analysis, dynamic analysis, and also machine

learning methods like SVM, which have been proven to be viable solutions in com-

parison to the default permission based approach, but DBN model can identify

malware in a more accurate manner when compared to the SVM-based solution.

Here, two types of features—API function calls and permissions—are employed

for the weighted deep learning technique to malware detection.The dataset uses

1400 safe applications that were downloaded from Google Play.To recognize risky

permission combinations in feature sets, nine grouping criteria are included.This
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method employs just 237 characteristics and yields accuracy of above 90%. As

a result, this strategy requires substantially less preprocessing time. Similar ap-

proaches can be observed in [6].

The paper[7] is suggested Maldozer is an autonomous malware detection tool that

uses deep learning to classify data in a particular order. [8].MalDozer has great

accuracy in identifying malware and correctly classifying it with its associated fam-

ilies on a given dataset. The F1-Score it receives, which ranges from 96% to 99%,

is amazing and demonstrates how well it can identify malware samples. MalDozer

also has a low false positive rate, which ranges from 0.06% to 2%, demonstrat-

ing its capacity to lessen the range of innocent applications that are mistakenly

classified as malicious softwares. It takes a raw sequence of API method calls as

input.MalDozer exhibits strong performance in both the tasks when applied to

the same datasets. During the detection task, it obtains an impressive F1-score

evaluation result ranging from 96% to 99%, indicating its high accuracy in iden-

tifying malware samples. Additionally, in the family attribution task, MalDozer

maintains its effectiveness by correctly attributing Android malware to their actual

families, achieving an F1-score between 96% and 98%. This showcases MalDozer’s

robust capabilities in both detecting malware and accurately classifying them into

their respective families. Here they propose an automatic feature extraction tech-

nique during the training using method embedding, where the input is the raw

sequence of API method calls, extracted from DEX assembly.The detection tech-

nique employed by the system is sample-based, which allows it to automatically

recognize patterns during the training phase of newly encountered malware. This

means that the system learns from a collection of malware samples and develops

the ability to identify similar patterns or characteristics in previously unseen mal-

ware instances. By analyzing these patterns, the system can effectively detect and

classify new malware samples without relying on predefined rules or signatures.

This app pushes toward portable detection solutions.

The paper[9] introduces a framework for malware detection that makes use of

permission and applies linear regression as a detection technique. For permission-
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based Android malware detection, two classifiers are introduced and assessed using

four different datasets. The importance of application permissions in strengthen-

ing Android security is emphasized by the study. To assess the rights asked by

applications and determine whether or not they are malware, machine learning

models are used. To achieve accurate findings, it is important to reduce the re-

gression model’s mean square error. The bagging method, which is frequently

employed in ensemble learning, is the basis for the classification models in this

study. The datasets used are those from AMD, M0Droid, Arslan’s, and Lopez,

and the results provided are the average of 10-fold cross-validation.The results

show that classifiers built on linear regression typically produce good results. Ad-

ditionally, data belonging to the same class in permission-based malware detec-

tion share a linear subspace and can be described by a linear equation. By giving

the regression coefficients random values, the study investigates several regression

models. Comparative analysis is done between the suggested rule-based classi-

fiers and well-known classification algorithms as KNN, NB, SVM, and DT. Both

strategies perform better than NB and KNN, with the key benefit being the ease

of use and simplicity of the classifiers based on multiple linear regression models.

The study also includes bagging techniques, although these do not produce fruit-

ful outcomes or create sophisticated search methodologies like hybrid or heuristic

techniques.

The Component Traversal approach, which they propose in this work[10], may au-

tomatically execute the code routines of each supplied Android application (app)

to the fullest extent possible. They create weighted directed graphs based on the

extracted Linux kernel system calls and then implement a deep learning frame-

work based on the graph based features for the detection of recently discovered

Android malware. To compare alternative malware detection strategies, a thor-

ough experimental investigation using an actual sample collection from the Co-

modo Cloud Security Center is conducted. Promising trial outcomes show that

their suggested approach outperforms current Android malware detection alterna-

tives. A commercial Android anti-malware program has also been integrated with

16



the technology, Deep4MalDroid.They build the weighted directed graphs based on

the extracted system calls and then employ a deep learning framework for the de-

tection of recently discovered Android malware.To compare alternative malware

detection strategies, a thorough experimental investigation using an actual [11]

sample collection from the Comodo Cloud Security Center is conducted. Promis-

ing trial outcomes show that the suggested approach outperforms current Android

malware detection alternatives. A commercial Android anti-malware program has

also adopted the created Deep4MalDroid technology.

2.1.3 Malware classification

Understanding the malware patterns and the families of malware can help in

detection. Due to this, Here [12] is the thorough assessment on the cutting-edge

methods for detecting, identifying, and classifying Android malware families. the

three components of the literature: the type of analysis, the features, and the

methodology and approaches. Researchers can concentrate more on dangerous

families by identifying malware families.Therefore, by recognizing the associated

family and capturing its impact on users, detecting the risky categories can aid

detection systems in discovering more malware.Describe a novel taxonomy that

groups every connected work in familial classification according to the types of

studies, features, and approaches that have been employed.

In analysis based malware, there are 3 types. static ,dynamic and hybrid and

all of them have both advantages and disadvantages. then in technique based

malware there are two types :model based and analysis based. both of them

have some other types too and many researchers work according to those types.

