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Abstract

The domain of Visual Question Answering (VQA) is an important cornerstone for
the understanding of the combination of both visual and textual realms. Robustness
is the ability of a model to resist adversarial attacks and has been a research interest
in VQA. Although the linguistic robustness of VQA methods has been a common
field of interest, there has yet to be any significant work on visual robustness. We
present a framework that focuses on challenging the visual robustness of multiple VQA
models by applying realistic visual corruption effects to the VQA datasets. We also
introduce several metrics to quantify a model’s robustness along with an aggregated
metric — Visual Robustness Error (VRE) that provides a single value corresponding to
the model’s error in dealing with corrupted data. We observe that the high accuracy
achieved by current VQA models does not necessarily translate to a high robustness
score. We intend our method to be used for evaluating the robustness of various VQA
methods and evaluating the strength of various corruption effects.

Recent works regarding zero-shot VQA have been accelerated as large language
models (LLMs) have been improving in both quality and quantity. Existing methods
took advantage of these large language models and using network interpretation tech-
niques as an interface, made a modular framework for zero-shot VQA. We propose a
method to improve upon its predecessors by adding a caption ranking method to gen-
erate higher-quality captions. The standard approaches generate a certain number of
captions and subsequently pass them to the next module for predictions. The model’s
inference time depends on the number of captions used. By ranking the captions and
picking the top-ranked ones, we are able to reduce the number of captions required
from 100 to 5 and decrease the inference time by 22.25% sacrificing only 2.84% accu-

racy.

X111



Chapter 1

Introduction

In this chapter, We provide an inaugural outline of our work starting with an intro-
duction to the research area of Visual Question Answering (VQA) which deals with
answering a question based on an image. We explore the basic concepts behind visual
robustness and its applications in the domain of VQA. We further discuss the notion
of Zero-Shot setting in VQA and present a precise exploration of the existing research
conducted in the field of zero-shot VQA along with its utilization in real-life scenar-
i0s. We formulate our problem statement, mention the research challenges we faced
throughout the journey, and follow up with our research objectives and contributions.
Finally, we end the chapter with the organization of the rest of the thesis.

1.1 Overview

Visual Question Answering (VQA) [21] is a monumental task in the field of multi-
modal research for vision-language reasoning and comprehension. VQA requires do-
main expertise in both image processing and natural language processing. A VQA
system can be described as a deep learning system that takes an image-question pair
as the mput and generates an answer as the output that satisfies the question with the
image given as context [1, 15, 22]. In essence, VQA is an extension to contexual
question-answering [23] where a paragraph is passed as context to the question. With
the advent of advanced vision and language processing methods, various efforts have
been made to build the vision-language pre-trained models for capturing the alignment
between vision and language [4,24-26]. We use these methods for VQA as they grasp
the relationship between the image provided as context and the question.

VOQA methods are crucial in solving many real-life problems [27]. VQA systems
can also be integrated into assistive technologies such as screen readers, allowing visu-
ally impaired people to easily access and understand image and video content [28,29].

An emerging application of VQA is image-based chatbots to provide quick and accu-
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bananas

What is the mustache "
made of?

Figure 1.1: Abstraction of VQA [1]

rate responses Lo product or service-related questions by customers [30].

VQA as a research problem aims o appropriately answer any type of question
given any form of an image as context. and it should not be limited by certain image,
question, or answer constraints. Zero-shot VQA (ZS-VQA) is a sub-domain of VQA
that aims at VQA models predicting out-of-distribution data [31]. Defining out-of-
distribution data 1s subjective and hence, ZS-VQA alternatively works with models
that are not specifically trained in VQA. Zero-shot VQA primarily aims at the problem

of generalized VQA and utilization of data from an external knowledge source.

1.2  Visual Robustness

Robustness is the ability of a model to resist adversarial attacks and still provide ex-
pected results. As VQA is a multi-modal task. it is susceptible to adversarial distur-
bances of both modalities. These perturbations can be small changes in questions like
changing some words with their synonyms or antonyms or in images through visual
noise [7]. Although the linguistic robustness of VQA methods has been a common
field of interest [6, 8], there has vet to be any significant work on exploring visual ro-
bustness. A VQA method would be considered visually robust if it can provide correct
or expected answers even after the visual input (the image) has been degraded to a
certain degree with specific perturbations that challenge the model.

Adversarial attacks first encountered by Szegedy et al. [32] are considered to be a
shortcoming of modern deep learning methods. The weakness was initially uncovered
in the context of image classification [7] which led to the phenomena being observed in
various sub-tasks of both computer vision and natural language processing [6-8]. The
effects of adversarial perturbations were soon noticed in language processing tasks
[33]. Thus, it is no surprise that multi-modal tasks such as VQA are vulnerable to such
attacks. Hence, assessing the robustness of VQA methods to such adversarial attacks

is essential.

I-d
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1.3 Zero-shot VQA (ZS-VQA)

Zero-shot learning is a well-defined challenge in machine learning, where the task is to
classify samples into classes that were not encountered during training. In the context
of Visual Question Answering (VQA), the existing methods typically rely on datasets
consisting of question, image, and answer combinations, covering various question
types across different objects and scenarios [34]. However. it is impractical to have a
finite set of examples that encompass the immense diversity of the real world, which
a truly ideal VQA system should be able to handle and understand. So by design,
the VQA task is zero-shot from its inception. Due to modern VQA methods using
large language models (LLMs) pre-trained on vision-language tasks [11, 12], finding
out-of-distribution examples could be very difficult. One downside to training VQA
methods using established datasets is that the loss functions force the models to output
the most frequent answers and due to inherent biases in the dataset, they often achieve
high accuracy scores [33].

A different approach to enable zero-shot capabilities in a method involves achiev-
ing the task without explicitly training a model on that specific task [11, 12] and the
approach has been quite successful in tasks such as image classification [36, 37], im-
age captioning [38], digit recognition [39]. harmful content detection [39]. and many
more. For instance, CLIP [9]. which is trained using contrastive loss to match images
and textual captions, can be utilized in a zero-shot setting of other problem domains.
Recently. CLIP has been used for ZS-VQA [10. 11] and sparked a recent trend of
leveraging large pre-trained language models and using them for zero-shot VQA [12].
Exploring zero-shot settings is therefore crucial for advancing VQA methods and cap-

italizing on the significant performance gains otfered by these pre-trained models.

1.4 Problem Statement

Through our literature review, we uncovered a lack of methods that determines the
robustness of VQA methods. Although some methods exist, most of them focus on
the textual modality. In the current literature, there 1s an absence of a comprehensive
framework that tests the visual robustness of VQA methods by applying multitudes of
specific visual adversarial perturbations. This is a possible area of contribution and can
be cemented as a vital test whenever a model is being evaluated.

Furthermore, the ability of vast generalization and the capability of taking advan-
tage of new pre-trained large language models or image encoding methods makes it
very lucrative to explore the zero-shot setting for VQA tasks. But this is an emerging
ficld and very few methods exist that leverage these capabilities. One of the novel

tad
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methods that have propelled the current state-of-the-art for zero-shot VQA uses cap-
tions generated from attending different patches of the image [12]. We could poten-
tially improve upon this architecture by using a mechanism for ranking the captions
and only using high-quality captions which would enable the model to generate more
potent captions, in turn providing us with high-quality answers and reducing the in-
ference time. Thus, a feasible contribution could be to devise a novel method for
zero-shot VQA, by ranking the generated captions by leveraging image-text similarity
scores obtained from methods such as [9].

So, our problem statement can be summarized as: "Creating a comprehensive and
maodular framework for assessing the visual robustness of a VOA method and devising

a novel method for zero-shot VOA through ranking generated capiions.”

1.5 Research Challenges

In this section, we examine the difficulties encountered by researchers in the fields of
VQA and ZS-VQA. Given the fast-paced advancement of both domains, it 1s possible
that these challenges may be resolved by the time our work is completed.

1.5.1 Visual Robustness for VQA

There are some challenges that make the task of assessing the visual robustness of
VQA methods quite difficult. The first issue is to ascertain which visual noise is going
to be effective for determining if a model is rebust. We cannot assess the models just
by adding any type of perturbations. It has to test how much the model understands
the image and the question. So the noise added to the images should keep the semantic
elements of the image intact and inquire up to what level the model can provide ex-
pected answers. Also, adding unrealistic adversarial noise will not benefit the model in
real-life scenaros. If the model 1s robust against unrealistic noise but fails to generalize
against realistic perturbations then it is less useful after deployment. Images are subject
to many different situations that may produce less 1deal images. The datasets [1, 135]
used to train these state-of-the-art models do not contain such visually corrupted im-
ages. Some examples of image corruption could be: overexposure, low brightness,
motion blur, defocused blur, image compression, pixelation, and many more [7]. Any
method that judges the robustness of VQA methods should assess the models on these

criteria as well.
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1.5.2 Zero-shot VQA

VQA is a challenging task in and of itself as it is a multi-modal problem. Recent
trends have shown that methods using large language models and large image encoders
In a vision-language pre-training sctup usually do better. But this comes with the
overhead of training these large vision-language models. Also, as these are trained
using the standard VQAw2 [15] dataset most of the time, they do not generalize well.
The inherent biases in the dataset encourage the model to answer the most frequent
answers which can be disastrous for certain situations. This paradigm encourages
the use of zero-shot VQA methods for their excellent generalization abilities. But
zero-shot methods have some hurdles of their own. Current methods [37] mostly use
pre-trained large image and language processing models for VQA but these models
are unimodal. Some methods use natural language as a connector between the two
modalities [12]. Other methods use the encoder-based methods such as representations
learned from contrastive loss using a model like CLIP [10. 11]. It is quite challenging
to come up with effective methods to bridge this gap of modalities. Any successful
zero-shot VQA method should ensure an effective way to interface between the visual

and language modalities.

1.6 Research Objectives

Our research objectives encompass both VQA and ZS-VQA and can be summarized

in the following key points:

* Define a comprehensive framework that can assess the visual robustness of a

VQA method along with necessary evaluation metrics.
« Compare realistic visual corruptions affecting current VQA methods.
= Design a novel zero-shot VQA module to reduce inference time.
« Optimization of interfacing between the two modalities of image and text in Zero

shot settings.

1.7 Contribution

We contribute to two important aspects of Visual Question Answering (VQA): zero-
shot VQA and visual robustness. In zero-shot VQA, we optimize inference time by
reducing the number of captions required while maintaining high accuracy. For visual
robustness, we propose techniques to evaluate and quantify models™ ability to handle
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adversarial disturbances in both vision and language. Our contributions enhance the

efficiency and resilience of VQA models in real-world applications.

Our contributions to Visual Robustness for VQA methods are:

1.

Visual Robustness Evaluation: We develop a comprehensive framework Lo as-
sess the visual robustness of muliiple VQA models. By applying realistic pertur-
bations to the VQAv2 dataset, we simulate real-world scenarios where visual in-
puts may be corrupted or distorted. This evaluation framework provides insights
into the models™ vulnerabilities and their ability to generate accurate predictions

in the presence ol visual disturbances.

Robustness Metrics: To quantify the models™ robustness, we introduce several
metrics that capture different aspects of their performance. These metrics allow
us to measure the models™ error rates and performance degradation when faced
with various types of corruption. Our approach provides a more nuanced under-

standing of the models” limitations and helps identify areas for improvement.

. Yisual Robustness Error (VRE): As an aggregated metric., VRE provides a sin-

gle value that summarizes the model’s error in handling corrupted data. By com-
paring VRE scores across different models, we gain insights into their relative
performance and overall robustness. This metric serves as a useful benchmark

for evaluating the stability of various VQA methods.

Furthermore, our contributions to Zero-shot VQA are:

1.

I~

fad

Caption Ranking Method: We introduce a caption ranking technique to en-
hance the quality of captions generated in VQA systems. By assigning ranks to
different captions based on their relevance and accuracy, we improve the overall

performance of the models in generating high-quality captions.

. Handling Adversarial Disturbances: Our approach takes into account the sus-

ceptibility of VQA models to adversarial disturbances in both vision and lan-
guage modalities. By considering these potential disturbances during the cap-
tion generation process, we aim Lo improve the robustness and reliability of the

models in handling diverse visual and linguistic inputs.

. Inference Time Reduction: We address the high inference time of zero-shot

models by optimizing the caption generation process. Through caption ranking
and selecting the top-ranked captions, we significantly reduce the number of
captions required from 100 to 5. This reduction in captions leads to a substantial
decrease in inference time by 22.25% while maintaining a minimal sacrifice of

only 2.84% in accuracy.
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In conclusion, our work addresses the challenges of zero-shot VQA and visual
robustness in the field of Visual Question Answering. By optimizing inference time
and evaluating models’ resilience to adversarial disturbances, we contribute to the ad-
vancement of more efficient and reliable VQA systems. These contributions pave the
way for enhanced performance and practical application of VQA models in various

domains.

1.8 Organization of the Thesis

Chapter 2 of this thesis delves into an extensive review of the existing literature on
Visual Question Answering (VQA). visual robustness, and zero-shot VQA. This re-
view provides a comprehensive understanding of the current state of research in these
arcas, highlighting the key findings. methodologies. and challenges encountered by re-
searchers.

Moving forward, Chapter 3 focuses specifically on the concept of visual robust-
ness. It explores various techniques and approaches employed to enhance the robusl-
ness of VQA models when faced with perturbations or adversarial disturbances in the
visual and textual input. The chapter examines different metrics and evaluation meth-
ods used to quantify the resilience of VQA models and presents insights into the vul-
nerabilities and limitations observed in current approaches.

In the subsequent chapter, Chapter 4, the thesis delves into the intriguing do-
main ol zero-shot VQA. It explores the unique challenges posed by zero-shot settings,
where the model is expected to answer questions about objects or scenes it has never
encountered during training. The chapter investigates various stralegies and techniques
employed o enable zero-shot VQA. It discusses the limitations and potential avenues
for improvement in this emerging field.

Finally, Chapter 5 draws upon the insights and findings from the previous chapters
1o present a set of conclusions. These conclusions summarize the main contributions
of the thesis, highlighting the advancements made in the domains of visual robustness
and zero-shot VQA.



Chapter 2

Literature Review

In this chapter, we start by discussing the progression of VQA methods from early ap-
proaches to modern methods. We bring out the typical methods for robusiness analysis
in current machine learning and deep learning models followed by pointing out the ex-
isting methods for performing zero-shot VQA which contains discussions about how
the zero-shot setting differs from regular VQA methods, the usage of vision-language
pre-training, and adapting large language models for zero-shot VQA. This chapter fo-
cuses on several VQA models or methods and talks about their apparent contributions
and limitations. Afterward. we study existing robusiness testing methods for VQA and
conclude the chapter with a discussion on existing zero-shot VQA methods.

2.1 Evolution of VQA Architectures and Robustness

Visual Question Answering [21] 1s one of the most challenging tasks being researched
in multimodal learming. Excelling in this task requires a greater understanding of visual
elements in the given context i.e. image or video, as well as processing the given
question. Works such as [40-44] paved the way for further research as they constantly
improved upon the accuracy score. But these methods contained inherent biases either
from the distribution of the datasets [45] or from the modalities such as the question
given [40,43,46,47]. This frequently resulted in models answering correctly but for
the wrong reasons.

Visual Question Answering has always been a unique problem domain as it com-
bines the domains of Computer Vision and Natural Language Processing. The general
VQA problem consists of answering any question with an image given as the context.
The problem domain of VQA is similar to context-based textual question answering
as seen in and can be thought of as an extension of contextual QA. By the end of the
last decade, the field of visual question answering experienced rapid growth— pri-

marily due to the advent of revolutionary architectures like transformers in processing
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Figure 2.1: Evolution of VA core architectures

sequential data and outperforming Recurrent Neural Networks (RNNs) and their vari-
ants. Recently. we have seen Vision Transformers outperforming Convolutional Neural
Networks (CNNs) resulting in the creation of completely transformer-based architec-
tures like VILT [4] in VQA.

As VQA is a multimodal task. the model needs to perform inferences from images
and textual data. [6] explored the robustness of a model in dealing with adversarial
attacks which can target the question and/or the image. While the robustness of the
textual sub-model has been thoroughly explored by experimenting with the questions
fed to the model. there has been no analysis of the robustness of the visual sub-model
by experimenting with the images given as context. In this paper, we will delve into
the model’s robustness in dealing with visual data by performing standard image pro-
cessing experiments on common datasets and evaluating the performance of the model
on the transformed datasets. Since the image serves as a context to the question, any
substantial change to the image will affect the model’s predicted outcome. We per-
formed a series of image processing operations on a standard VQA dataset.

Adversarial attacks are considered to be a shortcoming of modern deep learning
methods. The weakness was initially uncovered in the context of image classification
which led to the phenomena being observed in various sub-tasks of both computer
vision and natural language processing. The effects of adversarial perturbations were
soon noticed in language processing tasks. Thus, it is no surprise that multimodal
tasks such as Visual Question Answering (VQA) are vulnerable to such attacks. So,
assessing the robustness of VQA methods to such adversarial attacks is essential.
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2.2

Standard Robustness Analysis Methods

Robustness analysis is the process of evaluating how well a machine learning model

performs under different conditions. This can include evaluating the model’s perfor-

mance on different datasets, with different types of input data, or under different op-

erating conditions. The goal of robustness analysis is to identify potential weaknesses

in the model and to improve its performance in the face of these challenges. There

are several different approaches to performing robustness analysis, depending on the

specific needs of the model and the application it is being used for. Some common

techniques include:

[~

fad

Cross-Validation Out-of-Sample

Testing
Robustness
Analysis
Data Augmentation Adversarial Testing

Figure 2.2: Standard Methods of Robustness Analysis

. Cross-validation: Simplest form of a machine learning model’s performance

evaluation which involves dividing the training dataset into multiple smaller
datasets and training the model on each of these datasets in turn. This allows
you Lo assess the model’s performance on different subsets ol the data and can
help identify any biases or overfitting. Cross-validation is loosely associated
with robusiness testing and has been widely integrated as an essential step for

hyperparameter tuning in any ML pipeline.

. Out-of-sample testing: This involves evaluating the model’s performance on

a dataset that it has not seen during training. This can help identify any issues
with the model’s generalization ability. The issue of testing out-of-sample data
has been tacked by zero-shot models and has been typically excluded while eval-

uating the robustness of VQA models.

. Data augmentation: This involves creating additional traming examples by ap-

plying various transformations to the existing training data. This can help the
model learn to be more robust to changes in the data distribution and can im-
prove its performance on real-world data. We are relying on data augmentation

to test the visual robustness of various VQA models.

10
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4. Adversarial testing: This involves generating input data that is specifically de-
signed to trick the model into making incorrect predictions. This can help iden-
tify any vulnerabilities in the model’s decision-making process and can lead to
improvements in its robustness. The adversarial testing can be done either by
designing adversarial attacks based on the model’s architecture, also known as
white-box attacks, or based on only the inputs and outputs of the model, also
known as black-box attacks. Due to the complexity of designing adversarial at-
tacks for a variety of VQA architectural types, we will not be covering this class

of robustness testing in our work.

Robustness analysis is an important aspect of building effective VQA models. as
these models need to be able to handle a wide range of input data and operate under
different conditions. Before diving deep into the robustness of the VQA models, we
shall first look at various types of VQA models, the standard methodologies in VQA
along with the datasets used by the VQA models.

2.3 Standard Zero-Shot VQA Methods

2.3.1 Traditional methods for VQA

At the inception of this field. the task of VQA was completed by processing the image
and textual inputs separately in two streams and then conjoining them before produc-
ing an answer as seen on fig-2.5 [1, 15,48.49]. Soon, more complex methods concern-
ing attending to different regions of the inputs became popular along with methods
leveraging knowledge graphs and cross-attending features. Some methods employing
these are seen in [31,48-50]. But as more modern methods of language processing
were established. these methods also changed. Specifically, the massive performance
gained after the advancements made with large language models helped pave the way

for modern VQA methodology.

2.3.2 Vision-Language Pre-training

This is a novel and popular research direction in the field of multi-modal image-text un-
derstanding. Various vision-language pre-training tasks have been proposed, including
image-conditioned language modeling [13, 14]. We also see masked language model-
ing methods such as [24,51,52].

After the success of Radford er al. [9], learning the relationship between image-
text modalities through contrastive loss has gotten extremely popular. [53, 54] exhibit

zero-shot capabilities after pre-training on 1mage-language tasks. Fig-2.3 shows the

11
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Figure 2.3: An overview of the Flamingo model [13] using Vision-Language Pre-training,

Flamingo models are a group of visual language models (VLMs) that can process free-

form text as output and accept visual data mixed with text as input [13].

2.3.3 Adapting pre-trained LMs for zero-shot VQA

To integrate visual information into pre-trained language models, many current ap-
proaches involve conducting additional training that combines images and text. Tsim-
poukelli et al. [14] take a different approach by training the vision encoder while keep-
ing the large pre-trained language model frozen. This allows the language model to re-
tain its knowledge in question answering, as illustrated in fig-2.4. This strategy enables
the fusion of vision and language without sacrificing the expertise of the pre-trained
language model in handling textual data.

Different approaches have been proposed to incorporate visual information into
pre-trained language models. Tsimpoukelli et al. [14] adopt a strategy where the vi-
sion encoder’s output is used as prompts alongside the frozen language model. Jin et
al. [55] fine-tune the pre-trained language model using prefix language modeling and
masked language modeling objectives. VLKD [56] leverages CLIP as a teacher model
during fine-tuning to distill multi-modal knowledge. Aylarac et al. [13] introduce ad-
ditional layers to both the pre-trained vision model and the language model, training
them on a large-scale dataset of image-text pairs. Another approach explores training
vision-language models on synthetic VQA examples generated from captions [37,58].

These various methods contribute to the advancement of vision-language integration

12
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Figure 2.4: The vision encoder is trained using zradients across the self-attention layers of a
FROZEN [ 14] language model demonstrating how FROZEN learns multi-maodal features by
maintaining the frozen state of the massive language models.

and offer promising avenues for zero-shot VQA tasks.

Utilizing big language models that have already been trained and image captions
to provide a summary of the image is a straightforward but incredibly efficient unique
way for zero-shot VQA. PICa adopts GPT-3"s [59] for zero-shot VQA and turns an
image into a single caption. Tiong et al. [12] cite this work and suggest the use of
question-guided captions. In the parts that follow, we will go into further detail on this.

2.4 Visual Question Answering (VQA)

The methods of VQA experienced rapid development throughout the vears and have
been approached in a multitude of ways. The standard approach can be broken down
into three key phases: feature extraction, feature conjugation, and answer generation,
For many years, VQA has been treated as a multimodal task where question and im-
age feature extraction has been done separately, followed by some form of feature
conjugation which combines the two modalities. Image feature extraction primarily
relied on standard computer vision models like LeNet [16], AlexNet [60], VGG [61],
ResNet [62], and InceptionNet [63] - just a few examples fueled by the ImageNet [64]
competition.

Usually, a pre-trained image model is used as a backbone network, which can pro-

vide a good image feature vector. VQA models primarily rely on ResNet and VGG

13
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Figure 2.5: Standard architecture of VQA models using Multi-Modal Approach

as the backbone networks. After the advent of transformers, vision transformers were
introduced in [65] breaking down the image into 16x16 image patches and passing it
through a transformer architecture block. The procedure was later perfected by the
Swin Transformers [66] which uses a shifted window to apply the self-attention mech-
anism, mimicking the convolution operation of CNN and also improving the perfor-
mance on vision-related tasks. The task of combining the feature vectors primarily
used element-wise multiplication. but recent models combine the image and textural
modalities followed by the success of CLIP. We shall now delve into some of the stan-
dard VQA approaches which evolved throughout the years.

2.4.1 VQA: Visual Question Answering [1]

The most revolutionary paper in the domain of VQA introduces the task of answering
free-form and open-ended questions with an image as the context and introduced a
dataset of the same name. Here, a deep learning model is given an image and a general
question of any form and the model must provide an accurate natural language answer.
This task is open-ended, meaning that the questions and answers can take many diller-
ent forms. Visual questions may target specific areas of an image, requiring the model
to have a comprehensive view of the image and the ability to use complex reasoning.
VOQA 1is different from tasks like image captioning, which require a more general un-
derstanding of the image. The authors provide a dataset containing approximately (.25
million images, 0.76 million questions, and 10 million answers for training and evalu-
ating VQA models.

Proposed Method

In the paper. the proposed model leverages a combination of convolutional neural net-
works (CNNs) and long short-term memory (LSTM) networks to process both image
and text inputs. The CNN 1s responsible for extracting visual features from the 1m-

age, while the LSTM encodes the natural language question into a fixed-length vector
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Who is wearing glasses? Where is the child sitting?
man woman fridge arms

Is the umbrella upside down?
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Figure 2.6: Sample questions and images from the VQAv2 dataset [15]

representation. These two representations are then merged and fed into a multi-layer
perceptron (MLP) to generate the final answer. To train the model, a large dataset
called VQA was utilized, which consists of a vast number of images along with corre-
sponding questions and answers. The model was trained to minimize the cross-entropy

loss between the predicted answers and the ground truth answers during training.

21 .56 09 .01
One Two - Red Bird
Softmax O @ O C
LSTM — —
T
Image ADL@[”:_“ Linear Word Embedding
CNN “How" “many”’ “hooks”

Figure 2.7: Baseline model proposed in [1] which uses CNN |16] and LSTM [17] for image
and question feature extraction, and generates the answer based on a trainable sofimax layer.
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Dataset

The dataset is an amalgamation of real-life images with abstract scenes. The distribu-
tion of questions showed a surprising variety of types, including W-type questions i.e.,
“What”, “Why”, “Where”, “How", etc., and also questions starting with “Is”, “Do”,
“Does”, etc. The authors also provide several examples of questions and answers and
note that "What is...” questions are particularly interesting because they have a wide

variety of possible answers.

What color are her eyes? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Does it appear to be rainy?

Is this person expecting company?
What is just under the tree? Does this person have 20/20 vision?

Figure 2.8: The paper by Goyal et al. [1] showcases open-ended questions collected from
Amazon Mechanical Turk for Visual Question Answering (VOQA). These questions require
a combination of visual understanding and common-sense knowledge to provide accurate
aAnswers.

Contributions

1. The VQA paper came up with a dataset that revolutionized the field of VQA by
asking open-ended questions and providing multiple human-generated answers

to those open-ended questions

2. Realistic and abstract images with various question types create a perfect blend

for a dataset suitable to train a generalized VQA model.

16
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3. The CNN+LSTM-based model has been a standard deep learning-based ap-
proach, often referred to as joint embedding methodology for VQA and has been

popular for many years till the advent of transformers.

Limitations

1. While the paper presents promising results, the VQA model may encounter dif-
ficulties when faced with a wide range of visual content, particularly in complex
or uncommon scenarios. The model’s ability to generalize to diverse and nu-

anced images, thereby providing accurate answers may be limited.

[§]

. VQA models can be sensitive to biases present in the training data used to de-
velop them. Biases inherent in large-scale VQA datasets may affect the model’s
performance by promoting certain answer choices over others, potentially lead-
ing to biased or skewed responses.

3. VQA models often struggle with comprehensive contextual understanding, par-
ticularly in cases where questions require deeper reasoning or implicit knowl-
edge. The models may rely heavily on superficial cues within images or question

phrasing, potentially leading to incorrect or inadequate answers.

24.2 Bottom-Up and Top-Down Attention for Image Captioning and Visual
Question Answering [2]

Anderson er. al. [2] debates over devising a new type of attention mechanism that
tries to mimic the human visual system of both top-down and bottom-up attention.
In their work, they take on a very similar terminology and call attention mechanisms
powered by task-specific context as ‘top-down’, and purely visual feed-forward atten-
tion mechanisms as ‘bortom-up’ [2]. In the typical approach, attention mechanisms
in VQA models are tramed to focus on specific parts of the image or partially com-
pleted captions based on their relationship to the context. This is often achieved by
selectively attending to the output of certain layers in a convolutional neural network
(CNN). However, one limitation of this approach is that it overlooks the crucial aspect
of determining which image regions should be the focus of attention.

The process of identifying the relevant image regions for attention deserves more
consideration and exploration in order to enhance the performance of VQA models.
As seen in fig-2.10, the input regions in VQA models are defined as a grid of equally
sized and shaped neural receptive fields. However. this approach treats all regions of
the image equally, regardless of their content or relevance. To achieve more human-

like captions and question answers, it is more appropriate to focus attention on objects

18
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Figure 2,10: In traditional attention models used in computer vision, the focus is on equally-
sized image regions represented by CNN features (left) [2]. However, the authors of this study
introduced a novel approach (right) that enables attention calculations 1o be performed at the
level of specific objects and other significant regions in the image.

and other visually salient regions within the image. By prioritizing these meaningful
elements, VQA models can generate more contextually appropriate and insightful re-
sponses.

In their study, the researchers introduce a novel approach that combines both bottom-
up and top-down visual attention mechanisms. The bottom-up mechanism focuses on
identifying salient regions within the image by generating a set of region proposals,
each represented by a pooled convolutional feature vector. This is achieved using an
object detection framework like Faster R-CNN [67]. which naturally embodies the
concept of bottom-up attention. On the other hand, the top-down mechanism utilizes
task-specific context to predict how attention should be distributed across the image
regions. The resulting attended feature vector is then computed by taking a weighted
average of the image features across all identified regions.

In their study, the researchers introduce the idea of using bounding boxes to de-
fine spatial regions and leverage the Faster R-CNN [67] model for implementing the
bottom-up attention mechanism. Faster R-CNN, a specialized object detection model,

is employed to identify and precisely localize objects of specific classes using bounding
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Figure 2.11: The authors of the study |2] present example output from their bottom-up at-
tention model based on Faster R-CNN [2]. The output consists of bounding boxes that are
labeled with an attribute class and an object class, It is important to note that in captioning
and visual question answering (VQA). only the feature vectors are used. and not the predicted
labels [2].

boxes. The object detection process in Faster R-CNN comprises two stages. Firstly, the
Region Proposal Network (RPN), a small network, examines intermediate-level fea-
tures from a convolutional neural network (CNN) to generate object proposals. These
proposals consist of objectness scores and refined bounding box coordinates for anchor
boxes of different scales and aspect ratios. The most promising box proposals are se-
lected based on non-maximum suppression with an intersection-over-union threshold.
In the second stage, region of interest (Rol) pooling is employed to extract lixed-size
feature maps (e.g., 14x14) for each selected box proposal. These feature maps are
then combined and processed by the final layers of the CNN. The output of the model
includes a softmax distribution representing the probabilities of different class labels
and class-specific refinements for each proposed bounding box.

To obtain image features suitable for tasks such as image captioning or visual ques-
tion answering (VQA). a non-maximum suppression technique 1s applied. This in-
volves setting an intersection-over-union (IoU) threshold to filter out redundant bound-

ing boxes and keeping only the most relevant ones for each object class. Specifically,
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regions are selected if their detection probability for any class exceeds a confidence
threshold. For each selected region, the mean-pooled convolutional feature is com-
puted, resulting in image feature vectors with a dimensionality of 2048. By utilizing
Faster R-CNN in this way, the model effectively functions as a "hard" attention mecha-
nism, focusing on a small subset of image bounding box features among a large number

of potential configurations.

Question: What room are they in? Answer: kitchen

Figure 2.12: An example from the study by Anderson et al. [2] showcases the attention output
in a Visual Question Answering (VOQA) task. The question posed is "What room are they in?"
and the model’s attention is directed towards the stove-top. leading to the generated answer
"kitchen” [2]. This demonstrates how the model focuses on relevant image regions o provide
accurate answers in the VQA task [2].

This work presents a novel approach that bridges the gap between visual and lin-
guistic understanding by leveraging advancements in object detection. Unlike tradi-
tional methods, which treat attention regions independently, this approach takes into
account the spatial co-location of visual concepts associated with objects. By process-
ing all the information related to an object together, a more comprehensive understand-
ing of the visual content can be achieved. This attention mechanism holds promise for
applications such as visual question answering (VQA) in a zero-shot setting. where
the model needs to answer questions about images it has not been explicitly trained on.
By considering all relevant visual concepts simultaneously, the model may be better
equipped to handle novel scenarios and generalize its understanding across different

images.

Contributions

1. The paper introduces novel attention mechanisms for image captioning and vi-
sual question-answering tasks. These mechanisms, referred to as "bottom-up”
and "top-down" attention, improve the model’s ability to focus on relevant im-

dac I'Ef_.!i()l'l!-i and senerate accurate C‘d]’iliUI'IH O dNsSWErs.
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. The authors propose an approach that combines the strengths of both bottom-

up and top-down attention mechanisms. This integration allows the model to
cffectively incorporate contextual information from the image, leading to more

contextually grounded captions and answers.

. Experimental evaluations demonstrate that the introduced attention mechanisms

significantly enhance the performance of image captioning and visual question-
answering models. The improved models achieve state-of-the-art results on

benchmark datasets, showcasing the effectiveness of the proposed approach.

. The bottom-up and top-down attention mechanisms provide interpretability and

explainability in the image captioning and visual question-answering processes.
By explicitly highlighting relevant image regions, the models offer insights into
the decision-making process, enhancing the transparency of the generated cap-

tions and answers.

. The proposed attention mechanisms show versatility and generalization across

different tasks, including 1image captioning and visual question answering. This
versatility allows the models to adapt to various vision and language tasks, show-
casing their potential for broader applications beyond the specific tasks consid-
ered in the paper.

Limitations

L.

2

The paper acknowledges that the effectiveness of the bottom-up and top-down
attention mechanisms can vary depending on the specific image captioning and
visual question-answering tasks considered. Factors such as dataset character-
istics, image complexity. or question types may impact the overall performance

and generalization capabilities.

. The proposed attention mechanisms may be sensitive to variations in image qual-

ity. such as low-resolution or noisy images. Additionally, the models may en-
counter challenges when dealing with complex or ambiguous visual content,

leading to potential inaccuracies or errors in generating captions Or answers.

. The performance of the bottom-up and top-down attention mechanisms heavily

relies on the availability and quality of the training data. Limited or biased train-
ing data may restrict the model’s ability to capture diverse visual patterns and

language semantics, affecting its performance on unseen examples.
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4. The introduced attention mechanisms may impose increased computational de-
mands due to the need to process and attend to multiple image regions or in-
corporate contextual information. This can limit their practical applicability,

particularly in resource-constrained environments or real-time applications.

5. The paper may not extensively evaluate the performance of the attention mech-
anisms on specialized or domain-specific datasets. This limitation restricts in-
sights into their adaptability and effectiveness in scenarios where the image con-

tent or question types deviate significantly from the datasets used for evaluation.

2.4.3 BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language
Understanding and Generation [3]

T Image-grounded Irrcage-grounded
Encoder ejgus)e[)r  TeXencodsr eigacode]+[ )" oM H900R wipecode] + [ )"
[

“a little girl holding a kitten next to a blue fence” |

Figure 2.13: Overview of the architecture of BLIP |3]

BLIP (Bridging Language, Image, and Perception) presents a novel approach to
Vision-Language pre-training that offers flexibility in both understanding and generat-
ing vision-language tasks [3]. In order to effectively leverage noisy web data, BLIP uti-
lizes a captioning model to generate synthetic captions and employs a filtering mecha-
nism to eliminate noisy ones. For image encoding, they adopt a visual transformer that
divides the input image into patches and encodes them as sequential embeddings [65].
An additional [CLS] token is introduced in BLIP 1o represent the global image fea-
ture [3]. Unlike traditional methods that rely on pre-trained object detectors, BLIP
opts for a Vision Transformer (ViT), which provides computational efficiency and has
gained popularity in recent approaches [4].

To enable pre-training of a unified model with combined understanding and gen-
eration capabilities, the researchers proposed the Multimodal Mixture of Encoder-

Decoder (MED) framework [3]. MED encompasses three key functionalities:

R
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Unimodal Encoder: Separate picture and text encoding is required for this fea-
ture. The text encoder used is comparable to BERT [68]. which appends a [CLS]

token to the beginning of the text input to provide a summary of the sentence.

Image-Grounded Text Encoder: For each transformer block in the text encoder.
a new cross-attention (CA) layer is added between the self-attention (SA) layer
and the feed-forward network (FFN) in order to integrate visual information.
The text i1s supplemented with a task-specific [Encode] token. and the ensuing
embedding of [Encode] functions as the multimodal representation of the image-

text pair.

Image-Grounded Text Decoder: The image-grounded text encoder’s bidirec-
tional self-attention layers are swapped out for causal self-attention layers by
this functionality. The start of a sequence is denoted by a [Decode] token, and
the end of a sequence 1s denoted by an end-of-sequence token.

The model can work in a variety of modes thanks to these three MED features,

each of which is designed for a particular job related to unimodal encoding, image-

grounded text encoding, or image-grounded text decoding. They focus on three distinct

loss functions: Language Modeling Loss (LM). Image-Text Matching Loss (ITM), and

Image-Text Contrastive Loss (ITC).

Contributions

I-J

. The authors propose a bootstrapping technique that enables joint learning of

visual and textual representations. This approach facilitates the integration of
visual and linguistic cues, enhancing the model’s understanding of the relation-

ships between images and corresponding textual descriptions.

BLIP demonstrates remarkable transfer learning capabilities across vision and
language tasks. By leveraging pre-trained models and fine-tuning task-specific
data, the proposed method achieves state-of-the-art performance on various bench-
marks. highlighting the effectiveness of the approach.

. The paper showcases the effectiveness of BLIP in generating high-quality visual

and textual content. The integrated pre-training enables the model to generate
accurate and coherent image descriptions, captions, and other vision-language

outputs, enhancing the overall quality of generated content.