About feature there are two types static and dynamic which are feature based.

there is some limitations and challenges for identifying malware families and also

here discussed about the future direction according to Android malware familial

detection, classification, and categorization.
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2.1.4 Malware Visualization

This research[13] they highlight visualizing malware behavior and its potential

benefit for malware classification. This research shows that malware behavior

visualization can be used as a way to identify malware variants with high accu-

racy.The proposed techniques are-

Figure 4: Process in malware behaviour visualization

To capture malware behavior first obtain the behavior data, then run API call

monitoring through VM for all malware samples , then user mode API [13] reflects

the exact nature of a particular malware. Then the color mapping from behavior is

performed. 9 shows the process of malware behaviour visualization and its steps.

Figure 5: API to color mapping
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Utilizing the RGB color model, the experiment’s colors are depicted. Red (1,0,0),

yellow (1,1,0), green (0,1,0), cyan (0,1,1), and blue (0,0,1) are the first four colors

in the model. [13].Then the image is generated.After API color mapping,64 x

4 pixel image will be painted to the behavior image. The malware images are

painted top-to-bottom. The observation of the experiment is-they notice that

malware from the same family tends to have a recognizable pattern in them.There

are also family with minor as well as major changes between behavior image of its

samples.

Figure 6: number of malware groups identified in similar groups

In the experiment the classify malware sample with behavior image.1,101 distinct

samples from 12 distinct malware families were used. Images depicting how mal-

ware behaves will be compared to one another, and those with a high degree of

resemblance are going to be placed together.

The accuracy of malware classification using malware behavior is 99.33%. That’s

why we use behavior images for identifying malware variants. But using behavior

images we can not detect any malware.Besides, major and minor changes did not

seem to hide the overall pattern and the similarity between variants of the family.

In order to classify images of 25 prominent malware categories regardless of class

balance, this paper’s citation of awan2021image advocated spatially attention and

CNN using deep learning. Performance was assessed using the following met-

rics: recall, specificity, then precision, and F1 score on the Malimg benchmarking
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dataset, where our suggested model with class balance achieved 97.42%, 97.95%,

97.33%, 97.11%, and 97.32%. They offered a straightforward answer. Offer a

state-of-the-art solution with cutting-edge methodology for image-based malware

detection. They suggested a transfer learning-based architecture that would clas-

sify malware from various families using class weighting rather than class balancing

methods.They produced malware binaries as images. The binaries were changed

to 8 bit vectors for this.When converting vectors to grey scale, each pixel of the

resulting image stands for an intensity.In the proposed architecture they have 3

parts: a) Transferred learning model based on Image Net (VGG 19). It performs

better on malware dataset. b) CNN model enhanced by attention. Generated

attention used dynamic spatial convolution. It is better for image processing and

vision taste. c) Spatial attention generated by normalized vector and 2D convo-

lution layers.

The paper[14] introduces MDMC, a deep learning-based markov image technique

for byte-level malware classification. They took three actions. malware binaries

were transformed into Markov images based on a byte transfer likelihood matrix.

For Markov image classification, deep CNN is utilized. Two datasets, Drebin

(97.364%) and Microsoft (average accuracy: 99.264%), are used in the exper-

iments.For Markov image generation, They considered malware binary as byte

stream which was represented by stochastic process.The transfer probabilities of

each state were used to create a Markov transfer probability matrix. Using some

formulas, probability is estimated using some frequency. Probability matrix is

generated by some formulas and Markov image was generated using this matrix.

In micro dataset, for clear display, they used experimental data for the first 60

epoch. In MDMC training accuracy converged faster. Testing accuracy is almost

98 to 100%. In Drebin dataset, testing accuracy is 94 to 98% for MDMC.

In this research[15] The authors of this study concentrated on malware analy-

sis utilizing the static and 18 dynamic methods, which will enable us to assess

damage, identify signs of infiltration, and estimate the level of sophistication of

a malware intrusion. Analysis can be divided into two categories: basic and
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advanced.Additional analyses, including the fundamental static analysis, are per-

formed in advance static analysis. Additionally, advanced dynamic analysis per-

forms the same functions as static analysis. After that, we learn about many tools

for both fundamental and advanced static and dynamic analysis. Several computer

applications were utilized for research purposes in this article to analyze malware

and learn more about it. The malware QQQ.exe is the subject of tests employ-

ing both static analysis and advanced dynamic analysis techniques.We started by

establishing whether the software was malware or not while evaluating the mal-

ware implementing a sophisticated static analysis approach, which includes basic

static analysis alongside a few additional improvements. This method allowed us

to identify the malware’s generation date and time as well as the portable ex-

ecutable’s headers. Based on these findings, combining advance static malware

detection and extensive dynamic malware analysis may give a more fascinating

and vivid picture of the characteristics of the malware QQQ.exe.[15]

2.1.5 Dynamic Analysis

The author of [16] includes different malware identification methods using dynamic

analysis and pattern matching techniques for identification of malware samples.In

order to discover malware variants and new types of malware families, this study

proposes clustering of unknown malware samples using a two-layered Malware

Variant Identification via Incremental Clustering (MVIIC) technique. Finally,

this study presents a hybrid strategy, in which Yara scanning is used to elimi-

nate existing malware, followed by clustering, which works in tandem to identify

new malware variants. Malware identification is carried out at two stages in this

study. The first layer rejects samples of well-known malware families using the

previously created Yara rules. In the second layer, a brand-new incremental clus-

tering approach is used. The optimal cluster distribution may be determined or

approximated using incremental clustering, which can also identify tiny size clus-

ters. When new data (unidentified malware samples) become available, this is cru-

cial for malware clustering since such data provide distinct and tiny clusters.New
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malware families and variations can then be found by randomly selecting samples

from the clusters.