. The contributions of the paper have implications for a wide range of applications,

including image captioning, visual question answering, and visual storytelling.
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The BLIP approach offers a unified framework for vision-language tasks, en-
abling more comprehensive and versatile understanding and generation capabil-

ities.

Limitations

1. While BLIP demonstrates impressive performance on various benchmarks, the
generalization to unseen or domain-specific data remains a challenge. The model’s
ability to comprehend and generate vision-language content may vary when en-
countering novel or specialized examples not adequately represented in the train-

ing data.

2. The effectiveness of BLIP is influenced by the biases present in the training
data. Biases may affect the model’s understanding and generation capabilities,
potentially leading to skewed or undesired outputs. Addressing dataset biases 1s
crucial to ensure fair and unbiased vision-language understanding and genera-

tion.

3. The BLIP method involves significant computational requirements due to the
joint learning of visual and textual representations. Training and fine-tuning
large-scale models can be computationally expensive and may limit the practical

applicability of the approach, particularly in resource-constrained environments.

4. While BLIP achieves impressive results, the inner workings and interpretability
of the model’s decision-making process remain challenging. Understanding how
the model combines visual and textual information to generate outputs is crucial
for transparency and trustworthiness. but further research is needed to enhance

interpretability.

5. The paper may not extensively evaluate the performance of BLIP on specialized
domains or narrow tasks. Understanding the model’s behavior and performance
in such scenarios is important to ensure its effectiveness across diverse applica-

tion domains.

2.4.4 VILT: Vision-and-Language Transformer Without Convolution or Region

Supervision [4]

VILT is a compact Vision-and-Language Transtormer (VILT) model, which can be
considered monolithic as it significantly simplifies the processing of visual inputs. The

authors adopt a convolution-free approach for visual input processing, aligning it with
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the manner in which we handle textual inputs. VILT exhibits competitive or even
superior performance on downstream tasks when compared to existing models.
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Figure 2.14: Architecture of ViLT [4]

VILT features a concise architecture as a Vision-and-Language Pretraining (VLP)
model, incorporating a streamlined visual embedding pipeline and adopting the single-
stream approach. Unlike previous approaches in the literature, it deviates by initializ-
ing the weights of the interaction transformer from a pre-trained Vision Transformer
(ViT) model [65]. rather than from BERT [68]. This initialization strategy leverages
the strength of the interaction layers in effectively processing visual features, eliminalt-
ing the need for a separate deep visual embedder. This approach allows for efficient
integration of visual and textual information within a unified framework. It is pre-

trained on two tasks: Image-text matching and Masked language modeling.
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Figure 2.15: Overview of Visual Embedding Schema in VIiLT [4]
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Contributions

I

. The paper introduces an innovative method. called VILT, for vision-and-language

understanding without relying on convolutional neural networks (CNNs) or re-
gion supervision. This approach explores new avenues for integrating vision and

language modalities using a transformer-based architecture.

. VILT offers a unified framework that seamlessly integrates visual and textual in-

formation using transformers. This end-to-end integration enhances the model’s
ability to capture complex cross-modal dependencies, enabling more compre-

hensive vision-and-language understanding.

. The authors propose a weakly supervised learning approach that eliminates the

need for explicit region-level annotations or reliance on pre-trained CNNs. By
leveraging large-scale image-text datasets, ViLT learns to align and associate vi-

sual and textual features without explicit pixel-level or region-level supervision.

. Expenimental evaluations demonstrate that VILT achieves competitive perfor-

mance on a range of vision-language tasks. including image-text retrieval, image
captioning. and visual question answering. The results highlight the etfective-
ness of the proposed approach in capturing the rich interactions between vision

and language modalities.

. The contributions of the paper have implications for various applications requir-

ing vision-language understanding. such as image retrieval, multimedia analysis,
and content recommendation. ViLT’s transformer-based architecture provides a
flexible and versatile framework that can be adapted to different vision-language
tasks and domains.

Limitations

R

The VILT framework involves computationally intensive transformer-based ar-
chitectures, which can be demanding in terms of memory and computational
resources. The training and inference processes may require significant com-
putational infrastructure, limiting the practical deployment of ViLT in resource-

constrained settings.

. While ViLT achieves competitive results, understanding the decision-making

process and internal representations of the model remains challenging. Interpret-
ing how the model integrates vision and language information and the reasons
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behind its predictions is crucial for transparency and trust, requiring further re-

scarch in interpretability techniques.

3. The paper may not extensively evaluate ViLT's performance on specific domains
or narrow vision-language tasks. Assessing the model’s behavior and perfor-
mance in specialized scenarios is important to understand its strengths and limi-

tations in domain-specific applications.

24.5 GIT: A Generative Image-to-text Transformer for Vision and Language

[5]
a tscsun radio ...... 54 i EOS 1 M OES
8 &0 0 @8 0 & = OO0 m
Text decoder A
N x
| e ] Text decoder
4 EEEEEEETE
| Multi-head self-attention ] e e il e
A Q: what time is it? A: 12 : 54
(b) vaA
A 28 8 @ B B2 @
) BOS a tscsun radio ...... 58 . | eEEBE----

Image encoder
oee Tokenize & Embed temporal - (.5 temporal é
i # embedding 1+ embedding b

a tecsun radio with &

the time of 12 ; 54. Image encoder Image encoder
4 '
Framel ...... Frame 6

(a) Pre-training/captioning | (c) Video

Figure 2.16: Architecture of GIT [3]

GIT (Generating Informative Text) is a Transtormer model introduced by Wang et
al. [5] that incorporates visual inputs alongside text by leveraging the vision encoder
from CLIP [9]. The authors simplify the architecture by using a single image encoder, a
single text encoder, and a single pre-training task, namely masked language modeling.
When applied to Visual Question Answering (VQA), the input question is treated as a
text prefix, and the model generates an auto-regressive answer.

During the fine-tuning phase. the query and the ground truth answer are combined
and treated as a specific caption within the context of the visual question response.
To train the model to generate accurate responses, the language modeling (LM) loss
is specifically applied to the answer tokens and the [EOS] (end-of-sequence) token.
During inference, the question is used as the caption prefix, and the model generates
the remaining information to complete the response prediction. This approach enables
the model to generate answers based on the provided visual context. Unlike existing

techniques that rely on pre-defined candidate solutions and frame the problem as a
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classification task, GIT employs generative operations. This means that even during
inference, the model does not rely on pre-collected response candidates and is capable
of producing multiple tokens, including the solution and the [EOS] token. as part of

the answer prediction [3].

Contributions

I. The paper introduces a novel generative model, referred to as GIT, for transtform-
ing images into textual descriptions. The GIT model leverages an innovative
architecture based on transformers to capture the complex interactions between
visual and language modalities, resulting in the generation of coherent and con-

textually grounded image captions.

I~

. GIT successfully integrates visual information from images with linguistic cues,
enabling the model to generate accurate and meaningful text descriptions. By
effectively combining these modalities, GIT learns to extract rich representations
and produce high-quality image captions that capture the essence of the visual

content.

3. The proposed GIT model adopts an advanced transformer-based architecture,
which facilitates the modeling of long-range dependencies and the relationships
between different elements within images and texts. This architecture enables
the generation of more coherent, fluent, and contextually relevant image descrip-

tions.

Limitations

1. GITs performance can be influenced by biases present in the training data used
to develop the model. Biases inherent in large-scale image-text datasets may lead
to biased associations between visual and textual features, potentially affecting

the accuracy and diversity of the generated image captions.

I-J

The GIT model’s transformer-based architecture can demand significant com-
putational resources during both the training and inference phases. The compu-
tational complexity associated with these models may limit their practical de-
ployment, particularly in resource-constrained environments or real-time appli-

cations.

fad

. While GIT achieves impressive results, understanding the decision-making pro-
cess and inner workings of the model remains challenging. Interpreting how

the model integrates visual and language information to generate image captions
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requires further research to enhance transparency. interpretability, and trustwor-
thiness.

2.5 Visual and Textual Robustness

2.5.1 A Novel Framework for Robustness Analysis of Visual QA Models [6]

Ideally, this paper is closely similar to the research problem we are trying to solve.
To apply VQA models in a realistic environment. the input can be affected by noise.
The noise can affect both the input question and the input image. This paper deals
with the noise associated with the input questions and also comes up with a metric
they introduced in another paper called the R-score. The noise to questions can be
thought of in multiple ways — for instance. paraphrasing the question can be a form of
noise that shouldn’t change the expected output answer from the model. For example
— let the original question, “What is the color of the banana™” can be paraphrased as
“Which color is associated with the banana in the given image?”” Both questions have
the same answer, “Yellow”, and have the same meaning. But. a VQA model might
associate some words from the input question with some form of an answer. This
problem is similar to the overfitting of neural networks or any simple machine learning
model. A generalized and robust VQA model should be able to correctly answer such
paraphrased gquestions.

Proposed Framework

The type of noise discussed in this paper is not similar to paraphrasing, instead, the
original input question is compared to a set of questions called the basic questions
from a dataset called Basic Questions Dataset (BQD). A ranking of the input question
with the basic questions is performed based on the similarity and the top ones, e.g., the
top 3 are taken. Afterward, the Basic questions are appended to the input questions
to form the noisy questions. To measure the accuracy. they also provide a new metric

called the R-Score. R-Score can be defined as:

\/HF V"';!.r'r'rj;j-f

vm — Vit

Riocore = clamp,, (2.1)
Here, clamp}(r) = maz(a,min(b,x)) where, 0 < t < m < 1. Here, ¢ is the
tolerance and /7 is the maximum robustness limit.
Being a general framework, the noise type can be changed to other forms of noise,
¢.g., word-shuffling in questions, grammatical errors, and so on. These forms of noise

can be controlled by the Hamming distance, and thus several levels of noise can be
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Figure 2.17: Framework proposed by [6] to test the robustness of textural inputs of the VQA

models

proposed. On the other hand, question paraphrasing noise isn’t controllable and can

be called trivially controllable noise. Hence, multiple levels of paraphrasing noise are

not possible. To make a properly robust model, the authors propose to incorporate

different types of noise at various levels.

Contributions

1. The paper proposes a novel framework that is modular and has tested its frame-

work on six different models.

I-J

tions of BLEU

. Proposed a text-based method to rank similarity which is comparable to deriva-

3. Proposed a new sentence evaluation metric called the R-score.
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Limitations

1. This work only discusses methods for evaluating the lingual robustness of vari-
ous VQA methods.

[

. The authors evaluate their method on dated VQA methods. No relevant modern

models were used.

3. They provide only one metric as the basis for determining the robustness of a

maodel.

2.5.2 Benchmarking Neural Network Robustness to Common Corruptions and
Perturbations [7]

ImageNet-C where C stands for Corruption is an augmented version of the famous
ImageNet dataset. The image augmentation is performed to test the visual robustness
of standard computer vision models and is particularly targeted towards the Neural
Network based models from AlexNet to ResNets. Their work has been motivated by
the robustness of the human vision system. which is not fooled by minute changes in
an image and is correctly able to classify an image at high levels of distortion, poor
lighting conditions, and other visual challenges. However, neural networks have been
particularly prone to such obstacles. A famous example is the addition of 9% Ne-
matode noise to an image of a panda which would, still. visually look like a panda.
Surprisingly, the Convolutional Neural Networks (CNNs) confidently classified that
as some other object. something that humans would never do. These forms of adver-
sarial noise are primarily designed to trick neural networks into misclassification as
neural networks can not naturally “see” but has to rely on the pixel values to update
their weights. However, creating misleading patterns within the pixel values can ofien
result in the neural network confidently misclassifying an object, and such a problem
can be deadly in real-life scenarios where the neural networks are assigned 1o more

responsible tasks.

Dataset

The ImageNet-C primarily contains 15 types of noise which are algorithmically gen-
erated forms of corruption. If we start from the beginning we will see standard forms
of noise in digital image processing such as Gaussian noise which adds a random
value following the Gaussian distribution to the current pixel values, and impulse noise
which randomly changes a pixel value to a solid-colored pixel, and so on. Again, there

are various forms of blurring noise like defocus, frosted glass blur, and motion blur
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Figure 2.18: The effects of the image transformations proposed in [7]

— all are pretty much seltf-explanatory. Forms of weather effects like snow, frost. and
fog are also added to replicate realistic image conditions. Image processing effects
like changing the brightness and contrast of the image are also added and finally, lossy
compression effects like pixelating and JPEG compression are included. Every form
of noise has 5 severity levels resulting in 75 distinct corruption types. 75 versions of
ImageNet can be produced. and for each dataset, the accuracy can be measured for a
specific model.

It we look at the reasoning behind the common corruption types. we can find how
they are related to realistic scenarios. The most common corruption type is the Gaus-
sian noise which appears in low lighting conditions. The Poisson noise which is also
referred to as the Poisson noise occurs due to the discretization of light. We might have
been familiar with the salt and pepper noise which changes a pixel value randomly to
complete white or complete black. The color analog of the salt pepper noise is referred
to as the Impulse noise and is a common corruption caused by bit errors. Defocus
blur occurs when the object is out of focus in the image and frosted glass blur occurs
due to looking at the object from a window panel covered by frosied glass. The other
forms of noise have similar reasoning, and we shall not discuss in detail the realistic
background associated with these noise types.

Apart from added noise levels perturbations have also been added. The concept
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of perturbation is a bit different from that of corruption. Perturbations are continuous
incremental changes to the image, such changes can be in the form of slight tilts,
slight changes in brightness, and so on. A model’s robustness on perturbation is also a
valid measure in testing visual robustness. However, perturbations are computationally
more expensive, and performing many subtle changes on our large VQA dataset would
be extremely challenging and resource intensive. Perturbations are also associated
with the robusiness of videos more than images and as we are not dealing with Video
Question Answering, we shall skip the details of implementing perturbations to our
datasets.

Contributions:

1. Designing a framework for testing visual robustness for varying noise types at

varying noise levels

2. Designing another framework for testing visual robustness through perturbations

that create incremental subtle changes to the images

3. Providing access to the framework. and the associated transformation functions
in a GitHub code repository.

Limitations:

I. The authors evaluate their method on dated VQA methods as the availability of

modern transformers-based models was not prevalent at that time.

2. They provide only one metric as the basis for determining the robustness of a

maodel.

2.5.3 CARETS: A Consistency And Robustness Evaluative Test Suite for VQA
[8]

CARETS is a systematic test suite designed to assess the consistency and robusiness
of contemporary VQA methods. [t has six thorough capacity tests. each of which fo-
cuses on a different skill, such as rephrasing. logical symmetry, or picture obfuscation.
CARETS uses a balanced question-generating approach to generate pairs of examples
for model evaluation, in contrast to conventional VQA test sets. This study is the
most comparable 1o our proposed work from a similarity perspective because they also
present a framework that creates tests for fine-grained capability testing on the textual
modality. The authors describe their methodology as a systematic test suite that uses

a set of six fine-grained capability tests to evaluate the consistency and dependability
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of contemporary VQA (Visual Question Answering) models, CARETS, in contrast to
current VQA test sets, uses balanced question generation to produce pairs of examples
to test models, with each pair concentrating on a different capability such as rephras-
ing, logical symmetry, or picture obfuscation [8]. The authors assess six contemporary
VQA systems using CARETS, and they find a number of remediable flaws in model
understanding, particularly when it comes to ideas like negation. disjunction, or hy-
pernym invariance. In CARETS, each test point consists of two occurrences that are
minor but purposeful changes of one another, either aesthetically or in the wording of
the question. This makes it possible to evaluate capabilities at a finer scale than only

by looking at high accuracy ratings.

i o i
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Figure 2.19: The consistency and robustness test suite (CARETS) proposed in [8].

Proposed Framework

Their first set of tests comprises four invariance tests. These tests involve modifying
the phrasing of the questions while expecting the model to generate the same answer

for both questions within a pair of instances.

|. Rephrasing invariance: The Rephrasing Invariance test evaluates the model’s
comprehension of minor textual modifications that preserve the meaning. For
instance, it assesses the model’s ability to understand and answer questions such
as "What color is the bottle on the shelf, white or blue?" and "Does the color of
the bottle on the shelf appear more white or blue?" Both questions convey the
same meaning but differ slightly in their phrasing.

2. Ontological invariance: The Ontological Invariance test evaluates the model’s
understanding of ontology, specifically assessing its ability to recognize changes

between hyponyms and hypernyms. For example, 1t tests whether the model can
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handle a modification from "Do you see a green jacket?" to "Do you see any
green clothes?" The test aims to determine if the model can accurately interpret

the broader concept (hypernym) and still provide a correct answer.

3. Order invariance: The Order Invariance test assesses the model’s understand-
mg of logically equivalent questions that feature different orders of arguments.
For example, it evaluates whether the model can comprehend and provide con-
sistent answers to questions such as "Is the black vehicle a van or a truck?” and
"Is the black vehicle a truck or a van?" Despite the variation in the order of the
options, the questions convey the same logical meaning. The test aims to de-
termine if the model can maintain consistency in its responses regardless of the

argument order.

4. Visual obfuscation invariance: The Visual Obfuscation Invariance (VOI) test
is designed to assess the model’s ability to answer questions even when parts of
the image that are not directly relevant to the visual question are obscured or re-
moved. This evaluation involves applying techniques such as blurring, masking,
and cropping to modify the image. By examining the model’s performance in
answering questions based on visually obfuscated images, the test aims to evalu-
ate the model’s capability to concentrate on the pertinent visual information and
provide accurate answers despite any visual distractions or alterations that may

be present.

They also created directional expectation tests to measure model behavior on in-

stance pairs where the answer is expected to change.

|. Attribute antonym directional expectation: The Attribute Antonym Direc-
tional Expectation test assesses the model’s comprehension of antonyms. Specif-
ically, it evaluates the model’s understanding of how changing an attribute’s
antonym affects the question. For instance, the test involves questions such as
"Do you think that the wood table is short?" and "Do you think that the wood ta-
ble is long?" These questions examine whether the model can correctly interpret
the opposite meaning of the attribute and provide appropriate answers accord-
ingly. The test aims to evaluate the model’s understanding of antonyms and its
ability to adjust its responses based on the directional change of attributes.

2. Negation directional expectation: The Negation Directional Expectation test
evaluates a model’s understanding of negation. It assesses the model’s ability to
comprehend the impact of negation on the meaning of a question. For example,

the test includes questions like "Are there any apples in this picture?” and "Are
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there no apples in this picture?” These questions explore whether the model can

accurately interpret the presence or absence of apples based on the negation used

in the question. The test aims to determine the model’s grasp of negation and its

ability to provide appropriate responses considering the negated context.
Contributions:

1. Designed a framework for testing the consistency and robustness of contempo-
rary VQA methods.

2. Generated balanced dataset.
3. Introduced novel metrics for consistency and robustness.
4. Access 1o the framework and transformation functions have been provided in a
GitHub code repository [8]
Limitations:

I. This work focuses mostly on lingual robustness and consistency testing.

[t

The invariance test for testing visual consistency is not a thorough exploration

and 1s lacking [urther experiments.
3. Runs experiments only on dated models.

4. Performs tests on only the GQA dataset [69].

2.6 Zero-Shot VQA (ZS-VQA)

Recent vears have witnessed unprecedented performance gains on many natural lan-
guage reasoning tasks, especially in zero-shot and lew-shot settings, being derived
from scaling up pre-trained language models (PLMs) and their training data [59, 68,
70-73]. As these models are trained on vast amounts of data, often encompassing
trillions of training examples scraped from varying sources all over the internet. Bult
before we explore modern methods that are used for zero-shot VQA, we need to ex-

amine the beginnings of VQA in general.
2.6.1 Learning Transferable Visual Models From Natural Language Supervi-
sion [9]

Radford er. al. [9] presented a method of connecting images and their captions found
commonly on the internet. They named this method CLIP. The main goal of this work
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Figure 2.20: The CLIP method, described in the paper by Radford et al. [9]. introduces
a novel approach for training image and text encoders in a joint manner. Unlike standard
image models that focus on predicting specific labels, CLIP trains an image encoder and a
text encoder together o predict correct pairings of (image. text) examples in a batch during
training. This enables the model to learn a powerful representation of both images and text.
During testing, the learned text encoder is used to synthesize a zero-shot linear classifier by
embedding the names or descriptions of classes from the target dataset, allowing for accurate
classification without the need for fing-tuning. This approach expands the capabilities of the
model to understand and relate images and text in a more versatile manner.

was to show that multitudes of downstream tasks can be transferred through a zero-shot
setting where natural language is used as supervision. They use the contrastive loss to
align the image and text embedding spaces so that the images represent their captions
in the embedding space. It is different from regular image processing methods as it
does not jointly train an encoder along with a linear layer. Rather, it trains an image
encoder and a text encoder simultaneously. This training method is paired with the
contrastive loss so that it can predict the correct pairings of images and captions.
CLIP calculates image and text embeddings using ViT [65] and BERT [68]. These
produce embeddings in different embedding spaces and do not lead to the same vector.
So there is a disconnect between the two modalities. CLIP, through contrastive loss,
aims to move these vectors closer together. This is achieved by maximizing the cosine
similarity of an image and its caption and minimizing the cosine similarity of the same
image and every other caption. After training, the vision encoder and the textual en-
coder can be used together or separately in many downstream tasks often in zero-shot
settings. The authors, inspired by the zero-shot capabilities of GPT-3 [59]., wanted to
perform a great variety of tasks while not explicitly optimizing for their benchmarks.
After training on 400 million image-caption pairs, CLIP gained excellent zero-shot
transfer capabilities. They shift their focus from representation-learning capabilities of
zero-shot systems to rather learn to generalize to different tasks and unseen datasets.
CLIP is pre-trained to predict if an image and a text snippet are paired together in its
dataset. The authors use this capability to transform class labels into a text snippet
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describing the image for classification tasks. The predicted class is simply the one
with the highest cosine similarity. Here we observe the usage of natural language to
interface with the CLIP model in order to prepare it for different tasks in the zero-shot
setting. This gives precedence to a new task for preparing CLIP for a zero-shot setting,
prompt engineering.

Prompt engineering means designing a prompt that incorporates the label to be pre-
dicted in such a way that it gives good results when used with CLIP. As CLIP is trained
on image-caption pairs scraped from the internet, it mostly encountered captions with
multiple words describing the content of the image or the essence of the image. So for
downstream tasks, the prompt must be created such that CLIP has the best chance of
relating it with the image. So if an image contains a dog and the classification label is
dog, the generated prompt would be: "A photo of a dog. The exact method they used
for prompt engineering is "The photo of a (label)." and it resulted in decent perfor-
mances. This concept also follows the idea of engineering prompts for GPT-3 [59].
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Figure 2.21: Zero-shot CLIP [9] demonstrates competitive performance compared to a fully
supervised baseline. Evaluation across 27 datasets shows that the zero-shot CLIP classifier
outperforms the fully supervised linear classifier.
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Contributions:

L

Introduction of a novel approach for training visual models using alternative

forms of data annotation,

2. Development of a large-scale dataset called Conceptual Captions, consisting of
millions of image-caption pairs.

3. Utilization of natural language supervision instead of traditional annotations for
images.

4. Introduction of Contrastive Predictive Coding (CPC), a self-supervised learning
technique for learning effective visual representations.

5. Maximization of agreement between different image regions and their corre-
sponding captions through CPC.

6. Improved generalization and transferability of learned representations to various
visual tasks.

Limitations:
1. The reliance on the Conceptual Captions dataset may introduce biases or lim-

itations inherent to the dataset itself, affecting the generalization of the trained

visual models.

2. The use ol natural language supervision introduces a level ol subjectivity in the

annotations, which may result in inconsistencies or inaccuracies in the training

Process.

. The effectiveness of the proposed approach heavily depends on the availability

and quality of textual descriptions associated with the images. In cases where
such descriptions are sparse or of poor quality. the performance of the visual

models may be compromised.

2.6.2 How Much Can CLIP Benefit Vision-and-Language Tasks? [10]

Shen et. al. [10] explored the idea of using CLIP [9] in vision-language tasks such as

VQA for its excellent modality alignment. They observed that the majority of current

Vision-and-Language Models (VLMs) for perceiving the visual environment rely on

pre-trained visual encoders and use a relatively small set of manually annotated data (as

compared to web-crawled data). However, large-scale pre-training usually results in
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Figure 2.22: Comparing CLIP [Y] to other visual encoders. Regional approaches are trained
using [10] item detection data. Previous research uses either image classification or detection
data for grid-based algorithms [2]. However, CLIP simply needs a text that is aligned. These
encoders are swapped out by CLIP encoders.

better generalization performance, like CLIP, trained on a massive amount of image-
caption pairs which has shown a strong zero-shot capability on various vision tasks.
They explored if these capabilities could be transferred to vision-language understand-
ing tasks such as Visual Question Answering, Visual Entailment, and V&L Navigation
tasks. But transferring these capabilities is not that straightforward as CLIP does not
contain a generator or decoder, which is often needed for vision-language tasks. One
example could be image captioning. Without a generator. captions for an image cannot
be generated from the representations extracted by CLIP.

The authors explore the usage of CLIP in two distinct scenarios. One way they
changed the regular vision-language encoders with the CLIP encoders that learned to
align vision-language examples. Here, no pre-training was needed and existing archi-
tectures already facilitated the transfer of CLIP to do vision-language tasks. The other
scenario was combining CLIP with V&L pre-training and transferring to downstream
tasks.

In the first case. the CLIP encoders were fine-tuned on Visual Question Answering
and due to having a strong relationship between the visual and textual modalities, out-
perform traditional VQA methods like Pythia [74] and MCAN [49]. But it is not sur-
prising as these methods of VQA are not the current state of the art. It is expected that
CLIP with its superior embeddings of vision-language modalities would outperform
these aging methods. The current methodology for VQA tasks is to use large vision-
language models with extensive pre-training. The authors then tried to use CLIP in
such a setting. Here, they took vision-language models, like LXMERT [51] and Pixel-
BERT [75]. which do not treat the different modalities in separate streams. These meth-

ods process vision-language inputs together and rely on multiple pre-training tasks on
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both modalities. CLIP-based encoders barely outperform these methods as both have
strong image-language understanding.

In this work. the authors introduce a very simple zero-shot VQA method using
CLIP as an interface between image and language modalities. Which is QIP (Ques-
tion Invariant Prompting). Here the CLIP model is prompted the same way for every
question. The prompt is rigid and it is like: "Question: [The question] Answer:". Then
CLIP is used to find the answer that best matches the image given the prompt. This
method performs very poorly as CLIP was trained on matching image captions and

captions are not usually like the prompt designed by the authors.

Contributions:

1. Extensive evaluation of the CLIP model across various vision-and-language tasks,

such as image classification, object detection, and visual question answering.

[

. Comparison of CLIP’s performance against other state-of-the-art models spe-

cialized for individual tasks. highlighting its competitive performance.

3. Exploration of the generalization capabilities of CLIP by leveraging a large-scale
dataset with 1mage-text pairs, demonstrating its ability to achieve impressive

results across diverse tasks.

Limitations:

|. The paper does not thoroughly explore the potential shortcomings or weaknesses

of the CLIP model in specific vision-and-language tasks.

-2

. There could be factors not adequately addressed in the paper that may affect the

generalization and performance of CLIP across different datasets or domains.

3. The evaluation of CLIP’s performance may not consider certain complexities or

challenges that could arise in real-world scenarios or niche applications.
4. The paper does not extensively discuss the interpretability or explainability of
the CLIP model, which may be important in certain contexts.
2.6.3 CLIP Models are Few-shot Learners: Empirical Studies on VQA and Vi-
sual Entailment [11]

Song ef. al. [11] picks up from Shen er. al. [10] and develops the idea of zero-shot
VQA using CLIP. The main shortcoming of QIP was the rigid prompt. The authors

decided to develop a method for generating variable prompts from the given question.
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Figure 2.23: The TAP-C [11] method proposes a framework for zero-shot Visual Question
Answering (VQA). It involves generating a masked template from the question, fillering out
impossible answers, generating prompts by infilling the template with selected answers, and
using CLIP [9] to calculate image-text alignment scores for zero-shot VQA. The method
combines language models and image-text alignment models 1o address the challenge of zero-
shot VQAL

This would greatly benefit the model as CLIP was trained on image captions. This
method depends on using a large language model like TS [76] to turn the question into
an answer template. The answer is masked as the model only transforms questions
into answerable templates. Then another TS5 model was used to answer the masked
sentence. This generated multiple candidate answers. Then using CLIP, the candidate
answers are matched with the images. The one with the maximum similarity is selected
as the answer.

This method improved upon the zero-shot capabilities of CLIP for doing VQA.
As the transformed questions are more in line with the image captions that CLIP
is trained on, it outperforms QIP. The authors call this method TAP-C (Template-
Answer Prompt then CLIP). Transforming the question into an answer template looks
very similar to image captions. That is why, using a language model to fill in the an-
swer lemplates creates pseudo-captions for those images. And CLIP excels in image-
caption matching. Thus, TAP-C performs better than QIP. But one drawback of such
a method is that. while generating the candidate answers using a large language model,
the method treats it as a mask-filling task. The language model is totally unaware of
the image and only outputs what is the most likely outcome given the answer template.
Thus, if the image contains something that the language model deems unlikely. it will
not generate an answer that contains that. By doing so, CLIP would also provide the
wrong answer. If the language model was aware of the image and considered it when
generating the candidate answer, then it would have been better. But large language
models can process only a single modality. This 15 a limitation that is explored in later

works.
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Contributions:

I

T

. The paper delves into the capabilities of the CLIP model in learning from a

small number of labeled examples, shedding light on its potential for few-shot
learning.

. The authors showcase how CLIP performs admirably when compared to exist-

ing models on the tasks of Visual Question Answering (VQA) and Visual En-

tailment, even with limited training data.

. The paper demonstrates CLIP’s ability to transfer knowledge to new domains

without extensive task-specific training, allowing it to answer questions and

make entailment judgments effectively.

. The authors investigate the influence of pretraining on CLIP’s image and text

modalities, emphasizing the significance of large-scale pretraining for robust

few-shot learning performance.

. Through careful analysis and experimentation, the paper provides valuable in-

sights into the behavior of CLIP models, offering a deeper understanding of

their strengths and limitations in few-shot learning scenarios.

Limitaions:

I-J

fad

. Factors such as question complexity, dataset biases, or domain-specific nuances

may impacl the accuracy and generalizability of the results.

. While CLIP demonstrates impressive few-shot learning capabilities, it is still

susceptible to biases present in the training data. Biases can lead to skewed per-
formance, especially when encountering novel or underrepresented examples,
highlighting the need for careful consideration of dataset biases during evalua-
tion.

. The paper does not explore the fine-grained control over CLIP’s behavior for

specific tasks. While CLIP’s generalization abilities are impressive, there may be
mstances where task-specific fine-tuning or adjustments are necessary to achieve

optimal performance in certain applications or domains.

. The paper does not extensively address the scalability of CLIP models to large-

scale datasets. As the dataset size increases. computational and memory require-
ments may pose challenges, potentially limiting the practical application of CLIP

tor real-world scenarios involving massive amounts of data.
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5. The paper may not provide in-depth ablation studies exploring various design
choices or model configurations. A more comprehensive exploration of different
hyperparameters or architectural variations could provide valuable insights into

the factors influencing the few-shot learning performance of CLIP models.

2.6.4 Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pre-trained
Models with Zero Training [12]

Question Answering —
L e
uestion A

_f nswer

ﬂ:‘cma;;:cg;_ :' Caption 1:| “Salad with olives and a dressing in a bowl.” E

' Caption 2:| “Black olives and a salad in containers.” :

P i

| Caption N:| “A salad bow! with olives.” :
StochasticT decoding |

Image-Question GradCAM - Image Captioning : <N
Matching Module  |interpretation Module :
i

Figure 2.24: The PNP-VOQA system architecture [12] consists of three pre-trained modules:

an image-question matching module, an image captioning module, and a question-answering

module. The image-question matching module utilizes BLIP [3] to identify relevant image

patches based on the question. The image captioning module generates diverse captions using

BLIP. For question answering, the system adopts the UnifiedQAv2 model [18]. By combining

these modules, PNP-VQA enables effective visual question answering by leveraging pre-

trained models for image understanding and natural language processing.

Plug-and-Play VQA (PNP-VQA) 1s a modular framework designed for zero-shot
Visual Question Answering (VQA). Unlike many existing approaches that necessi-
tate extensive adaptation of pre-trained language models (PL.Ms) to incorporate visual
information, PNP-VQA does not require additional training of PLMs. Instead. the
authors propose the utilization of natural language and network interpretation as an
intermediate representation that connects pre-trained models. The PNP framework be-
gins by generating informative image captions guided by the corresponding questions.
These captions are then used as context for question answering by passing them to a
PLM. This approach allows us to effectively leverage the capabilities of pre-trained
models without the need for additional training specific to the visual modality.

In order to ensure that the generated captions in PNP-VQA are specific and relevant
to the question, the authors recognize that while an image contains abundant informa-
tion, the question typically focuses on particular objects or regions within the image.

Therefore. they force the model to create captions that go well with the image regions
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which are directly related to the question, rather than generic captions with no specific
purpose. To achieve this abjective, they use BLIP [3], a large-scale pre-trained vision-
language model. BLIP includes a network branch known as the Image-grounded Text
Encoder (ITE), which incorporates a vision transformer [65] for encoding the image
and a textual encoder that attends to the image features through cross-attention. The
ITE branch contains a similarity score, which measures the similarity between an im-
age and a text description. To encode the image, the image encoder in ITE divides the
image into k patches of equal size. enabling a comprehensive representation of the vi-
sual content. This division into patches allows the model to capture information from
different parts of the image effectively.

Tiong er. al. [12] tackles the question of using large pre-trained models in multi-
modal tasks, specifically VQA. Inspired by the recent astronomical development of
large pre-trained language models (PLMs) such as [59, 68, 70, 71, 76]. the authors
inquired how to use these models in VQA. But these models lack multi-modal un-
derstanding ability. Thus, they decided to use network interpretability methods like
GradCAM [19] as an interface between the visual and textual modalities. This method
bridges the gap between the modalities and harnesses the potential of PLMs for mulu-
modal tasks such as VQA. The authors designed their method in a modular way so
that anyone can replace the PLM module or the image processing module for better
alternatives.

Their framework for zero-shot visual question answering which conjoins large pre-
trained models with zero additional training is called PNP-VQA: Plug and Play VQA.
They first take the image and divide it into multiple patches. Then they take the ques-
tion and perform the GradCAM operation on the image conditioned by the question.
This gives k patches where it matters the most for answering the question. After the
f: patches are selected, they are sent to an image captioning module. This generates n
captions from the & patches. Here, the authors used BLIP [3] to generate captions for
the selected image patches. They call this "Question Guided Captioning". Their work
is a derivative of PICA [77] where they generate a single caption from the image and
use it as a context for answering the question. After generating the captions, the au-
thors combine them after encoding them. It is called Fusion-in-Decoder or FiD. Then
the embeddings are sent to a PLM which answers the question.

An image serves as a rich source of information, but the question at hand is likely
focused only on particular objects or regions [12]. Therefore, the authors encourage
PNP-VQA to generate captions that describe image regions relevant to the question
instead of generic captions with no specific aim [12]. They accomplish this goal by

leveraging BLIP [3], a large-scale pre-trained vision-language model that contains a
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Q: what pattern is the comforter? A: plaid Q: what color are the bird’s eyes? A: yellow

Generic captions:

1. a bird that is perched on top of a
tree

2. a close up of a bird of prey atop a
tree

Prediction: green

Generic captions:

1. a cat sleeps on her bed in front
of a laptop

2. a cat rests in front of a laptop
screen

Prediction: houndstooth

Question-guided captions:

1. cat laying on a plaid plaid plaid
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Prediction: plaid

Question-guided captions:

1. a black - and - white bird with
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2. alarge hawk perched on a tree
looking at the camera
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Figure 2.25: We can generate two types of captions for VQAv2 [15] data: generic captions
that describe the entire image, and question-guided captions that focus on specific image
patches. The question-guided captions are generated by using GradCAM [19] heatmaps to
identily relevant patches. These different types of captions provide varied perspectives and
insights into the image, allowing for a more comprehensive understanding of the visual con-
tent in VQAvV2 scenarios.

network branch outputting a similarity score sim(v., t) between an image » and a text f.
This branch, called Image grounded Text Encoder (ITE), employs a vision transformer
[65] that encodes the image, and a textual encoder that attends to the image features
using cross-attention. The image is evenly divided into & patches before being fed into
the image encoder. We send the picture ¢ and the question # to the ITE network in
order to find important image patches. We next use a variant of GradCAM, a feature-
attribution interpretability technique. which aggregates all cross-attention mappings

MxK

using gradient weights. The cross-attention scores, /A € R . can be written as:

o
YW WX ) 3

VD,

Then GradCAM computes the partial derivative of the similarity score from ITE

A= softmaxr (

with respect Lo the cross-attention scores. Then multiplies the gradient matrix element-
wise with the cross-attention scores and computes a weighted average across the heads.
This would be like:

- 1 ¢ ] U.‘snn(i‘. l) (h)
i) = =33 p, LMD 4 2.3
rel(i) 7 E min 0 A 1 (2.3)
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Here, h denotes the number of attention heads. The attention matrix A can be used

to determine the significance of a patch. Inspired by GradCAM [19], they eliminate

attention scores that aren’t useful by multiplying them by the gradient, which could

make the image-text similarity grow,

The authors deduced that using GradCAM gives them the ability to pick out which

image patches are necessary for answering a question according to the question. This

idea is remarkable for being modular and finding a simple yet effective way to conjoin

PLMs with existing image processing methods. Using network interpretability meth-

ods to choose relevant image patches for captioning could be improved upon by using

special attention mechanisms., We discuss it in the following literature review.