Figure 7: MVIIC algorithm

According to this study, clustering can offer a higher level of efficiency than Yara

rules and is resilient to subtle alterations brought about by malware strains.This

study suggests a hybrid strategy that first uses Yara scanning to get rid of existing

malware, then clusters working together to identify new malware variants. The

outcomes are assessed using the F1 score and V-Measure clustering metrics.

The paper proposes[17] Dl-droid to detect malicious android applications by dy-

namic analysis which is performed on real devices. For dynamic feature it can

achieve 97.8% detection rate and for both static and dynamic feature it can achieve

upto 99.6% detection rate. It employs a state-based method to input creation. The

authors used DL-Droid to examine the effectiveness of the stateful input genera-

tion technique using the state-of-the-art stateless (random-based) input generation

as a baseline for comparison.

The paper proposes[18] an effective dynamic framework named EnDroid [?]is a

powerful dynamic framework that enables extremely accurate detection of mal-

ware based on several kinds of dynamic behavior data.EnDroid employs a feature

selection method to extract important behavior features while discarding unimpor-

tant features. When paired with program analysis approaches, ML methods can
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instinctively infer behavior characteristics of applications. Malicious programs use

a number of deformation technologies to circumvent static analysis, which puts

those techniques to the test. In this work, the authors concentrate on runtime

application monitoring and profiling for a variety of behavioral aspects, as well as

the implementation of very efficient malware detection. The lowest level behav-

iors of the component are described via system calls. To extract crucial behavioral

features from noisy, pointless, and redundant features, the chi-square feature se-

lection technique is used.EnDroid has the ability to distinguish between harmful

and useful applications.To test the efficacy of EnDroid, they use a variety of ma-

chine learning algorithms, and they discover that stacking based on already-used

ensemble approaches yields the highest performance. In this study, they demon-

strate the efficiency of EnDroid for identifying and categorizing Android malware

families. They also contrast the effectiveness of EnDroid’s detection with that of

the cutting-edge dynamic analytic tool, Maline.[19]

DroidDeepCNN- employing a deep CNN to achieve malware classification from

the raw opcode sequence of disassembled programs.[19]

Adagio- outlines a detection approach built on function call graphs, correlates

these graphs with vector space, and employs graph kernels to capture structural

relationships.

Revealdroid- lightweight analysis that can extract API-based features, such as

the resolution of reflections calls and function calls generated by native binaries,

is presented.

MKLDroid- use a graph kernel to extract structural and contextual data from

application PRGs, and gives a malicious code address for interpreting malicious

behavior.

These techniques use analysis of static code to derive features for malware detec-

tion based on machine learning. Yet, dynamic code loading needs runtime data,

which is difficult to gather by purely static analysis.

It detects 96.56 percent of malware using stacking on the M1 dataset and gener-

23



ates 1.85 percent false positives. As some malicious actions cannot be generated

in dynamic analysis environment, they discover that the majority of erroneous

negatives are brought on by a lack of dynamic behavior features retrieved.Due to

issues with missing essential resources, UI activities, or libraries, the dynamical

detection platform MonkeyRunner + DroidBox may occasionally be unable to ac-

tivate dangerous behaviors of malware.

According to the experimental findings, stacking produces the best categorization

performance. EnDroid does not support network-based malware because it only

accepts ip and port as network operating features. They are unable to put a stop

to this.

Traditional malware detection techniques are no longer effective since modern

malware hides from scanning engines by using obfuscation techniques (encryption,

tokenization, data masking, etc.).De-Lady[20] is a malware detection framework

for Android that is based on deep learning and dynamic analysis. It employs a

durable obfuscation strategy.It makes advantage of the behavioral traits from a

dynamic examination of a program running in an emulated setting. The deep

learning model is trained using the logs that record an app’s behavioral traits,

and it is then evaluated.

Figure 8: Architecture of the proposed approach

They first run the Android program Package (APK) file for the aforementioned

program in an emulated environment before classifying it as malicious or benign.

A feature vector representation of the program is produced from the parsed and
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preprocessed logs produced by the emulator. The deep learning model is trained

using this feature vector. The testing dataset is used to compare the trained model

to for malware detection. Reconstructing RPC & IPC interactions and android-

specific objects is done using the CopperDroid emulator.For creating user interac-

tion to operate the emulator, monkey tools are employed. System call monitoring,

binder analysis, network traffic capture, and composite behavior interaction were

all clearly mentioned in the logs that were collected. Dynamic analysis logs are ex-

tracted in JSON format. The DNN is then fed standardized feature vectors.For all

of the hidden layers, they utilized the Leaky ReLU activation mechanism. Leaky

ReLU activation functions allow for a little positive slope on a negative argu-

ment while forwarding the positive portion of the argument.De-Lady is compared

against 13,533 applications in the banking, gaming, media player, utilities, etc.

categories.The rate of detection is 98.08%.

Figure 9: Comparison of De-lady with popular machine lerning classifier

2.1.6 Static analysis

This document[21] emphasizes FamDroid.Using static analysis techniques, Fam-

Droid is a learning-based categorization approach for Android malware. It can

get a 99.12% F1-Score and properly categorize 98.92 % of malware samples into

respective families.They experimented with the 5560 malicious Android applica-

tions in the Drebin Dataset.The writers are from Beijing University of Posts and
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Telecommunications’ School of Electronic Engineering and Beijing KeyLabora-

tory of Work Safety Intelligent Monitoring. According to McAfee’s mobile threat

report, there were 30 million mobile malware infections in the first quarter of

2019. The effect of malware detection can be improved by classifying Android

malware into multiple known families. It can extract regular characteristics from

malware actions that can be used to investigate unknown infections.They present

FamDroid, an analysis-based learning-based Android malware family classification

scheme.