Contributions:

. The paper introduces an innovative method for Visual Question Answering (VQA)

that does not require task-specific training. It proposes a framework that com-
bines existing pre-trained models from the language and vision domains, en-
abling VQA without the need for extensive training.

. The authors utilize the knowledge captured by pre-trained models, including lan-

guage models and visual models. to generate answers to questions about images.
This approach taps into the general understanding of these models, allowing

them to answer questions without specialized training.

. The paper suggests a two-component architecture that integrates language and

visual models. This combination enables the system to generate plausible an-
swers using the language model and rank them based on visual compatibility
using the visual model. This integration facilitates zero-shot VQA without re-

quiring specific training.

. The paper presents experimental results on established VQA datasets, compar-

ing the proposed framework to fully trained models. The results demonstrate
competitive performance despite the absence of task-specific training, indicating
the effectiveness of the approach for zero-shot VQA.

. The contributions of the paper have implications for various practical applica-

tions where VQA is needed but limited or no task-specific training data is avail-
able. The proposed framework opens up possibilities for deploying VQA sys-

tems in real-world scenarios without extensive training requirements.
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Limitations:

I

. The effectiveness of the approach heavily relies on the quality and comprehen-

siveness of the pre-trained language and vision models used. Limitations in these
maodels, such as biases or knowledge gaps, can impact the accuracy of the gen-

erated answers.

. The plug-and-play framework might struggle to adapt to highly specialized or

domain-specific VQA tasks. The lack of task-specific training can result in sub-
optimal performance when the questions and images deviate significantly from

the data the pre-trained models were exposed Lo.

. The pre-trained models utilized in the framework may inherit biases present in

their training data, which can manifest in the generated answers. Additionally,
there is a risk of overgeneralization or undergeneralization. where the system
might provide overly generic or overly specific answers due to the lack of task-

specific training.

. As the size of VQA datasets grows, the plug-and-play framework may encounter

scalability challenges. The computational resources required to process and in-
tegrate information from large-scale datasets can become prohibitive without

task-specific training or optimizations.
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Chapter 3

Visual Robustness Analysis for VQA

In this chapter, we discuss the background knowledge for our framework followed by
the related definitions that pave the way for the next section — the proposed visual
robustness evaluation framework. We further define a new set of evaluation metrics

and delve into the experimental results of our framework.

3.1 Background Study

In the previous chapter, we described traditional robustness approaches along with ro-
bustness works on image classification [7] and on texts of VQA systems [6]. CARETS
[8] proposed a test suite along with a dataset and new metrics for both robustness and
consistency. [6] also proposed new robustness metrics along with a basic question set
for robustness evaluation. However, the work primarily focused on textual robustness
without considering corruptions or noise on the image input.

At this point, it can be established that there 1s an absence of literature on the vi-
sual robustness of VQA models. Furthermore, there is no metric to quantify a model’s
robustness or quantify the effect of a particular form of corruption on the model’s per-
formance. To deploy a VQA model 1n a real-life test environment, one must be able to
quantify how prone the model is to image corruption or visual etfects that commonly
occur in real-life as image corruption is more common than textual corruption. Often-
times, 1images taken from live-cam and video feed will be used for VQA which might
degrade the performance of models with high accuracy.

[7] explored real-life corruption effects on classification networks but their work
has some major flaws. Firstly, the work is outdated, and hence, their results are use-
less as modern architectures evolved drastically. While most of their works focused on
neural networks, the world is shifting towards transformers-based [78] architectures.
Secondly, they do not propose a complete framework, and hence, the outdated models

cannot be replaced by newer ones. Finally, and most importantly. their methodol-
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Figure 3.1: Overview of the Visual Robusiness Framework: noise is applied (o the visual
input and then fed to a set of models with unaltered textual input. The robustness score is
calculated from the resulting set of predictions,

Score

ogy cannot be generalized 1o VQA. While their corruption effects can be viewed as
the template for visual corruption on VQA images. we can also assert that there is a
substantial difference between working with images for image-only classification net-

works and working with images on image-text VQA networks.

3.2 Related Definitions

Based on the previous discussion, we will dive into the quantification of visual ro-
bustness by first defining visual robustness for VQA models and then defining the

corruption functions that are common occurrences in practical scenarios.

3.2.1 Defining Visual Corruption

We define visual corruption as the degradation of the image caused by various factors
such as noise, blur, or compression artifacts. Our work primarily focuses on the preva-
lent forms of degradation that are commonly observed in real-world scenarios. Our
definition of visual corruption is similar to [7] which is substantially distinguishable
from adversarial attacks. The associated metric to test the robustness does not consider
adversarial attacks either.

We first define our VQA model as a classifier f : X}, Xy — )V and the training samples
are from the joint probability distribution are D; ;. We further define a set of functions
that perform visual corruption as C where each function is associated with a probability

of occurring in real life as Pr(7) € Fr. We can now define the visual robustness B of
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our classifier on the test dataset which follows the same distribution D ¢; such that,
:IE-—“-{“._P[ r',.r',J.f,l:-ﬁ-Dlu_,‘;[.)’l{T[J-J'~ -f';]u} - UJ” (3 1}

which corresponds to the average-case performance making it a suitable metric for
robustness. On the contrary, adversarial attacks correspond to the worst-case perfor-
mance on the classifier’s response to small and specific changes made to the input data,
and such changes are tailored to that specific classifier instead of a corruption function

that affects classifiers universally. The adversarial robustness can be defined as
in f."-’.r[EBI.J'._.l',,._r;_I'~-D;.c_1{.Ifll{'rr + 8i 7y + 0y) = y)] (3.2)

where ¢ is a small increment. Since we are more concerned about the performance of
our models on real-world corruption etfects, we would hence define robustness as the
average-case performance instead of the traditionally defined adversanal robustness

which deals with the worst-case performance.

3.2.2 Visual Corruption Functions

At the time of writing this paper, our framework comprises 17 visual corruption func-
tions, analogous to image processing functions inspired by [7, 79], which are used
to create a diverse set of artificially corrupted image datasets. Most of the corruption
functions have severity levels starting from severity level - 0 i.e. the uncorrupted image
and each level is defined by a set of parameter values set in a way that the difference
between two consecutive severity levels is noticeable to a human observer. The trans-
formation functions are chosen to replicate corruption effects that resemble realistic
conditions. We have categorized the set of corruption functions into 4 broad categories

similar to [79].

Arithmetic Noise

Arithmetic noise modifies the image by performing arithmetic operations e.g. addition,
multiplication, negation, etc on all of the color channels. A subcategory of arithmetic
noise is Additive Noise the adds a particular value that comes from a distribution
to every pixel in the image. Additive noise is implemented in the form of Gaussian
Noise and Poisson Noise. Gaussian Noise appears in low-light conditions [7] and is
one of the most frequently occurring types of noise in telecommunications and digital
image [80]. Poisson Noise. often referred to as Shot Noise, occurs due to the nature of
light behaving as a quantized particle [81]. To define additive noise, We first define the
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random variable .\ as X, ~ N(p, o) where the probability distribution N is defined

as flr) = -

as f(r) = ¢ *. Hence, the transformation function for additive noise can be defined

¢ 22 and X, ~ P(A) where the probability distribution P is defined

as T(r) = r+ Y where Y = X, for Gaussian Noise and Y = X, for Poisson noise.
The severity levels are defined by changing the parameter values of the aforementioned
probability distributions.

Another subcategory of arithmetic noise is Multiplicative Noise implemented in
the form of Speckle Noise which is defined as 7(r) = r + r * X,, where X, is
the random variable X, ~ N(y.o7) as defined earlier. Speckle noise is a common
occurrence in medical and radar images [82]. Color Inversion, a common digital
image processing operation, simply negates the image, 7 (r) — —r, and has a single

severity level.

Value Assignment Noise

As the name suggests, value assignment noise has a probability p of assigning a par-
ticular value to a pixel, 7 (r) = k. on all of the color channels. This noise is primarily
implemented in the form of Impulse Noise which is typically one of the two types - bi-
polar impulse noise, commonly known as Salt and Pepper Noise. and Random Val-
ued Impulse Noise. Salt and pepper noise takes one of two values, typically between
the maximum intensity value r,,,, and the minimum intensity value 7,,;,, — each with
an equal probability p of occurrence. Random-valued impulse noise takes a particular
value from a range of values, typically :r',,,,-”. .r',,,,”.]. and tollows a unitorm distribution
tor the probabilistic occurrence of the values. A defective camera sensor might cause
impulse noise during capturing and transmitting the image [80, 83]. Another form of
value assignment can take place i the form of Thresholding i.c. the pixel will be as-
signed a particular value if it exceeds or subceeds a particular threshold value. Binary
Thresholding is defined as T (1) = r .. if 7 = rypean. otherwise, T(r) = ...

Image Attribute Transformation

An image has several attributes e.g., brightness, saturation, and color property, which
can be modified by the image attribute transformation functions. Our framework in-
cludes five transformation functions — Brightness, Contrast, Saturation, grayscale, and
Grayscale Inversion. To modify the Brightness, we transform the image from the RGB
color model to the HSV color model and add a constant value to the value channel of
the HSV image resulting in the increase of brightness and intensity of the image. By
adding a negative value to the valite channel, the function will darken the image. The

function can be defined as 7 (v) = v + ¢ where v represents the value of the value

oK



CHAPTER 3. VISUAL ROBUSTNESS ANALYSIS FOR VQA

channel and ¢ represents the additive constant. In real-life scenarios, lighting effects,
luminance adjustment in digital displays, photographic effects, and other factors can
causc an image to appear brighter or darker. By simulating these effects using the
brightness function, our framework can be used to test the robustness of VQA models
to varying lighting and display conditions.

Saturation refers to the purity of the colors in an image [84] and can be used to
enhance the quality of the image i.e. the image will look visually appealing to a human
observer. However, oversaturation might make the image look artificial to an observer,
and undersaturation might produce washed-out effects that can adversely atfect the
image quality. Changing the saturation of an image is common in digital image pro-
cessing to make the image look aesthetically pleasing. To change the saturation, the
image is transformed from RGB to HSV color model, and the saturation channel value
is modified by multiplying and adding a constant value i.e.T (v) = v ¢ + ¢o where ¢
and ¢, represents the multiplicative and additive constants respectively which are set
based on the severity of the noise.

Contrast refers (o the difference of color intensity values between different parts
of the image [84] i.e. how well the details of an image are distinguishable. Usually,
high contrast is more appealing to a viewer as it sets clear boundaries between various
color intensities. On the contrary, low contrast causes difficulty in differentiating the
details and hence, producing washed-out effects. Contrast enhancement is a common
image-processing technique applied to spatial. frequency, and wavelet domains using
contrast stretching, histogram equalization, etc. The contrast changing is defined as,
T(r)=(r—pugw)*c+ pyw where pi; yw represents the average pixel intensity over
the heighi and width channel and ¢ represents the multiplicative constant. For all 3
transformation functions, the output values are clipped from 0 to 1.

Grayscale can be thought of as a transformation function that modifies the color
property of the image. Grayscale works by simply averaging the pixel values over
the color channels i.e. T(r) = pe where pi represents the average pixel intensity
over the color channel. Color Inversion has been discussed as arithmetic noise but it
can also be classified as an attribute transformation function since it modifies the color
property of an image. Grayscale Inversion is simply the combination of grayscale and
color inversion: defined as 7 (r) = —p . grayscale images are common in real-life
systems where it is not possible to represent the color information of a digital image.
Several systems like medical imaging. document scanning. security systems, etc. use
grayscale images, and systems like night vision, medical imaging, astronomy, etc. use
color-inverted images. Thus. it is necessary for VQA models to perform well on both

grayscale and color-inverted images.
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Blur Noise

Blur noise deals with blurring effects similar to convolving with an averaging filter
and can be mathematically described as 7(Z) — Z = i’ where Z represents the digital
image and A represents the kernel and convolution operation for a 2D image is defined

das
0

(Frpaey) =D Y JGd)-gle—iy—J)

i=—00 j=—0x
While Gaussian blur and median blur are common blurring functions, we shall define
3 other realistic blurring functions that have common real-life applications. Defocus
Blur performs channel-wise convolution, and the function is defined as T(Z1) = 1 =
K, , where IV, , is a disk-kernel with » radius and « alias blur. The constants r and a
vary across the severity levels. Defocus blur replicates the blurring effect in cameras
where the subject is out of focus. Zoom Blur occurs due to rapid camera motion
towards an object and Frosted Glass Blur imitates the appearance of an object while
looking through frosted glass [7]. Both effects do not have strict definitions and our

framework follows the implementation from [7].

Miscellaneous Effects

Apart from the previous transformation functions, we add weather effects which try
to make the image appear in a particular weather condition. At the time of writing
this paper. our framework includes only the Snow Effect but we wish to include other
effects like fog, frost, rain, and clouds in the future. Some transformation functions try
to create physical effects on the images. The Splatter Effect makes the image look
like it has been splattered by paint or any form of liquid. The Elastic Effect simulates
the effect of stretching or wrapping the image. Finally, we include a couple of trans-
formation functions that replicate digitization effects. The Pixelate Effect is a visual
effect that creates a mosaic-like appearance similar to visible image pixels appearing
due to lower resolutions. The function works by replacing smaller details and textures
with larger blockier shapes. Pixelation is commonly used for stylistic purposes and for
censoring parts of an image. JPEG Compression Effect tries to emulate the loss of
image information due to JPEG compression. Similar to the previous category. all the
miscellaneous functions do not have strict definitions, and our framework’s implemen-

tation follows [7].
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Figure 3.2: Architecture of the proposed Visual Robustness Framework.

3.3 Proposed Methodology

We created a framework for evaluating the visual robustness of current and future VQA
models. Our framework is designed to be modular and resilient. It allows users to uti-
lize their own datasets and models for evaluation of performance. as well as implement
their own corruption functions for their special needs. By doing so, our framework pro-
vides greater flexibility to researchers and practitioners to test the visual robustness of
any model using various data and scenarios. Fig-3.2 shows the primary elements of
our framework that take a dataset and a collection of models as inputs and produce
the VRESs, accuracy scores. and visualizations as output. The robustness and accuracy
metrics in our framework have been discussed in the previous section. The framework
consists of a model repository, a generator module, an inference module, a robustness
evaluation module, and a visualization module.

The images of the dataset are passed to the generator module which produces the
augmented dataset using a set of transformation functions defined earlier. Our frame-
work is completely modular and hence, the users have the flexibility to add or remove
transformation functions if necessary. Most of the transformation functions will have
6 severity levels; the first one being the uncorrupted dataset. The impact of strengih
of the noise is proportional to the value of the severity level i.e. it will visually get
tougher to understand the context from the image with higher severity levels.

As the first severity level. i.e. level - 0, is the same for all datasets. for n such
transformation functions, we will have 5n + 1 augmented datasets (the uncorrupted

dataset is also considered as part of the augmented dataset). The model repository will
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pass a model which will run inferences on the augmented datasets. The output will be
given in the format of JSON files which will be passed to the robustness evaluation and
visualization module. All the robustness and accuracy metrics will be calculated by the
robusitness evaluation module and the results will be also be stored as a JSON file. The
visualization module will simply create and store different forms of visualizations that
we will be shown in the latter sections.

We designed our approach to track the performance of the models and report any
anomalies detected during the experiment. The logger file provides information on
how the model performed and stores errors such as any issues with the JSON files,
running the models, etc. The JSON files produced by the inference module contain
the questions that the model predicted correctly and actual answers taken from the
dataset’s annotation file.

Moreover, our framework currently comprises 17 visual corruption functions which
are modular and expandable. Functions were chosen based on the category of corrup-
tion, the impact of noise on visual inference for answer generation. and the resem-
blance of the effect to realistic noise. The visual corruptions effects are similar to [7]
with 5 levels excluding the base level but functions such as grayscaling and color in-
version has a single level only. The transformations provide greater diversity in the

dataset, making it more challenging for the models to accurately answer the questions.

3.4 Proposed Evaluation Metrics

We introduced several evaluation metrics in this work; the two primary metrics being
the accuracy metric and our proposed Visual Robustness Error (VRE) metric. The
Visual Robustness Error 1s an aggregated metric that tries to quantify error for a model
or a particular type of corruption. Hence, higher VRE values for a model indicate that
the model is relatively more prone 1o noise. We emphasize the word relatively as VRE
performs a comparative normalization on the metric values and thus, the generated
VRE scores are relative to the set of models used: the scores are not universal. Such
a design choice has been made to use the framework as a comparative module which
helps in comparative analyses and visualizations. However, users have the flexibility
to replace the relative VRE with absolute VRE scores but our experimental results in
this paper will not use the absolute VRE scores. In this work, when we refer to VRE,

it indicates the relative VRE score specifically.

a7



CHAPTER 3. VISUAL ROBUSTNESS ANALYSIS FOR VQA

3.4.1 Model Evaluation

The robustness of a particular model depends on the type and severity of the visual cor-
ruption. As it is difficult to use a single pre-existing metric to estimate the robustness
of a particular model or quantify the effect of a corruption type. we propose a better
measure of robustness as an aggregation of metrics. While aggregating the metrics, we
ensure the scores are corruption-independent and model-independent for model-based
and corruption-based aggregations respectively. Furthermore, the average accuracy of
the models and visual corruptions are also calculated and the corresponding error is

integrated into the unified robustness score.

3.4.2 Accuracy Evaluation Metrics

The standard metric [21] to evaluate a VQA model’s accuracy for open-ended tasks
in VQAv2 dataset [15] for a particular model v, corruption type ¢, severity level [ is

defined as:

e 1 . ZHZ—'.I"...,. :[[”rl' = ”] :
A== E min . 1 (3.3)
' Ng &~ 3
gl
where N is the number of questions in the dataset, ¢ is a particular question from
the question set (], a is a particular human annoted answer to the question ¢ from
the corresponding answer set A, [[-] is the indicator function, and a is the answer

predicted to by the model for ¢. We can now compute the average accuracy as:

i l (i
A= JZl; (3.4)

where L is the number of severity levels, and [ is a particular severity level from sever-

ity level set . = {0.1,2,...}. We further define average accuracy for a particular

AV = {121 (3.5)

where €' is the number of visual corruptions, and ¢ is a particular visual corruption

model as:

from the set of corruptions C. Similarly, we define accuracy for a particular corruption

A = ilz 1’ (3.6)

where 17 is the number of models, and v is a particular model from the set of models

function:

W. It is to be noted that, the higher the accuracy for the corruption type, the weaker the
corruption type is 1.e. the corruption accuracy is inversely proportional to the sirengih

of the corruption.
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3.4.3 Robustness Error

As per the definition of accuracy 3.3, we can simply define the robustness error or
simply, error as;
Ey=1—-A4; (3.7)

It should be noted that there can be multiple ways to define the error but we chose
o use misclassification error due to its simplicity, usability, and similarity to the ac-
curacy metric. According to [21], an answer is stated to be fully accurate if at least 3
human annotators gave the same answer for that particular open-ended question. By
the definition of error. that answer will be error-free. Similarly, for 1 and 2 human
annotated answers, there will be partial error, and for no annotated answers, there will
be the maximum error. Similar to average accuracy, the error is also expressed in per-
cenlages.

The robustness error typically increases with the increase in corruption severity
but experimental results somefimes showed a decrease in error with the increase in
severity. This is valid by definition as a higher severity level is associated with the
parametric values of the corruption function that visually produce a stronger corrup-
tion effect and such an effect might not always result in the deterioration of a model’s
performance. For instance, the image produced by the corruption function for the
severity level - 5 will visually appear to have a stronger corruption effect when viewed
by a human than the corresponding severity level - 4. However, the effect might re-
sult 1 some minor visual details being overlooked by the model which might help
in answering certain types of questions analogous to having a bird’s eve view on the
image. Another example — pixelating an image to a greater degree will result in the
model overlooking/ignoring the structural details of the image and might help answer
color-related questions. Similarly, the corruption effect might also result in the model
noticing/focusing certain details about the image e.g., brightening the image will help
the model notice the darker details and plausibly result in more accurate answers to the
related questions.

The relatively rudimentary VQA models exhibit this property of utilizing the cor-
ruption effect to increase the accuracy as they have a very high base error. Unbalanced
and small-scale datasets might also result in undesired outcomes as such datasets aren’t
suitable for evaluation. We disregard this 1ssue in our experimental results by using
modern VOQA models [4, 85] and a standard dataset [15]. However, for theoretical
purposes, the maximum and minimum error is explicitly ditferentiated from the error

values associated with severity levels 5 and 0 respectively.
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3.4.4 Severity Aggregation Metrics

The severity levels are associated with the parametric values of a particular corruption
type and our aggregation metric denoted by M where M is a generalized aggregation
metric will combine the error values for a particular classifier ¢ and for a corruption
type ¢ over the severity levels. As the severity levels are not strictly defined by the

parametric values, these values are disregarded during aggregation,

First-Drop

The score is defined as the relative change of error when the least amount of corrup-
tion is applied i.e. the relative difference between the first severity level error and the
uncorrupted/level-0 error. The rationale behind using the relative difference instead of
the difference only is that the difference is dependent on a model’s severity-0 accuracy
or base accuracy while the relative difference doesn’t have such dependencies. The
word drop is used to signify the drop/decrease in accuracy due to the initial corruption
level but when calculating robustness error, an increase in error is expected. Higher
first-drop scores indicate that the model is more prone to the minor impact of a partic-

ular corruption. Mathematically. first-drop 1s represented as:

Range of Error

The range of error indicates how spread out the error values are across severity levels
and is calculated by taking the difference between the maximum and minimum error
values: defined as:

T = m;:.r'[E':,'J] - m{in[ﬂ’_",] (3.9)
A higher range of error indicates a model’s continuous decline of performance with

increasing severity levels and the extent of the effect of a particular corruption type.

Error Rate

The change of error between severity levels is defined by the error rate and is calculated

by taking the slope of the best-fit line satisfying the error values over severity levels.
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We simply use the regression equation to define this metric:

_ LY (1Ez) - (I_Zi) (:_Z ’L’)

Pe=—" (3.10)
LY 12 — (Ef)
el

= fell

Average Error

I'he average error is analogous to (3.4):
i ]- !."" [_' I ] .}
b, = — [ o
H 7 ; el

[7] uses a form of averaging known as corruption error that can be inferred as the
average error of the current model relative to the average error of a base model for that
particular type of corruption.

Average Difference of Corruption Error

A more nuanced metric inspired by [7] that aggregates error differences with the un-

corrupted 1image and 1s defined as:
i l (& i
AI' = L 1 ;:" ; [‘E|r-..ll o EI .”] [3.'2}

where 1" is defined as the set of corrupted severity levels I = {1.2.3, ...}

3.4.5 Visual Robustness Error (VRE)

VRE is a unified score for a particular classifier © or for a particular corruption type ¢
that aggregates the previously defined metrics M by calculating a weighted average

of the normalized metric values.

Corruption Aggregation Metrics

Aggregating metrics for different types of corruption is more challenging than aggre-
gating severity levels, as the difficulty level varies across the corruption types. We

aggregate the generalized metrics M! € M where M = {F.R.p. j1. 8} as

> M:
MY = (3.13)
Hzzm)
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The metric aggregates the corruption types ¢ € C where C denotes our set of corruption
functions for a model € %V where ' denotes our sct of VQA models and V' denotes
the number of models. The corruption aggregated metric gives us a value relative to
the average metric value of the models and based on the value we can infer a model’s
robustness based on a particular metric. For example - if a particular model has a
corruption-aggregated first-drop score greater than 1, it indicates that the model has an
above-average first-drop score. Similarly, a score lesser than 1 indicates a more robust
model.

Model VRE
VRE for a particular model v is defined as the weighted average of the corruption

aggregation metrics:

VRE, = Z Wy M" where Z Wy =1 (3.14)
MeM

MeM

We introduce a hyperparameter o which is the weight assigned to the average error. As
the summation of the weights will be equal to 1. the rest ol the weights will be equally
distributed between the other metrics. The rationale behind assigning a weight to the

average error will be discussed in a latter section. The equation can be writiten as:

1 - 1-— 1 - 1 —
if-lel—( -LH)‘}-.!.__( -l{l)R!--'—( _1“)Ir.i‘r-+n.”r_( 4“){.}1' [3]5}

Model Aggregation Metrics

Similar to the corruption aggregation melrics, we aggregale the generalized meltrics

M e M for different models and define the model aggregation metrics as:

> M
M, = (3.16)

Corruption VRE
We also define the Visual Robustness Error (VRE) for a particular corruption function
ce Cas:
VRE, = Y WuMwhere Y Wy =1 (3.17)
Meld Mek
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Similarly, the equations are formulated using o

1 —n 1 —a 1—c 1=y
nE . oL " ¢ (3
VRE, ( 1 )}- +( 1 )R ( 2 );J ol +( 1 )f‘} (3.18)

3.5 Performance Evaluation

In this section, we shall primarily look at the prerequisites to conduct experiments
using our framework. Before analyzing the results, we will go through the setup, the

dataset, and the models used.

3.5.1 Experimental Setup

We test the performance of six recent VQA models on the random subset of the val-
idation split of the VQAv2 dataset [15], a large-scale dataset for VQA tasks that is
considered a standard. The augmented datasets are produced using 17 transtormation
functions, but the result analysis on grayscale and grayscale inverse have been omit-
ted. When an image is converted to a grayscale image or inverted. it loses its color
information. Afterward, the model will not be able to answer color-related questions.
Again, if the model accurately answers a color-related question i.e., its answer maiches
the annotated answer, then that means the model associates the color with a particular
shape, and hence, exhibits some form of bias. Hence, using the other 15 transformation
functions 1s advantageous while doing comparative analyses as the other transforma-
tion functions do not cause incorrect annotation problems.

The inferences were performed on a single Nvidia RTX 3090 GPU. Most of the
models were run using the HuggingFace library [86]. Hence, the models implemented
in our framework have dependencies on the HuggingFace library and the reader must
be aware of this fact during experimentation. Due to the expandability of the frame-
work. multiple datasets are supported and concurrent inferences can also be performed.
But for our experiments, we used a single dataset only described in the next section.

3.5.2 Dataset

Our framework was tested on the VQAv2 dataset [15] which is a standard dataset
for performance evaluation of VQA models. The dataset consists of 204,721 images,
1,105,904 questions, and 11,059,040 ground truth answers in total. Due to limited
computational resources. we ran our experiments on a randomly sampled subset of
the VQAv2 dataset by taking 3.000 images and their corresponding 16,000 question-

answer pairs and augmenting the dataset for 15 transformation functions and 5 severity
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levels. Disregarding the original dataset, every model was run on 15 x 5 = 75 aug-
mented datasets.

To conduct our experiments, we utilized JSON files for annotations and questions.
The JSON file for questions contains information such as the question 1D, type, and
the actual question. On the other hand. the JSON file for annotations contains answers
for each question with 10 different options and confidence scores for each option.
This approach provides the user with the flexibility to choose from a range of possible
answers for each question, rather than being constrained to a single correct answer.

3.5.3 Models Evaluated

We have evaluated 6 different models in total using our framework. These models are:
BLIP and BLIFy,, . (3], ViLT [4]. GIT and G174 [5] and finally, the zero-shot
model PN P [12]. For BLTFP and G717 the large variations have also been used to
find a plausible relation between the size of the model i.e. the number of parameters
and its associated robustness. BLI P, GIT, and ViLT are state-of-the-art models with
a relatively high accuracy. All three of them are transformer-based models. PN F is
the only exception in our list of models: firstly, it is a zero-shot model, and secondly,
it uses various modules that can be updated with time. For our experiments, the PNP
model used GPT-3 [59] as the Question Answering module and BLIP [3] as the Image-

Question Matching and Image Captioning module.
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Figure 3.3: Comparison of base accuracy of the models used in this paper
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3.6 Result Analysis

From the experiments, we find an error value and accuracy value for a particular model
and a particular type of corruption for every severity level. Fig-3.4 helps us visualize
the error for the 6 severity levels of the L7 model. Both the error and accuracy
values are metric values that will later be aggregated to make more meaningful infer-
ences. We will get many such values for various models and corruption which will be

aggregated either model-wise or corruption-wise by metrics defined in the section-3.4.

Model Error on Shot Noise for BLIP

0.5 1

0.4 -

Error

0.2 7

0.1 1

0.0

i} 1 2 3 4 3
Severity Levels

Figure 3.4: The error for every severity level for shot noise tested on the L1 F model [3].
A common property of the errors values is that it increases with the severity level.

3.6.1 Comparative Analysis of Accuracy

We first have a look at the average accuracy for varying models and noise. Table-
3.1 shows the results for all 6 models and for 15 categories of noise. From the table,
we can infer that PN P has a comparatively lower accuracy than the other models
as PN P is a zero-shot model and hence, has not been explicitly trained on VQA.
The BLIP models have comparatively higher accuracy than both ViLT and GIT.
The larger models also tend to outperform the base models. Looking at the fig-3.6,
we can understand how the accuracy might vary for the various types of corruption
effects. To visualize each corruption effect, the reader is advised to refer to fig-2.18
by [7] which encapsulates all the 15 corruption functions used in this paper. Firstly, the
brightness function has the highest average accuracy and the outcome is not surprising
as neither the model nor the humans should be confused by brighter images. On the
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Table 3.1: Average Accuracy of the models for different types of corruption

""';"---I."T?f’d‘ﬂ BLIP BLIP ViLT GIT GIT PNP
Noise —
| Large Large

Shot 0.625 0.634 0.577 0.543 0.553 0.497
Gaussian |~ 0715 0720 @ 0665 0628  0.638 0.434 |
Impulse  0.706 0.710 | 0.660 0615 0.620 0.447 |
Speckle 0.732 0.740 0.686 0.645 0.656 0.419
Defocus 0.706 0.710 0.673 0.656 0.665 0.425

Glass 0.702 0.709 0.652 0.619 0.637 0.458
Zoom | 0625 0630 | 0564 0525 0534 0.531

Snow | 0.685 0.694 = 0.604 0.578  0.591 0.454
Brightness 0.755 0.764 0.701 0.683 0.692 0.387
Contrast 0.715 0.722 0.640 0.603 0.622 0.480
Saturation 0.729 0.734 0.681 0.644 0.653 0.319
Elastic 0.729 0.736 0.689 0.643 0.661 0.311
Pixelate = 0.734 0741 | 0.707 0.684  0.696 0.293
JPEG | 0738 0743 | 0706  0.655 @ 0.668 0.294
Splatter 0.726 0.733 0.665 0.624 0.627 0.335

Average Accuracy for various VQA Models
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Figure 3.5: Comparison of average accuracy of the models used in this paper
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Average Accuracy for various Corruption Types
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other end of the spectrum, zoom blur has the lowest accuracy, and unsurprisingly, if an
image appears to have a zoomed-out effect human observers tend to have a hard time
answering related questions as well.

Shot noise and snow noise have slightly better accuracy than zoom blur. Both shot
and snow noise have dotted particles scattered on the image which might result in
blocking important image details and thus, resulting in a poor accuracy score. Splatter
noise tends to have a lower accuracy as well due to similar reasons. Most of the other
corruption types have similar accuracy results which doesn’t give us much information
to differentiate between those corruption types.

Unexpectedly, the speckle, defocus and pixelate have higher average accuracies,
and looking at the corruption effects one might argue that these effects should make
question-answering more difficult on the image. However, we also have to keep in con-
sideration that there are several severity levels, and the rise of difficulty for each sever-
ity level is different for different kinds of corruption effects. Hence, we can conclude
that accuracy is a simple measure of evaluating the strength of a corruption function

but it may not be the best way.

3.6.2 Comparative Analysis of VRE

Table 3.2: Normalized V' [T E,, . score of the models for different types of corruption

. i BLIP BLIP ViLT GIT GIT PnP
Noise
Large Large

Shot 0.310 0.202 0.208 0.661 0.602  0.999
Gaussian =~ 0.106 0042 = 0.108 0220 0223 1000
Impulse 0.138 0.121 0.095 0.629 0.577 0.931
Speckle 0220 009 | 0130 0342 0511 1.000
Defocus | 0417 0368 | 0.101 0300  0.135 0936

Glass 0.328 0.264 0.339 0.178 0402 | 0.948
Zoom | 0228  0.184 | 0513 0902 0906 | 0621

Smow | 0204  0.114 | 0580 0608 @ 0671  0.625
Brightness = 0.137  0.000 @ 0.162 0482 0550  0.969
Contrast 0.024 0.000 0.236 0.324 0280 | 1.000
Saturation 0.229 0.174 0.102 0.575 0.549 0.507
Elastic 0363 0311 = 0096 0168 0466  0.679
Pixelate = 0451 0343 | 0064  0.165 | 0.149  0.777
JPEG | 0411 0306 | 0041 0566 0506  0.604
Splatter 0.056 0.003 0.244 0.637 0.590 | 0.742

Following the limitations of using accuracy to evaluate a model’s robustness, we

will use our proposed metric Visual Robustness Error (VRE) in this subsection. Firstly,
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Table 3.3: V IE. . score of the models for different types of corruption

. el BLIP BLIP ViLT GIT GIT PnP
Noise
- Large Large
Shot 0.288 0.272 0.296 0.332 0.330 0.362
Gaussian 0.184 0.178 0.203 0.225 0.223 0.352
Impulse | 0.198 0.9 | 0209 0262 0255 @ 0346 |
Speckle | 0.162 0153 | 0.178 0204  0.208 0.332 |
Defocus 0.196 0.191 0.192 0.212 0.200 0.334
Glass 0.205 0.196 0.218 0213 0.231 0.333
Zoom 0308 0302 | 0327 0351 0352 0.308 |
Smow | 0227 0215 | 0271 0274 | 0279 0.321 |
Brightness ~ 0.135 0126 | 0161 0178  0.176 0329
Contrast 0.187 0.175 0.238 0.272 0.257 1.201
Saturation = 0.164  0.159 | 0.82 0215  0.208 0.359 |
Elastic 0.168 0.161 0.178 0.201 0.210 0.372
Pixelate | 0165  0.155 | 0.158 0174 | 0.167 0.379
JPEG | 0158 0150 | 056 0203 | 0.192 0.367
Splatter 0.165 0.158 0.197 0.250 0.243 0.371
Model VRE for different VQA Models
0.5
0.4
%GJ
™ s | |
0.1
0.0
%\;g \?-‘:\D)e’ ,_hé G‘\{‘ \;&Qjﬁ Q{g
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& o
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Figure 3.7: Comparison of VVEE,, of the models used in this paper
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Corruption VRE for various Corruption Types
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the metric V' [7E is a measurement of error; hence, the lower the V'R E, the better the
performance of the model. Secondly, the V' /7 £ can have different variations — V' [P F,,
VRE,, and VIRE, . which represent V' /i £ for a particular model v and a particular
corruption ¢. The first two values are corruption and model aggregated values respec-
tively while the latter one is shown in table-3.3, 3.2. All the analyses in this section
are done with o = 0.5 which is the default metric value. Hence, the value of o is not
explicitly mentioned for every analysis and the effect of o will be explored in a later
section.

Looking at fig-3.7, we can understand the significance of V' E, in understanding
the robustness capabilities of a particular model. In fig-3.7, the bar represents the non-
normalized V' R, score for the given models and the line represents the variation.
Following the discussion from the previous section, we can now safely conclude that
PN P is the least robust model, and the difference between 2V /7 and the second-least
robust model is clear in the figure. 7N I? matches most of the criteria of a model with
lower robustness which is evident from VR E,.

The B LI P-based models tend to be the most robust models close to ViLT and
(/I T-based models. So far, the VR results are consistent with the average accuracy
scores and hence, none of our models severely lack robustness compared to the average
accuracy. As the model sample state 1s small, no noticeable difference between the
two metrics 1s seen. However, the key difference between VRE and average accuracy
is seen while analyzing the 15 corruption functions.

The contrast effect has the highest V"R E value making it the strongest corruption
function while the contrast value has a significantly high average accuracy. When im-
ages with high contrast are passed, the models tend to perform poorly at lower severity
levels. However, the error values are always relatively low. Hence, averaging them
will give a relatively low error value but when taking other metrics like First-Drop into
consideration, the contrast seems like a sironger corruption.

Brightness is still the weakest corruption type with the least 1" R E,. value. Shot
noise and zoom blur also have higher VRE,. values aligning with the results from
average accuracy. One thing the reader can infer by comparing fig-3.6 and fig-3.8 is
that the latter figure has more variation and thus it is easy to differentiate between the
bars. The average accuracy is more or less similar and a user of our framework might
misunderstand this as an insignificance difference between the types of corruption. But

in reality, average accuracy isn’t a good metric to highlight the differences.
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3.6.3 Model Size and Robustness

Through our rigorous experimentation, we discovered that increasing the size of a
model does not necessarily translate into enhanced robustness. While there is a marginal
improvement in accuracy as we increase the model size, the gains in robustness are
rather modest. This finding suggests that simply scaling up the size of a model does
not guarantee a substantial boost in its ability to handle diverse and challenging inputs.
Although larger models tend to possess a greater number of parameters and a higher
level of representational capacity, this alone does not result in significant improvements
in robustness. It highlights the importance of other factors such as the training process,
the diversity and quality of the dataset, and the architectural design in determining the
model’s ability to handle variations and uncertainties.