This paper[22] explores the examination of PE programs using PEfile, a Python-

based toolset. A flexible program called PEfile examines malware files in a simu-

lated setting. Using PEfile, four separate datasets of malware packages are exam-

ined. The final product is produced using three separate algorithms, including:

1)Extraction algorithm (Feature Extraction),

2) Selection algorithm (Feature Selection)

3) Dataset Algorithm (Dataset Creation).

The selected features from each malware package are then compared and ana-

lyzed.In order to enhance the automatic identification and analysis of PE malware

programs in malware samples, this article introduces the methodology and the PE-

FILE reader module. The Extraction Algorithm was created to extract the feature

set of PE malware and provide semantic signatures.The Selection Algorithm is a

wrapper designed to remove features with uncertain performance effects and min-

imize feature dimension.The Dataset Algorithm was developed to store each PE

sample’s experimental information into a CSV file. After processing the feature

extraction and feature selection tests, the researchers were able to develop a dic-

tionary, apply it to various malware packages of directory samples, and generate

datasets in CSV format.The researchers were able to evaluate and analyze several

static properties from four separate malware packages in a virtual computer by

using Portable Executable Reader Module (PEFile).

In this study[23],The study conducts tests using widely used datasets from prior

work and examines the possibility of static analysis in detecting malware inside
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the Android ecosystem. It presents an innovative static analysis-based approach

to detecting Android malware. Static analysis is looking at the structure and

code of Android applications without actually running them. Static analysis can

offer helpful insights for spotting potential malware by examining several aspects

including permissions, API calls, and code patterns.

The method for Android malware detection that is proposed in the research

makes use of these static analysis approaches. It looks at the information that may

be gleaned from static analysis and how these data can be used to train machine

learning models or use rule-based methods to categorize programs as dangerous

or benign. Each attribute utilized in the proposed strategy is assessed using vari-

ous machine learning techniques to show how effective it is at identifying malware

and to provide information to the digital investigators.Applications from the Play

Store were fetched for the study in this article, which created the benign applica-

tion dataset of the suggested technique.The suggested static analysis approach’s

characteristics are derived from both

(1)AndroidManifest.xml and

(2) the application source code files (Java files).

Then features are extracted from the apk file with apk tools. In order to deter-

mine which machine learning algorithm performs the best in terms of accuracy,

the suggested static analysis technique was used with a variety of algorithms. .

the performance can be evaluated by using the confusion matrix as this is a clas-

sification problem. Information gain of each feature is experimented for feature

selection.According to the experimental result, the proposed approach’s accuracy

is calculated as high as 0.987. To comprehend the true objectives of API requests,

source code analysis may be added to the suggested technique as future work.

The increasing frequency of cyberattacks has led to a growing demand for more ef-

ficient techniques in malware analysis and detection. To address this, researchers

have explored the automation of these tasks using machine learning-based ap-

proaches, aiming to counter the escalating threat posed by sophisticated mal-
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ware.In this particular study [24], two categories of malware detectors were im-

plemented based on strings and specific PE header features. For each category,

six different machine learning classifiers were employed. The experiment utilized

a dataset consisting of 427 malicious PE files from the APT1 dataset and 989

benign PE files. The performance of these detectors was assessed by evaluating

their detection precision and required execution time.The results revealed that the

string feature set achieved a high level of accuracy in detecting malware within

this dataset. Furthermore, the execution times of the detectors were found to

be manageable, which is crucial for their application in sophisticated malware

analysis scenarios. It is worth noting that the study focused on static analysis

techniques and their effectiveness in detecting malware based on specific features.

This research contributes to the ongoing efforts in developing efficient and accurate

machine learning-based approaches for malware analysis and detection.

In this paper, a data mining-based approach[25] is suggested, wherein to increase

malware detection accuracy and lower detection error rates, the PE file compo-

nents table and its properties are used. It is quite challenging to find packed

malware using its signature. The PEiD tool is employed in this article to ascer-

tain whether the virus is packed. The malware will initially be unpacked if it has

been packaged. All malicious and clean files have their PE header and section

tables information extracted from them and put in the features database. Eight

features are chosen from the PE header and section tables using the forward fea-

ture selection approach, which is how the performance of the classifier is assessed.

The test files are evaluated using the classifiers DT, NN, ID3, NB, and SVM.The

tests performed on 971 executable files showed that the DT classifier is 98.26%

accurate. Anti-virus systems can use the classification results to increase their

rate of malware detection.

The process of finding malware hidden inside PE files can be greatly aided by

artificial intelligence (AI). This paper[26] uses artificial intelligence to investigate

the characteristics of PE file headers as a means of identifying malware and eval-

uate the impact of these characteristics on the level of accuracy. Numerous PE
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characteristics are used in the study. In order to determine the relative efficacy

of two distinct algorithms, each has two possibilities. Testing is done with a pre-

determined control data set to determine relative performance. The degree of

accuracy discovered after conducting numerous different groups of experiments is

the criterion applied.Each study begins with a set of attributes, and then addi-

tional features are gradually introduced to investigate how these features affect

accuracy. This was critical in demonstrating that not all characteristics increase

accuracy. A large number of characteristics may not always increase accuracy, as

some evidence suggested. It was demonstrated using graphs that accuracy will im-

prove after the addition of a specific amount of features. Graphs also demonstrate

that accuracy fluctuates as characteristics are added, improving occasionally while

degrading at other times, indicating that not all features are helpful. Using a total

of 29 features, more than 100 runs were completed. Decision Tree has the high-

est accuracy of 0.987 and 0.979.In Neural Networks-Multi-layer Perceptron (NN

MLPC) and Decision Tree, respectively, the maximum accuracy was 0.987 and

0.979.They discovered that, generally speaking, more attributes linked to greater

accuracy. There are indications, nevertheless, that increasing the number of char-

acteristics may not always improve accuracy.

This research[27] suggests a malware detection technique that employs stacking

and static file analysis to quickly and precisely identify new infections. Further-

more, malware can be discovered without actually running any malware by exploit-

ing data from PE headers collected through static analysis. Because the extracted

data were processed in different ways and used in machine learning models, the

features of the pe packer utilized in the suggested study technique were most ef-

fective in experiments. Therefore, we decided to use pe packer data as the shape

data for the stacking model. To identify with high accuracy, detection models

are created based on additive techniques rather than single models. Findings:

The suggested detection system can classify malicious or common files with speed

and accuracy.Furthermore, tests revealed that the suggested approach surpasses

currently used single model-based detection systems and has a 95.2% malware de-
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tection rate. Therefore,this paper suggests a technique for learning, analyzing, and

detecting malware files by using portable executable (PE) header feature values

to the stacking approach after data pre-processing with the static analysis tech-

nique directed at malicious and benign files. 470 malicious files and 466 benign

files were utilized to extract pe packer features for the input dataset. Extra Tree,

Random Forest, Light XGBoost, and XGBoost were used in the stacking model’s

sub-model, and XGBoost was utilized in the meta learner. The Ubuntu 18.04 (64-

bit) operating system was utilized for all trials, together with Anaconda3 (64-bit)

and Python 3.6. A model to implement a highly accurate model was developed

using the stacking method, which produced the final prediction value utilizing

the prediction results of the single models. The study’s findings revealed that

the stacking model had a model accuracy of 96.71%, a classification accuracy of

94.6%, a detection rate of 95.2%, and a false-positive rate of 5.3%. The pace of

the stacking model, one of the machine learning ensemble approaches, was consid-

erably slower than that of the single models, even though it was confirmed to have

a superior performance of malware detection than using simply the single model.

In this research, a method for detecting malware using machine learning tech-

niques is presented. In order to make malware detection more reliable, this study

examines several malware detection techniques and how ML might be included.

Malicious and good executable PE characteristics are used to train machine learn-

ing models. It has been shown that the model has a 99.4% prediction accuracy

rate. This strategy would aid researchers in better comprehending and creating

antivirus software that can detect even complicated infections.This study presents

a real-time malware classification method utilizing PE files. We extracted various

features from the dataset of 56 features using an extra-tree-classifier, and the top

13 features were then trained using six different machine learning methods, yield-

ing a 99.4% accuracy rate. In the future, additional static and dynamic features

may be combined to improve the model.
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2.2 Related Works

2.2.1 MCFT-CNN

This paper[28] A new ResNet50 model called MCFT-CNN was introduced in the

study, along with a traditional ResNet50 model, for both deep transfer learning

and traditional learning approaches. The MalImg and Microsoft malicious soft-

ware challenge datasets were used to train the models. The MCFT-CNN model

is capable of identifying unknown malware samples without the need for feature

engineering, which typically incurs additional computational burden on the clas-

sification or detection system, even when evading techniques are employed during

malware development.

The primary contribution of this research in the field of malware classification can

be summarized as follows:

• The study explores both traditional method of learning and also transfer

learning approaches for training the models. The traditional learning ap-

proach involves training the ResNet50 model from scratch, while the trans-

fer learning approach introduces a novel MCFT-CNN model that leverages

knowledge from the dataset named ImageNet which is a pretrained dataset.

• The MCFT-CNN model demonstrates exceptional performance in accurately

classifying malware into their respective families and efficiently identifying

unknown malware samples. It outperforms other state-of-the-art deep learn-

ing algorithms, particularly when applied to larger volumes of malware image

datasets.

• The paper comprehensively covers various aspects of malware classification

and detection techniques using deep learning and image processing on mal-

ware image datasets. The malware binaries undergo preprocessing to convert

them into grayscale images, and it is observed that images from the same

malware family variants exhibit structural similarity.
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• In the experimental setup, 75% of the dataset is utilized for training pur-

poses, while the remaining 25% is used for testing the models’ performance.

• The authors propose the MCFT-CNN model as a novel approach for classify-

ing malware images into their respective families, employing transfer learning

techniques.

Figure 10: The conventional and transfer learning model architecture

The final layer of the ResNet50 architecture has been altered in this model by

being swapped out for a completely connected dense layer. For categorization

purposes, the output of this layer is subsequently routed via a SoftMax layer. The

pre-trained weights of the ImageNet model, which have knowledge of low-level

picture attributes, also contribute to the model’s knowledge base.

The model obtains a precision of 99.05% with the Adam optimizer and 99.22%

with the NAdam optimizer when trained using the conventional learning method.

Notably, the model achieves a prediction time of 5.14 milliseconds for unknown

malware samples, displaying outstanding performance.

Additionally, the model reaches accuracy of 99.18% using the Adam optimiza-

tion approach and 99.10% using the NAdam optimizer when using the transfer

learning strategy. The suggested approach classifies fresh malware samples in

5.14 milliseconds, which is comparable to the prediction times of the conventional

learning model.

The shortcoming of the suggested model’s CNN-based deep-learning approach is

that uniform image size is used as the model’s input. Future work should make use

of the spatial pyramid pooling layer, that can accept images of any size as input.
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The model’s performance would undoubtedly increase if it took into account the

full-size virus image.