Moreover, the slight increase in robustness observed with larger models suggests
that there might be diminishing returns beyond a certain model size. As the model
grows larger, the marginal improvements in robustness become progressively smaller,
while the associated computational and memory costs continue to increase. This in-
sight prompts us to consider alternative strategies, such as architectural modifications
or specialized training techniques, to achieve substantial gains in robustness without
excessively inflating the model size. Fig-3.9 shows the comparison between the error
of two of our models and the difference is negligible.

Additionally, it is worth noting that while the accuracy of the model sees a slight
improvement with increased size, the trade-off between accuracy and robustness re-
mains evident and this topic will be discussed in a later section. Sometimes. as the
model becomes more accurate. it may become more sensitive to variations or pertur-
bations, potentially compromising its overall robustness. This reinforces the need for
a balanced approach that carefully weighs the desired level of accuracy against the re-
quirement for robustness in specific applications.

To summarize. our experiments have revealed that the relationship between model
size, accuracy. and robustness is complex. Merely increasing the size of a model does
not guarantee significant gains in robustness, although there is a slight improvement
observed. This finding calls for a more nuanced approach to model development,
where other factors and techniques are considered alongside model size to enhance
both accuracy and robustness. Future research should explore alternative strategies
that optimize both aspects effectively. leading to more reliable and versatile machine

learning models.
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Figure 3.9: Comparison of error values for BLIP and BLIP-large [3]
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3.6.4 Question Type and Error

The availability of question-specific data enables us to inform users about the limita-
tions of the models in providing accurate responses to different question types, along
with the corresponding error rates. This information serves to highlight the model’s
weaknesses, particularly when subjected to the introduction of noise in the form of
additional images. By disclosing the types of questions that the model may struggle
to answer and quantifying the associated error rates, we can effectively demonstrate
the areas where the model may exhibit limitations. This insight contributes to a com-

prehensive understanding of the model’s weaknesses and its implications in practical

applications.
Table 3.4: Effect of Noise on ViLT [4] Predictions
Question Type Questions Answers | Predictions
What color is the lamp? blue | white
Color What color 1‘, the bike? blue black
What color 1s the sky? blue gray
What color is the soap on the wall? vellow white
" How many spoons are there? [2 1
Counting How many people are in the picture? 5 3
How many kites are up? 4 X
What 1s she cating? sandwich | cake
e What is the weather like? sunny cloudy
Classification : .
What is on display? toys vases
What game is this? baseball | soccer
" What's on the television? baby ' nothing
Blindness Are the women selling something? ves no
What is the cat eating? cake nothing
" Which bowl has more oranges? ' front ' right
Lyl Regsoning What ?cind of car is in the picture? Ferrari red
= What is the man at the top about to do? = run bat
What is the man doing? standing | flying kite

From table-3.4 analysis of ViLT’s [4] performance in the presence of noise al-
lows us to draw conclusions regarding the robustness of the model. It is essential to
acknowledge that expecting ViLT to provide accurate answers at Level 5. similar to
those at Level 0, would be unreasonable. However, the impact of noise on the model’s
accuracy does not show a significant decline across different levels, suggesting a note-
worthy level of robustness. Furthermore, it is worth noting that images with Level 5
intensity are rare occurrences, indicating that ViLT performs admirably even when ex-
posed to noise, underscoring its importance as a valuable model.

Moving forward. we intend to explore the performance of ViLT on various datasets
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to gain insights into its capabilities. We have chosen to demonstrate ViLT's perfor-
mance on specific categories within the VQAV?2 dataset to understand its predictive
abilities in those arcas. To begin, we focus on questions related to color. Within the
dataset, ViLT made approximately 2762 mispredictions, with 201 of them being incor-
rect predictions specifically related to color. Out of the 10,000 questions, 1695 pertain
to color, showcasing an 88.14% accuracy rate in detecting colors. This suggests that
VILT performs remarkably well in accurately identifying colors, demonstrating that
the "color" category does not significantly contribute to misclassifications.

Next, we examine the counting questions where ViLT made around 2762 mispre-
dictions, with 449 incorrect predictions for such questions. Out of the 10,000 ques-
tions, 1771 fall into this category, resulting in a 74.64% accuracy rate in counting data.
While it may not be considered highly reliable, VILT can still be utilized regularly for
counting tasks. It is important to note that the 25.12% inaccuracy includes predictions
that are reasonably close to the actual answers, and logical reasoning can often be em-
ployed to address such challenges, which can prove demanding for any model.

Furthermore, we present examples that demonstrate ViLT’s poor performance in
logical reasoning tasks. While these inaccuracies do not account for a significant por-
tion of the overall errors, it is worth mentioning that ViLT occasionally produces results
that could be considered as correct in some cases. The provided table showcases ex-
amples falling into this category.

Lastly, in order to evaluate the model’s proficiency in text recognition, we specif-
ically focus on questions containing the word "say" as it frequently appears in textual
content accompanying images. Out of the 2762 mispredictions made by ViLT, 44 of
them involve incorrect predictions related to "say" questions. Among the 10,000 ques-
tions, 103 pertain to "say."” resulting in a 58.09% accuracy rate in predicting texts. This
indicates that ViLT may not be the most suitable choice for tasks involving text extrac-
tion from images.

ViLT’s robustness in the face of noise and its impressive performance in accurately
identifying colors. While it may exhibit limitations in logical reasoning and text extrac-
tion, ViLT still delivers commendable results and can be effectively utilized in various

applications.

3.7 Metric Analysis

In this section, we explore the effect of our proposed metric VRE in-depth and analyze
the effect of its constituting metrics. We further explore the parameter o in our metric

and how 1t varies depending on the robustness use case.
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3.7.1 Effect of Normalization of Metric Scores

Value of Different Robustness Metrics for PNP
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First-Drop Range of Error Error Rate Average Error Corr. Diff.

Figure 3.10: Comparison of metric values for PNP [12]

Fig-3.10 explores how every metric contributes to the V I, of PN P, Typically,
the error rate has lower values, and hence, for PN F, the average error is the most
important factor for VRE,. If we also take into account that due to o = 0.5, the
average error will have four times the weight of every other metric and would hence
make V' /i E, work similar to A,. To prevent this, normalization is performed to have
similar values for every metric.

Fig-3.11 performs model-based normalization according to equation-3.13 and has
most of the metric values in a similar range. PN P still has a high average error but
the other metrics are not as insignificant. The same rationale applies for every other
model and we can attest to the necessity of normalization of the metric values. Non-
normalized values can also be used but the weights assigned to every metric need
to be manually set. Such practices are discouraged due to the ambiguity related to

establishing a linear relationship between the metrics while aggregating them.

3.7.2  Composition of Metrics in VRE

Table-3.5 shows the scores of the proposed metrics when aggregated into VRE. The
scores are non-normalized and similar to fig-3.10, we can see some of the metrics
have comparatively lower values. However, it is unclear which model excels in which
metric. In ideal scenarios, we can assign weight to each metric during aggregation.

Hence, it is essential to understand the effect of each metric in establishing a VRE
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Model-Mormalized Value of Different Robustness Metrics for PNP
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Figure 3.11: Comparison ol normalized metric values for PNP [12]

Table 3.5: Non-normalized metric values of the models for different metrics

Mod:;lEtrlc First Drop  Error Range Error Rate Avg. Error Corr. Dif.
BLIP 0.619 0.428 0.403 0.025 0.382
BLIP-Large | 0.359 0.358 0.369 0.001 0.262
ViLT 0.2 0.165 0.173 0.226 0.167
GIT 0.524 0.58 0.545 0.361 0.512
GIT-Large 0.638 0.662 0.614 0.319 0.611
PnP 0.587 0.64 0.625 0.996 0.744

value that is suitable for real-life applications.

Fig-3.12 gives us an illustration of how the normalized scores for all 6 models
contribute to their VRE. For VILT [4]. all the scores are relatively low and hence,
making the model extremely robust as well as accurate. But, our most robust model
BLIP [3] has the least average error but the other metrics are relatively higher than
ViLT. Hence, we can conclude that if our application disregards or underappreciates
the model’s accuracy, then ViLT is the most suitable model. Models like PNP [12]
and highly inaccurate with high robustness error, hence, indicating that PNP is an
unfavorable model in any scenario. In the next section. we dive deeper into the tradeott

between accuracy and the overall robusiness of the model.
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Comparison of Metrics for Different Models
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Figure 3.12: Composition of Normalized Metric values in VRE for various models

3.7.3 Accuracy vs Robustness: Effect of «

Through our extensive experimentation, we have made a significant observation that
sheds light on an important trade-off in model development: the delicate balance be-
tween accuracy and robustness. We can use a simple analogy to illustrate this fact;
suppose, we have two models — a severely underfit model that always gives that has
10% accuracy and a better model with 80% accuracy. Based on the accuracy scores, is
it possible to infer which model is more robust? On the contrary. if we apply a small
amount of noise 1o the input image. then the first model’s accuracy is retained at 9%
while the second model’s accuracy drops to 55%. We can now infer which model is
more robust. This finding underscores the notion that achieving high accuracy in a
model often comes at the expense of its robustness, and vice versa.

When a model is optimized for accuracy, it tends to excel in providing precise
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VRE of Models for varying o
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Figure 3.13: The change of VRE for different models with varying values of o

and correct predictions under ideal conditions. However, it becomes more susceptible
to faltering or producing erroneous outputs when faced with variations, uncertainties,
or adversarial inputs. On the other hand, a robust model exhibits a higher level of
resilience and generalization, capable of performing consistently across a wide range
of inputs, even in the face of perturbations or challenging scenarios. However, this
increased robustness might come at the cost of sacrificing some accuracy, as the model
adopts a more conservative or cautious approach to minimize errors.

The trade-oft between accuracy and robustness is crucial to consider when devel-
oping machine learning models for various applications. Different contexts and use
cases may require varying degrees of emphasis on accuracy and robustness. For in-
stance, in safety-critical systems, such as autonomous vehicles or medical diagnosis,
robustness takes precedence over accuracy to ensure reliable performance even in un-
certain or unpredictable situations. On the other hand. in tasks where precision and
correctness are paramount, sacrificing some robustness may be acceptable to achieve
higher accuracy.

Understanding this trade-off enables researchers and practitioners to make informed
decisions when designing models, striking a balance that aligns with the specific re-

quirements and priorities of the given application. It also highlights the need for com-

19



CHAPTER 3. VISUAL ROBUSTNESS ANALYSIS FOR VQA

Table 3.6; VRE score of the models for values of o

) Medel a=0|a=020a=05|a=07  a=1
Noise
BLIP 10619 | 0428 0403 | 0.025 0382
BLIP-Large | 0.359 | 0.358 0.369  0.001 0.262
VILT 0.2 0.165 0.173 | 0.226 0.167
GIT 0.524 | 0.58 0.545  0.361 0.512
GIT-Large  0.638 | 0.662 0.614 0319 0.611
PNP 0.587 | 0.64 0.625  0.996 0.744

prehensive evaluation metrics that consider both accuracy and robustness, providing
a more holistic assessment of model performance. Fig-3.13 illustrates how the VRE
is affected at various levels of prioritization of accuracy and robustness. Our findings
emphasize the delicate interplay between accuracy and robustness in machine learning
models. Recognizing and managing this trade-off is essential for developing models

that align with the desired performance objectives in various real-world scenarios.

3.8 Discussion

3.8.1 Mislabeling Problem in Grayscale Images

Grayscale images are void of color and hence, questions related to color shouldn’t be
answerable by the model inferring a grayscale image. Table-3.7 shows some color-
related questions that cannot be answered from a grayscale image and if answered, it
will be a shade of grey. However, most of our models picked a particular color as the
answer to the image indicating that the model associated a color to a particular shape
or structure in the image. For instance - if the model sees the gray image of an apple,
and is asked "What is the color of the apple?”, it will be tempted to predict "Red" as
most of the images of apples it was trained on had the color red. Hence, it associated
the color red with the shape of the apple.

As we compare the answers 1o the ground (ruth answers in our dataset, we realize
that the color answers predicted by the model are given full scores which is incorrect
as a gray image is void of color. Hence, for color-related questions, relabeling needs
1o be done or we will end up with a mislabeling problem that will inaccurately assess
a model’s robustness. As we did not perform any form of relabeling for grayscale
images and inverted grayscale images, we do not include these forms of corruption
while calculating VRE. However, our framework includes these two corruption effects

for other forms of analysis.
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Tahble 3.7: Color-based Questions that might cause mislabeling problems

Questions Answers
What color is the majority of the fruit on the table? | yellow
What color is the water? blue
What is the red-colored topping on the pizza? sauce
What color is the coca/coca light? red
What color is the lettuce? green
What color is the tree on the right? green
What is the dominant color of this road sign? red

3.8.2 Robustness of PNP

Looking at the PN P architecture [12], we can highlight two significant points about
the model. Firstly, the architecture is modular, and hence. the overall robustness of the
model will depend on the individual robusiness of each module. We can also formulate
as:

VREpyp =1-[](1-VRE,) (3.19)

m

where m is a module of PN . As VR E in both normalized and non-normalized form
is lesser orequal to 1, (1 — VRE,,) which can also be termed as robustess accuracy
1s also lesser or equal to 1. Hence, the product of many such values can never increase
and hence. we can conclude that for zero-shot-based models with multiple modules,
the V' RE, tends to increase with the number of modules given that each module has a
similar level of robustness.

In reality, every module has a different purpose and should have different levels of
robustness. There can be various types ol modules - image-question matching mod-
ule, image captioning module, question-answering module, etc. Trivially, we can say
the question-answering module is unaffected by any visual noise and can hence, be
excluded from the list of modules. An image-question matching module and an im-
age captioning module are both multimodal modules but with different architectures.
However, passing noise-free images to any one of the two modules, we found that there
isn’t a statistically significant difference between the V"7 E scores of the two modules.

Some of the earlier approaches to Zero-Shot VQA explored models [35] that use
feature extraction, and representation similarities. These architectures are not modular
and have poor zero-shot accuracy. Modern architectures are Large Language Model
(LLM)-based and tend to be more robust than traditional non-modular architectures

due to being pre-trained on substantially higher training data.
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3.8.3 Zero-shot and Robustness

In our comprehensive series of tests, we have made a compelling observation that
sheds light on the performance characteristics of zero-shot models. Specifically, we
have found that these models exhibit remarkable robustness, surpassing other models
in terms of their ability to handle diverse and challenging inputs. However, this robust-
ness comes at the expense of accuracy, as zero-shot models tend to yield significantly
lower scores in this aspect.

The high level of robustness displayed by zero-shot models is a noteworthy finding.
It implies that these models have a greater capability to generalize and handle unseen
or out-of-distribution data. They are adept at adapting to different contexts and inputs,
making them more resilient to variations and uncertainties. This characteristic is par-
ticularly valuable in real-world applications where encountering new or unexpected
scenarios is common.

On the other hand, the trade-off between robustness and accuracy becomes appar-
ent with zero-shot models. While they excel in robustness, their performance in terms
of accuracy is comparatively lower. This suggests that zero-shot models may struggle
with fine-grained or nuanced tasks that require precise and detailed predictions. Their
focus on generalization and adaptability may result in broader but less precise outputs,
leading to a decrease in accuracy scores.

These findings underscore the importance of striking a balance between robust-
ness and accuracy in model development. The choice between a zero-shot model and
other models depends on the specific requirements of the task at hand. If robustness
and adaptability to diverse inputs are crucial. a zero-shot model may be the preferred
option. However, for tasks that demand higher levels of accuracy and precision, alter-
native models that prioritize accuracy might be more suitable.

It is worth noting that these results also highlight the need for further research and
development in improving the accuracy of zero-shot models. Finding ways to enhance
their performance in terms of accuracy without compromising their robustness could
unlock their full potential and make them more viable for a wider range of applications.

In summary. our tests have shown that zero-shot models excel in robustness while
exhibiting lower scores in accuracy. This trade-off highlights the need to carefully
consider the specific requirements of the task when selecting a model. Future research
should focus on improving the accuracy of zero-shot models to make them more com-
petitive in domains that demand high precision and fine-grained predictions.



Chapter 4

Zero-shot VQA

In this chapter, we perform a comprehensive study on the current approaches of Zero-
Shot VQA, and the shortcomings of the current models, followed by our proposed
methodology. Then we explore how our proposed methodology improves upon pre-
vious architectures by performing various comparative analyses and visualizing them.
We end the chapter by discussing the limitations of our model and possible approaches
to solving them.

4.1 Background Study

In the previous chapters, we have seen how VQA evolved to Zero-Shot approaches.
Zero-shot VQA uses pre-trained models that are not specifically trained on VQA.
With the rise of computational capabilities, the pre-trained models started getting larger
bringing us to the era of Large Language Models (LLLMs) [24, 68, 70] and models that
combine 1mage and text modalities [3,4]. Leveraging LLLMs helped zero-shot VQA
architectures achieve monumental results along with certain shortcomings.

Using LLMs as building blocks for larger architectures, Zero-shot VQA networks
began a modular approach for network architectural design [12]. Looking at figure-
2.25, we see multiple modules interacting with each other using attention and image
captions. The image caption can be seen as an interface that links the captioning mod-
ule with the question-answering module. The better the interface, the stronger the
relationship between the two modules, hence, generating a better answer.

The PnP architecture [12] generates 100 captions and uses the whole set of cap-
tions as the interface. The set contains captions of varying quality and the whole set
is processed by the question-answering module, usually an LLM. Using such a high
number of captions has two major drawbacks - firstly, a higher number of captions in-
dicates the presence of a high number of low-quality captions which essentially acts as

noise to the question-answering module. Secondly, LLMs have a high inference time,
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CLIP Maodel
Generated Reduced
Captions . i Number of
(50/100) Captions
\:; Unigram
BLEU Score x Weights

Question

Figure 4.1: Caption Ranking Module using CLIP [9] and BLEU score [20].

and hence, the overall inference time of the architecture will be very high. Instead of
having a large number of captions of varying quality, having fewer but high-quality

captions should solve these drawbacks.

4.2 Proposed Methodology

Our architecture fundamentally tries to connect a pre-trained language model and a
pre-trained vision-language model without any specific training on VQA and using
natural language captions as the interface. Attention is used to focus on the desired part
of the image based on the question. The modular approach of our architecture is similar
[12]. However, we incorporate some form of caption ranking in our architecture.

While designing the caption ranking module, we kept in mind that the captions
should cover the information in the image that i1s relevant to the question. To ensure
image-caption relevance, we have a similarity module that takes the question-image
pair as the input Lo give us a similarity score. In our architecture as seen in figure-4.1,
we used CLIP [9] as the image-question relevancy module. For the caption-question
relevancy, we used a well-established evaluation metric called Unigram Bilingual Eval-
uation Understudy (BLEU) score [20] which evaluates text quality with respect to an-
other text. Traditionally, the BLEU score has been used to evaluate machine translation
but, in this paper. it is used as a text-text relevance metric.

The interaction between the modules of our architecture can be summarized:
1. Firstly. the image-question pair is given to the image-question matching module
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that uses attention to focus on relevant parts of the image.