2.2.2 Using PE Header Criteria to Detect Malware

About the work : This paper[29] is about Several ML classifiers that are rec-

ognize malware programs are built based on their header information and PE file

structure.

Motive of the work :To develop a method that can be employed in real-time

malware detection techniques that has high accuracy while only extracting a small

amount of characteristics and quick model training.[30]

• Why used ML algorithm :

– When using machine learning techniques,the training data can be ex-

amined for patterns, lessons can be drawn from them as well, and then

data that resembles the training data can be found.

– To create new versions, malware authors would typically merely alter

a small portion of the code. Therefore, technologies based on machine

learning have the capacity of identifying this infection.

• Why used static features :

– Despite the possibility that dynamic features are more useful than static

features, extracting them requires more effort and computer resources.

– An instantaneous, quick malware analysis method currently a crucial

and difficult work due to the growth in malware development.

– Static feature extraction is more quicker and less expensive. Conse-

quently, static features are utilized in this work.

• Why used PE : The PE file format, which contains structural data and

enables the separation of harmful and benign programs, is the one that mal-

ware uses the most frequently. Although other file formats may occasionally
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emerge, executable code-containing files are nearly exclusively in the PE file

format.

Dataset : Here, a dataset of 2460 PE files was employed, including 1230 samples

of malware and 1230 samples of benign code.1230 malware samples are randomly

chosen from this collection. Additionally, benign samples are gathered from a

typical Windows XP computer’s ”Program Files” and ”System32” folders. ESET

NODE32 antivirus was used to check all of the benign samples to make sure there

were no dangerous files present.

Methodology:

• First, using a Microsoft document, the header section of PE files and its

component along with structures are inspected.

• A particular set of features (nine features total) is extracted from each file

in accordance with the PE header and its structure.

• Several ML models are trained using features that were extracted( Random

Forest, SVM and KNN) to identify malware.

• K-fold Cross Validation is employed to assess the proposed approach.The

following step is to utilize one part as test data and the remaining k-1 parts

as training data. The end result is achieved by averaging the data from K

rounds after repeating this operation for k times.

Result Analysis: Malware can be accurately detected by all three models. In

all scenarios, random forest outperformed the other two distinct approaches, with

an accuracy of 95.5%.

Limitations and Future work: Nine features is too much high amount for this

accuracy.So if the accuracy would be high or feature number is less than 9 then

this method would be more effective.So this can be the future work.

2.2.3 APT1 Dataset with String and PE Header Features

Cybersecurity experts may find it helpful to automate the malware detection tasks

and work with Malware evaluation and identification methods based on machine
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Figure 11: Performance analysis using 9 PE header features

learning are needed to battle the continually growing and more complex malware

files. Using strings and specific PE header features, respectively, they implemented

two categories of malware detectors in this paper. For each category, they utilized

a different set of six machine learning-derived classifiers. Each detector was tested

using the same dataset, which contained 989 benign PE files and 427 benign and

malicious PE files taken from the APT1 dataset. The effectiveness of several

detectors was demonstrated, contrasted, and evaluated on the basis of detection

precision and required execution time. The results of our experiment showed

that the string-based feature set might provide extremely precise outcomes for

this specific dataset. They also mentioned that these detectors’ execution times

appeared acceptable, which should be taken into account in sophisticated malware

analysis software.

About the work : In this paper[24], The authors propose and implement six dif-

ferent machine learning classifiers, together with statically derived characteristics

from two separate types of executables: string information & Portable Executable

header data.The scikit-learn machine learning toolkit was utilized to develop these

feature extraction techniques in Python.The productivity of twelve malware de-

tection tools is then evaluated and compared in terms of detection precision and

processing speed. The test results showed that the string feature analyzers out-

performed the PE header-based detectors in terms of correctness.

Reason behind using Static analysis:Dynamic analysis has the noteworthy

disadvantage of leaving some implementation routes undetected during the eval-

uation procedure, for example, if the malware is intended to run on specific occa-

sions or when it senses a change in its operational environment. Dynamic malware
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analysis is useless because of the cunning and cunning behaviors of malware. The

use of dynamic analysis is subject to some limitations due to regulated network

behavior and restricted network access. Additionally, Static analysis is signifi-

cantly safer and less prone to host device risks since it can tell if an executable is

malicious or not without actually running it.

Dataset :In this research they used the APT1 dataset. Thirteen X.509 encryp-

tion certificates and more than 40 malware types can be found in this dataset.The

malware in this collection is considered to be exceptionally intelligent and danger-

ous, and it is characterized as an advanced persistent threat (APT).The authors

used all 427 PE files which are malicious and 989 PE files which are benign from

the APT dataset to carry out their research.

Working Principle :The working approach involved randomly dividing the dataset

comprising APT1 malware and benign files into five groups, which were then cross-

validated a total of five times. The string and PE header feature engineering are

described below:

String features: Static analyses of malware can extract a variety of information

from the APT1 dataset’s files because they are not encrypted [14]. Finding the

pertinent data in the binary, putting it in a Python lexicon, and using Sklearn’s

adaption of the hashing method to combine the retrieved strings into the feature

vector were the steps required to extract these string features.A required minimum

string size of 5 characters was used to extract strings into a Python format, after

which they were hashed.

hasher = FeatureHasher (2000)

hashedfeatures = hasher.transform([stringfeatures])

PE header features: The PE file structure, which is a Windows operating system

standard, contains all the data required for an OS to load a file.They developed

an extraction method using Python’s pefile module by dividing the retrieved fea-

tures into two main categories—Dense (50 features) and Sparse (17 features)—PE
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header characteristics are converted into two arrays.

Dense Features: It refers to the primary features that are present in every

executable file pe header.It demonstrates a high degree of complexity or contains

a substantial amount of information. Certain dense features include header files

such as-

• File

• Optional

• Section

Sparse Features: Sparse features of a PE header file refer to attributes or char-

acteristics that are sparsely populated or have a low occurrence in the file.These

features might not be present in every PE file and may vary depending on the

specific file and its purpose.The examples are-

• Section names

• Imported symbols

• Warning strings

PE header features are extracted and then added to a pandas dataframe containing

labels.Then they are ready to be fed into 6 hybrid detectors.

Experiment results : Setup: Six virtual processors, 100GB of RAM, and the

64-bit Ubuntu Linux guest OS were installed in a VirtualBox-based VM. The Dell

Precision Tower 7910 machines used to host the VM were each outfitted with a

single Intel Xeon E5-2620 v3 CPU (clocked at 2.40GHz, with six cores and twelve

threads) and 128GB of RAM. Comparison of results between String features &

PEheader features:

• Average feature extraction time of 6 detectors using -

String: 66.20 seconds

PE header: 1157.81 seconds 19 minutes
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Figure 12: Results for SVM classifier using string features

• Support Vector Machine -

String : Performance evaluation of the string feature SVM classifier-

PE header : With a level of precision of 0.54, recall of 0.73, and a f1-score

of 0.62, it obtained an accuracy score of 0.731. However, compared to the

Logistic Regression, its model execution was longer.[24]

After evaluating and contrasting each detector utilizing both strings and PE

header attributes on the identical APT1 malicious and benign dataset, the ac-

curacy scores and total the time of execution of detectors constructed for using

the string attributes and PE header features independently are presented in the

following table:

Figure 13: performance assessment between string & PE Header features

Result Analysis :The APT1 dataset revealed that much more widely used terms

by Windows-based OSes, such as names of parts of the hardware, were present

in significantly more of the strings from the benign cases which appear to be

windows OS executables[24]. This is why string features performed exception-

ally well.Therefore, It was their hypothesis that, for this specific dataset at least,

When the same sorts of classifiers were used, the string features produced greater

accuracy ratings than the PE header features because they provided an increased
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degree of difference among malicious and benign samples.
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3 Proposed Method

3.1 Introduction

Our target is to build an efficient feature extraction method which will decrease

the feature extraction time for PE header files. As mentioned in the previous pa-

per,In comparison to those applying the chosen PE header features, the detectors

by using the string features outperformed them in terms of evaluation param-

eters like accuracy, extraction time etc.This could occur because of this specific

APT1 dataset. That’s why we are aiming to develop this efficient feature extrac-

tion method using PE header files and we are going to test this method among

three significant malware datasets. EMBER dataset having a training sample of

900k & Testing sample 200k. Also we have already started processing malware

executable files from malware bazaar . abuse website. We create our own database

and publicize it. Therefore, we want to improve the extraction time without caus-

ing much imbalance to the other parameters e.g. execution time, accuracy, f values

etc.

3.2 Importance of decreasing Feature Extraction Time

We are emphasizing on decreasing the feature extraction time of malware static

analysis using PE header file features. Feature extraction time is a very crucial

part of malware analysis process. 1024 million malware detected in 2021. That

means 33 malware in a Second. The malware attack frequencies also increased

over the years. For example, in 2021 one ransomware attack occurred in every 11

second !

That’s why in order to improve the execution time and therefore the run time we

have to focus on improving the feature extraction time first.

40



Figure 14: Number of malware detected over the years 2010-2020

3.3 Overview of implementation

3.3.1 Dataset Preparation

1. Data Collection: For implementing this, first we had to collect malware

sample( executable files) from malware bazaar.

2. Data Processing: Then we kept those files into one file and upload that

file.For finding exe and non exe file we check the file extension and print

the file name along with it’s extension.We used PEFILE module in python.

Among the Dense Features optional header & file header features are

processed.

• File Header: The first part of a PE file is called the file header, and

it comes first in the file. It includes crucial details about the PE file’s

general structure and features. The file header contains information

such as the entry point, machine architecture, number of sections, and

signature.

• Optional Header: Within the Portable Executable file format, the

optional header comes right after the File header. It offers more thor-
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ough details on the PE file, as well as a number of optional features and

setup options. Magic Number, Image Base:, Section Alignment, Data

Directories, and other options are included in the optional header.

3. Feature Engineering: We then extracted optional header and file header

features. Created dataframe from the list of features. Then we transformed

the dataframe into CSV file.

4. Labeling & Splitting Dataset: We split the training and testing data

into 80: 20 ratio.

5. Data Analysis: We trained and tested the dataset for different machine

learning classifiers with and without Hyper-parameter tuning. The machine

learning classifers are-

• Random forest

• K-nearest

• Decision Tree

• Support Vector Machine

• Logistic Regression

• Gradient Boosting

3.4 Dataset Information

• Number of Malware Executables : 289

• Total Number of features Extracted: 33

• Total number of optional header feature : 7

• Total number of File header feature : 26

• Size of the dataset : 290 rows * 34 columns
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3.5 Prototyping

At first we have worked with 17 features selected from the feature list stated above.

Figure 15: Representation of dataset with 17 features
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After that we extracted more feature from malware executable files and worked

with 34 features.

Figure 16: Representation of dataset with 34 features
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3.6 Solution Approach

In order to improve the feature extraction time , we have to pay great attention

to feature selection process.

• First we checked whether the file executable or not.We excluded the .rar,.elt

files and took only .exe file into consideration.

• Only taking dense features- file header feature and optional header features

significantly improved the feature extraction time because these header fields

are present in almost every malware file and easily recognizable to extract.