[§]

. The output will be sampled and passed on to the image captioning module that

produces a set of captions.

3. The set of captions is then ranked based on question relevancy using the caption
ranking module. The caption ranking module takes the image and the generated

captions as input to produce a reduced set of captions.

4. Finally, a question-answering module takes the reduced set of captions and the

question as inputs to generate the answer as the output.

In the following subsection. we will be delving deeper into the architecture of the

caption-ranking module.

4.2.1 Caption Generation

Following the modular approach of PnP [12], we use two pre-trained modules to gen-
erate a set of captions that will be later passed to the ranking module. Referring to
figure-2.24., we adopt BLIP [3] as the image-question matching module and a detailed
explanation on BLIP has been discussed in section-2.4.3. The output will be later
passed on the GradCAM [19] to focus on the relevant parts of the image.

The interpretation of the image by the GradCAM is encapsulated by equation-
2.2 and 2.3 which can be described as the calculation of cross-attention values on
the input, followed by producing partial derivatives with respect to the cross-attention
values. The GradCAM output is sampled into A patches and the patches are passed
on to the image captioning module. Following the authors of PnP, we also used BLIP
as the captioning module which generates a set of unranked captions. The number
of generated captions can be considered as a hyperparameter but following the results

trom [12], we generated 100 captions that are later passed to the ranking module.

4.2.2 Relevancy in Captions

Figure-4.2 is a perfect example of how we can generate something that completely re-
sembles the question itsell. As the gquestion was searching for the breed of the dog, the
caption encapsulates the idea by summarizing the whole image. We established that
the captioning module works by taking attention-masked images and generating cap-
tions for the question-answering module. Our ranking module will reduce the number
ol generated captions by first ranking all the generated captions, and then passing the

Lop n captions o the question-answering module.
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Question-What dog
breed is this dog?

Caption- A boxer dog
standing in front of an
oven

Figure 4.2: Generating captions that are relevant to the guestion.

Let, ¢ €  be a caption from our set of captions. such that. r(¢) would produce a
score for the generated caption where r is the ranking function. For an image-question
pair (¢.q). we get the image-caption relevancy ranking r; . = CLIP(i.c) and r,,. =

BLEU(q. ¢). We can, hence. define the ranking function as:
r(eli.q) = (1 — 3)CLIP(i. ¢) + 3BLEU(q. ¢) (4.1)

where 7 is the weight assigned to the unigram BLEU score.

The idea behind ranking the captions is to pick the top n captions and thereby,
generate a set of high-quality captions only. To caption is deemed as high-quality
only when the caption is relevant to the image-question pair. Both CLIP and BLEU
incorporate some form of relevancy measure, and hence using a weighted average of

the two relevancy scores gave us a capltion ranking score.

4.2.3 Image-Caption Relevancy

Image and question belong to different modalities and there’s ongoing research on
combining the modalities [3.4] while CLIP [9] is one of them. Following our previous
discussion, the CLIP module used for image-question relevancy gives us a similarity
score between the question and images. Hence, by using CLIP, we gain insights into
the semantic relationships between images and captions.

CLIP captures image-text similarity by training a transformer-based encoder for
both images and captions. However, instead of having two separate modalities for the
image and caption encodings, CLIP tries to minimize the dissimilarity between the two
vectors by simply using scaled cosine similarity as the loss function. Hence, after the
pre-training phase, CLIP should have the same or similar vector representations of an

image and its caption. We can now define the contrastive loss of CLIP as:

L(i,€) = €[N (Eimg(2)) - N(Eeaption(€))] (4.2)
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where L(i. ¢) is the loss function for the image-caption pair (i, ¢), N(-) is the normal-
ization function, £, and £, ., are the image and caption encoders respectively, 7 1s
the scaling constant. The loss function is also called scaled cosine similarity. Another
benefit of using CLIP is its modularity i.e. any image and text encoder can be used in
CLIP.

4.2.4 Question-Caption Relevancy

The task of question-caption relevancy is easier as both question and caption belong to
the same modality. Hence, we can now use traditional unimodal approaches to find the
similarity between two textual encodings. The easiest and most popular way to find

the similarity between two vectors is the cosine similarity defined as:

oy

A-
cosine(A. B) =

(4.3)
A||B|

Most of the other relevancy approaches build on the cosine similarity function. How-
ever, the simplicity of cosine similarity has its own drawbacks and led to the develop-

ment of more nuanced metrics. Unigram BLEU score is defined as:

N
Unigram BLEU = BP x exp Z i, log p, (4.4)

n=1

where BP is the brevity penalty which compares the length of the two texts. The n
represents the maximum n-gram order and in our case, il is unigram: hence, n = 1.
The n-gram model calculates the probability of the occurrence of certain terminology,
given n such terminologies have already occurred. The p,, and w,, are the precision of

the n-gram and the associated weight respectively.

4.2.5 Aggregated Ranking Score

We combine the CLIP and BLEU score that represents the image-caption and question-
caption relevancy respectively by performing the weighted average of the two scores
where the weight to the question-caption relevancy score 1s denoted by 5. Firstly, our
ranking must contain both visual and textual relevancy with the generated captions.
But we do not know the relationship of the two metrics in the overall ranking of the
generated captions. An assumption of a linear relationship has been made and the
associated weight in the linear relationship is treated as a hyperparameter.

The mathematical formulation of our aggregated ranking is observed in equation-
4.1. Experimental results showed 7 — (0.6 as the optimal value to maximize accuracy
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for the CLIP+BLEU method while keeping the same inference time. /7 is a tuneable
hyperparameter that will be based on the relevancy methods used. The aggregated
ranking score also reduced the number of captions to just 5 and thereby providing a

vast improvement to inference time with minimal overhead.

4.2.6  Answer Generation

The reduced set of captions is passed to the question-answering module to generate the
final output which is the answer itself. For now, we will be working with GPT-3 [59]
as it gives out answers on text with the passage and gives questions. Since the captions
contain what is needed. the question-answering module will be going through those

and get the necessary information out and show the result.

4.3 Performance Evaluation

In this section, we go through our setup, the model used, and the dataset for inference.
We conclude the section by looking at our evaluation metric and defining any proposed

metric if necessary.

4.3.1 Experimental Setup

As the setting of the experiments is zero-shot, pre-trained models were used. Hence, no
setup had to be done for training. Experiments are primarily inference-based and the
inferences were done on a single Nvidia RTX3090 GPU. We used Jupyter Notebooks
to run our experiments in the Python programming language.

4.3.2 Model and Dataset

The evaluated models are a set of zero-shot models that are derivations of PNP [12].
The derivations include the addition of various ranking modules to our model. Primar-
ily. cosine similarity, BLEU score [20], and CLIP [9] are used as sub-modules inside
the ranking module.

The dataset is the standard VQAv2 dataset [15] validation split. No form of pre-
processing has been done for benchmarking purposes. A detailed description of this
dataset split can be found in section-3.5.2.

4.3.3 Evaluation Metric

In our work, we use three evaluation metrics — accuracy, inference time, and relative

inference difference. The accuracy is simply the misclassification accuracy for VQA as
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defined in equation-3.3. The inference time, ;. can be defined as the time required
to generate the answer for a particular model V7 using a ranking approach fi. For a
baseline model Vj and baseline ranking method /. we can hence define the relative

inference difference which calculates the speedup of the model as:

tvo,Re — tv.R

Aty g = (4.5)

o, Ro
In our work, we use the PnP model [12] with 100 generated captions as the baseline

model and neo ranking as the baseline ranking method.

4.4 Result Analysis

The results obtained in our study focus on the accuracy of different methods and their
inference time, considering the number of captions and the weight of the Unigram
BLEU score. Upon analyzing the results, it becomes evident that we can achieve good
accuracy with fewer captions. In fact, using only 5 captions yields significantly better
results compared to using 50 or 100 captions.

Table 4.1: Comparison of ranking methods with varying number of captions

Ranking #Captions Accuracy Inference Inference Relative

Method (%) Time Difference Inf. Diff. (%)

100 62.13 0.382 0.05 0.00

50 59.17 0.311 0.09 18.59

BascPNE 5 53.52 0.225 0.09 41.10

0 3341 0.217 0.09 43.19

Cosine 10 54.47 0.241 0.09 36.91

5 5391 0.228 0.09 40.31

10 58.11 0.274 0.08 28.27

LI 5 55.68 0.263 0.08 31.15

BLEU 3 54.12 0.245 0.09 35.86

BLEU+CLIP 5 60.36 0.297 0.07 22.25

Experimental results show that our proposed method has substantially lower infer-
ence time while keeping similar levels of accuracy. From 4.3 we can see the accuracy
and relative inference time of different methods applied to the PNP-VQA. We can see
that the accuracy of the base PNP model is the highest with 100 captions, but our
proposed BLEU+CLIP method achieves similar accuracy with 5 captions only. Our
method also beats the base PNP with 50 captions in terms of accuracy by using 10%
of the captions only and with a higher improvement of relative accuracy.

Furthermore, all of our ranking methods resulted in substantial improvement in
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Comparison of Accuracy and Relative Inference for various Ranking Approaches
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Figure 4.3: Comparison of accuracy of various ranking methods with varying number of
captions along with trend lines based on ranking method

inference time. The inference time is primarily dictated by the number of captions
being passed to the question-answering module which takes the guestion and captions
as input to generate the answer as the output. Decreasing the number of captions
enables the question-answering module to work on a relatively smaller set and hence,
make quicker inferences.

Fig-4.4 explores the relationship between the three metrics among the various rank-
ing methods that we proposed. Firstly, we prefer higher accuracy and high speedup
which 18 represented by the metric relative inference difference. But, the lower the
inference time, the better the method is. The base PNP using 100 captions has the
highest accuracy but with the least speedup and highest inference time. Looking at the
methods with higher accuracy we will see BLEU+CLIP with 5 captions has an accu-
racy close to base PNP followed by base PNP using 50 captions and CLIP using 10
captions. However, base-PNP with 50 captions has a very high inference time with the
second lowest speedup. Our proposed method has a reasonable accuracy and speedup

with a lower inference time.

4.5 Ablation Studies

The improvement in inference time was made possible through the utilization of Un-
igram BLEU and CLIP. By employing these techniques, we were able to assess the
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Ranking Approach Comparison of 3 metrics

Inference Time

Base PNP-100
Base PNP-50
Base PNP-5
Base PNP-1
Cosine-10
Cosine-5
CLIP-10
CLIP-5
BLEU-5
BLEU+CLIP-5

Accuracy

Relative Inference Difference

Figure 4.4: Companson of Accuracy, Inference Time, and Relative Inference Difference after
standardization for various ranking methods with varying numbers of captions

similarity between the image's caption and the given question. Consequently, we could
identify the most relevant captions for generating accurate answers. Fig-4.5 illustrates
a crucial point where the highest accuracy is achieved by adjusting the weight of the
BLEU score. This optimization is necessary to avoid captions that merely describe the
question without providing the actual answer. Based on our observations, it appears

that a Unigram weight 7 of 60% is the optimal value to work with.

4.6 Discussion

Our work is strictly restricted by the PNP [12] architecture. In the future, we wish to
explore other zero-shot architectures that have modularity. The current trend of Zero-

Shot VQA along with the rise of LLMs is constantly necessitating the improvement
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Figure 4.5: Graph of Unigram BLEU score Weight vs Accuracy

of modular architectures like PNP. However, we strongly believe that the inclusion of
ranking modules will definitely help in reducing the inference outputs that are passed
to the subsequent module. Inference outputs can take the form of captions, 1mage
patches, i1mage features, etc.

Earlier ZS-VQA methods [37] heavily relied on feature extraction. While the etfect
of feature extraction in modern architectures has yet to be studied, feature ranking
might help a certain subset of ZS-VQA models. Ranking work can be expanded to
Few Shot VQA (F5-VQA) models as well. We also believe that our work failed to
beat the base PNP accuracy and we wish to propose a ranking module that can not
only gain a substantial speedup but also gain higher accuracy.

The Grad-CAM module [19] uses gradients to calculate which part of the image
1s more impactful and is analogous to attention. However, we wish to experiment
with various forms of attention instead of Grad-CAM or using attention along with
GRAD-CAM for a higher-quality set of image patches. Experimentations on bottom-
up attention [2] replacing the Grad-CAM module have been conducted but the results

were significantly worse than Grad-CAM.



Chapter 5

Conclusion and Future Work

5.1 Future Directions of Visual Robustness Analysis for VQA

There are lots of potential areas to work on to create a better framework in the future.
We want to extend our idea to the addition of textual noise as well. Textual noise
can be described as errors in the questions fed to the model and examples can be
paraphrasing, semantic error, syntax error, etc. To imitate realistic textual error we can
use typing mistakes as a type of error by associating a probability distribution to each
letter being replaced by another letter. The probability associated with being replaced
by a particular letter will depend on the proximity of the other letter to the pivot letter
based on the keyboard layout.

Apart from textual noise, we want to explore the concept of consistency and wish
Lo propose consistency metrics in the future. The consistency metric can be described
as an evaluation metric that will quantify how consistently a model can predict the
same answer with changes to the input. For instance - if we are performing binary
classification and the model predicts 0,1,0,1,0 for five severity levels then it would
be deemed as an inconsistent model regardless of the ground truth. Consistency has
similarities and dissimilarities with robustness and we wish to explore this in the future.

Some form of preprocessing can be done before passing the input image or ques-
tion to the model. The data preprocessing can be done on texts or images. Again,
for a particular modality, the user can opt Lo not use any form of preprocessing, use
white-box preprocessing i.e. preprocess the input using a technigque given that the user
is aware of the distribution of the noise used. or use black-box preprocessing i.e. pre-
process the input without any knowledge of the distribution of noise.

Finally, we wish to train models on noisy data and make a comparative analysis
of their performance. Using explainable Al we wish to understand which parts of the
images are being more focused during inferences. A major area to work on in training

models with noisy data is training models on grayscale images keeping the original la-
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bels and checking the performance. We wish to explore how models who view shades
of grey can associate a shade of grey with a particular color. Training colorblind mod-

els for question-answering colorblind people can also be a field of research interest.

5.2 Future Directions of Zero-Shot VQA

Zero-Shot VQA has a lot of potential areas to improve but we primarily wish to im-
prove the multi-block modular structure instead of a single black-box LLM-based
structure. Modular architectures are extensible and LLM-based units that perform well
single-handedly can also be part of another modular architecture to provide a boost to
accuracy. We wish to extend ZS-VQA to other domains, primarily change detection
and damage assessment.

Question answering on change outputs and semantic outputs have not yet been
explored and we wish to construct datasets that can produce inferential benchmarks to
Z5-VQA models on such problem statements. ZS-VQA as backbone networks with
VQA fine-tuning can also be used as an approach to the original VQA problem as
LLM-based ZS-VQA backbones can help in answering questions that VQA networks
have never seen. However, shitfting to multimodal architectures resulted in multi-modal
large networks to be trained in VQA by combining the modalities |3, 87]. Hopefully.
we will experience rapid improvements to ZS-VQA in the future.

5.3 Conclusion

Our work introduces the proposition of using caption ranking for high-quality image-
guided caption generation in the domain of zero-shot visual question answering. The
proposed pipeline exploits the idea that an image 1s rich in data and high-quality cap-
tions can be used to utilize that data. The proposed captions are then sent to a pre-
tramed large language model that uses them as context to answer the question. Addi-
tionally, we propose a novel modular framework for examining the visual robustness
of existing VQA methods. We added multiple realistic perturbations with adjustable
levels. We aim to set our framework as a benchmark criterion for all future VQA sys-
tems to be evaluated in. As our experiments reveal the level of robustness in modern
VQA methods is lacking. In a real-life scenario, it is unsurprising that contemporary
methods may fail to hold up their performance. We also conclude on the fact that
model size does not positively impact the robustness of a model. Additionally, we pro-
pose a novel approach to caption ranking to optimize the inference time of zero-shot
VOQA models. By sclecting the best few captions through ranking. we can eftectively

reduce the computational burden without sacrificing the model’s accuracy too much.
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This innovative method holds promise for improving the efficiency and practicality of
zero-shot VQA models in real-world applications.

Our framework can be expanded upon by adding more realistic corruption func-
tions that a model might encounter. It can be beneficial to not just focus on visual
perturbations but also on textual corruptions. A few realistic textual perturbation func-
tions can greatly increase the scope of our framework. As for improvements to zero-
shot VQA methods, future works could propose more efficient ways of querying a
large language model or generating higher-quality captions that are highly related to

the question.
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APPENDICES

A Predictions by BLIP [3] on Color-related Questions

All the images in this appendix, are from VQAv2 [15] on color-related questions. In
the given cases. the model correctly predicts the answer at severity level-4 (first image)
but mispredicts at seventy level-3 (second image). However, the mispredictions occur

primarily due to inconsistent answer generation and mislabeling problems.

Question: What color are the buckets seen?

Answer: white
Predicted: white
Correct

Answer: white
Predicted': red and white
Incorrect

Figure A.1: Model mispredicts due to mixture of the red bars with the white color of the
bucket. However, the actual color of the bucket in severity level-5 is recognizable by a human.
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Question: What color is the catcher's shirt?

Answer: white
Predicted: white
Correct

Answer: white
Predicted: orange
Incorrect

Figure A.2: There 15 no logical reasomng behind this misprediction and it can be simply
deemed as model inconsistency.

Question: What color is the boy on the left's shirt?

Answer: yellow
Predicted: yellow
Correct

Answer: yellow
Predicted: red
Incorrect

Figure A.3: Model couldn’t predict correctly as the added noise makes it seem like the color
has been changed. Humans are divided on the answer to this question. However, this isn't a
mislabeling 1ssue.
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Question: What color is the batter's uniform?

Answer: white
Predicted: white
Correct

Answer: white

Predicted: blue and white
Incorrect

Figure A.4: The prediction of the model is correct in this scenario and the ground truth should
have been different for severity level-5. Hence. this is a mislabeling issue,
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B Predictions by BLIP [|3] on Counting Questions

Similar to Appendix-A. but for counting questions.

Question: How many trash cans are in the background?

Answer: 1
Predicted: 1
Correct

Answer: 1
Predicted: 2
Incorrect

Figure B.1: Model misprediction due to inconsistency. The question is easily answerable by
a human.

Question: How many racquets
are shown?

Answer: 2
Predicted: 2
Correct

Answer: 2
Predicted: 1
Incorrect

Figure B.2: Answering the question based on the severity level-5 image is difficult even for
a human.
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Question: How many elephants are in the field?

Answer: 4
Predicted: 4
Correct

Answer: 4
Predicted: 3
Incorrect

Figure B.3: Duc to added brightness the model merges two clephant bodies into a single one.

Question: How many cars?

Answer: 3
Predicted: 3
Caorrect

Answer: 3
Predicted: 2
Incorrect

Figure B.4: Mislabeling problem: a human will also have the same answer as the model for
severity level-5.
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