• For the feature extraction time, timer function is set explicitly around the

extraction code to determine the accurate time. Then using more number

of features its again evaluated to check for any improvement.

• When including the section header features , the feature extraction time was

35.23 seconds.

• For less number of feature we calculate the feature extraction time 15.98

seconds.

• Then we trained the model as well as testing with different classifier such

as Random Forest, K Nearest Neighbor, Decision Tree, Support Vector Ma-

chine, Logistic Regression, Gradient Boosting Classifier etc.[31]

• We evaluated these classifier by their accuracy,F1 Score,Precision Score and

Recall Score[32] . After that we improve the testing for the individual clas-

sifier.

• To improve the values, we performed hyper-parameter tuning on these dataset.

It helped improve the accuracy and other evaluation parameters.

• Then in the same way we calculate the accuracy for more number of features.

And in this case run time 17.23 seconds. that is less then less number of

features. Again we run the model with training and testing. And later with

hyper-parameter tuning the results are improved.
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4 Result Analysis

Here are the numeric results of accuracy, f1 score, precision score & recall score

[32] of different Machine learning classifiers [31] using less number of feature(17

features). Here we deliberately excluded the classifiers’ result which produced am-

biguous and sparse values. Feature Extraction time required: 15.98 seconds.

Classifier name Accuracy F1 Score Precision Score Recall Score

Random Forest 0.9 0.47 0.5 0.45

K Nearest Neighbor 0.9 0.47 0.5 0.45

Decision Tree 0.8 0.45 0.5 0.45

Gradient Boosting 0.8 0.44445 0.5 0.4

Table 1: After training and testing of individual classifier for less number of fea-

tures

We can also visualize it in the graph given below -

Figure 17: Result analysis of different classifiers using less number of features.

Hyper-parameter tuning using GrideSearchCV :After improve testing , the

result we got is given below :
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Classifier name Accuracy F1 Score Precision Score Recall Score

Random Forest 0.9 0.947 1.0 0.9

K Nearest Neighbor 0.9 0.947 1.0 0.9

Decision Tree 0.8 0.889 1.0 0.800

Gradient Boosting 0.8 0.945 1.0 0.9

Table 2: After improvement of individual classifier for less number of features

We can also see it in the graph given below -

Figure 18: Visualization of improvement of Evaluation parameters for less num-

ber of features

Now for more number of features(approximately 34 features) the feature extraction

time is 17.23 seconds. The training and testing of individual classifier for more

number of feature is given below-
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Classifier name Accuracy F1 Score Precision Score Recall Score

Random Forest 0.7 0.208 0.194 0.21875

K Nearest Neighbor 0.6 0.1875 0.1875 0.1875

Decision Tree 0.7 0.175 0.175 0.175

Gradient Boosting 0.8 0.235 0.222 0.25

Table 3: After training and testing of individual classifier for more number of

features(33 features)

After hyper-parameter tuning using GridSearchCV we achieved improved

results.

Classifier name Accuracy F1 Score Precision Score Recall Score

Random Forest 0.7 0.658 0.622 0.7

K Nearest Neighbor 0.6 0.6 0.6 0.6

Decision Tree 0.7 0.7 0.7 0.7

Support Vector Machine 0.8 0.640 0.8 0.711

Logistic Regression 0.6 0.685 0.8 0.6

Gradient Boosting 0.8 0.711 0.8 0.753

Table 4: After improving of individual classifier for more number of features

The visualization of improvement after hyper-parameter tuning for more number

of feature(34 features) is given below-
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4.1 Performance Analysis

1. Our proposed methodology and dataset outperforms the APT1 dataset and

feature extraction method by all evaluation criteria. The accuracy, run time

is far better than that of APT1 dataset.

2. The main characteristics of the PE header are the file header and optional

header components. So considering and selecting these features improved

the performance.

3. The feature extraction time difference when using PE header features in

APT1 dataset vs using PE Header features in our dataset is huge .

In APT1 dataset: 1154.81 seconds or 19 minutes

In our dataset: 17.23 seconds
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5 Conclusion

To reduce feature extraction time, we created a dataset and extracted PE Header

features. The current work did not significantly reduce extraction time, but there

are several future directions to explore. The correlation between dense and sparse

features should be explored more. Paralleling feature extraction and optimizing

algorithms can boost efficiency. Future work can speed up feature extraction,

which is crucial for data analysis pipeline efficiency and timely decision-making.

5.1 Future work

1. Explore alternative feature extraction methods and algorithms to reduce

extraction time. This could involve researching and implementing cutting-

edge feature extraction methods or novel sparse data methods.

2. Use multi-core processors or distributed computing systems to parallelize

feature extraction. Processing multiple features simultaneously could speed

up feature extraction.

3. Analyze and optimize feature extraction algorithms. This could involve iden-

tifying algorithm bottlenecks or computational inefficiencies and devising

ways to overcome them, such as algorithmic modifications or algorithm-

specific optimizations.

4. Reduce feature dimensionality while maintaining discriminative capability

by using techniques such Principal Component Analysis, or PCA, or t-SNE

which stands for t-distributed Stochastic Neighbor Embedding . It takes less

time to extract features while using a lower-dimensional space for features.

5. Due to the core function and method of APT1 dataset not being publicly

available , we were unable to compare the feature extraction time using the

same methodology or same set of executables. So implementing and improv-

ing the pefile module from core will be a significant research contribution in

this field.
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6. Lastly, combining the dense and sparse features and efficient feature selection

will lead to efficient feature extraction and therefore improve the whole static

malware analysis process.
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