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Abstract

The most critical task for the Advanced Driver Assistance System (ADAS) which

is generally used in autonomous vehicles is to develop a reliable and fast Traffic Sign

Recognition (TSR) system. TSR identifies the traffic sign from an image and then

determines its category. The majority of widely used TSR techniques that rely on

deep convolutional neural networks (DCNNs) emphasize on discriminating feature

learning against visual differences of different traffic signs. But these techniques

perform poorly if the number of samples available for each of the category is limited

to model training. To overcome this problem, few-shot learning can be used where

the approach focuses on learning common but distinctive qualities of class-specific

objects with few training samples, as opposed to depending heavily on supervision

to learn discriminating features. In this work, we have used fine-tuning approach

for few-shot learning in order to recognize traffic signs with only a limited number

of samples per category. We have introduced Domain Adaptation, Warm Model,

Pseudo-Support Set and Instance-Level Feature Normalization in our base architec-

ture. Our model outperformed all state-of-the-art (SOTA) architectures for few-shot

learning across different shot settings, including 2, 3, 5, and 10 shots. Particularly,

our model achieved remarkable results in 3-shot and 5-shot scenarios, with an addi-

tional mAP improvement of 3.53 and 3.73, respectively.

viii



1

Chapter 1

Introduction

In this chapter, we provide a brief overview of our thesis. At first, we provide the appli-
cation and research area of generalized object detection. In this work, we use the term
’detection’ in order to represent detection followed by classification. In this chapter, we
talk about a specific type of object detection called few-shot object detection. It’s a tech-
nique that helps us train our models with very limited examples to tackle the challenge of
having insufficient annotated data. We also discuss a related area called few-shot traffic
sign detection, which is all about identifying and classifying traffic signs using this tech-
nique. After that, we mention our problem statement along with the challenges faced by
our research domain. We conclude this chapter with the organization of the rest of the
thesis

Object Detection : When it comes to identifying objects in images or videos, computers
have a tough time keeping up with humans. That’s where object detection [10] tech-
niques come in, using algorithms based on deep learning [11] or machine learning [12]
to improve their accuracy. Object detection is a crucial component of Advanced Driver
Assistance Systems (ADAS), as well as other applications such as image retrieval and
video surveillance.

Figure 1.1 shows the overview of the object detection. Object detection involves two
phases: training and testing. During training, features are extracted from images for train-
ing the classifier. During testing, new images are analyzed and the model predicts the
object’s class. A post-processing step is then taken to display the results.

Deep learning-based object detectors require a ton of annotated data to train effectively.
However, we want our computer models to be as good as humans, who can recognize
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Figure 1.1: Overview of General Object Detection Techniques shown in [1]

new objects with just a few examples. To achieve this, a new technique called few-shot
object detection was developed. It aims to learn from a small number of object examples
of new categories, so there’s no need for vast amounts of annotated data. Few-shot object
detection can save time and money while also improving accuracy and efficiency, and it
has the potential to create even smarter and more accurate object detection models that
surpass human capabilities in certain scenarios.

Few-Shot Object Detection: In the field of object detection, deep learning has become
the standard method. However, one of the main issues with deep learning-based object
detectors is that they require an extensive amount of annotated data to achieve accurate
results. This presents a challenge because we want object detection models to perform as
well as humans, who can recognize new objects with just a few examples. To address this
problem, a new technique known as few-shot object detection [13] was developed. This
approach aims to improve the performance of object detection models even when there is
limited data available for each class. By learning from a small number of object exam-
ples for new categories, few-shot object detection eliminates the need for acquiring and
annotating vast amounts of data, making it a valuable tool in the field of object detection.

Few-Shot Traffic Sign Detection: In order to detect traffic signs, modern object de-
tection techniques such as YOLO [14], and Faster RCNN [15] are used. However, when
these techniques are applied to TSR in real world settings, they face challenges to detect
traffic signs. For example, physical damages, partial occlusions of traffic signs, lighting
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conditions, and motion blur makes it difficult to recognize traffic signs for TSR tools.
Hence, a few-shot object detection techniques can be used for better performance by
training the model used in TSR with a limited number of samples.

Figure 1.2: Traffic sign recognition shown in [2]. Detection is done in Phase #1, followed
by a classification step.

1.1 Motivation and Scope

The recognition of traffic signs plays a crucial role in Autonomous Driving systems, re-
quiring both speed and accuracy. However, existing approaches that rely on object detec-
tion techniques for traffic sign recognition often struggle with a large number of samples
per class and perform poorly on unseen classes. In this thesis, we aim to address this
challenge by utilizing few-shot object detection techniques. By doing so, we can ensure
that our proposed system performs well even with a limited number of instances for each
traffic sign class. The main contribution of this work is to develop a network that can
rapidly and accurately recognize traffic signs in real-world scenarios, leveraging a small
training dataset. This advancement would significantly benefit the Traffic Sign Recogni-
tion system, enabling the construction of a system that can quickly and accurately identify
traffic signals in real-world situations, even when the availability of training samples for
each class is limited.
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1.2 Problem Statement

Since the Traffic Sign Recognition system is used for Autonomous Driving, recognition of
traffic signs should be fast and accurate. Recent approaches for traffic signs recognition
object detection techniques need a large number of samples under each class and they
under-perform in unseen classes. In this work, we want to use few-shot object detection
techniques so that the proposed system does not underperform with limited instances for
each class. An important contribution to the TSR system can be proposing a network that
can quickly and accurately recognize traffic signs in real world settings given a limited
number of samples for training. The TSR system would benefit greatly from this since it
would make it possible to build a system that can recognize traffic signals in real-world
situations rapidly and accurately, even when there aren’t many training samples available
for each class. The problem statement can be summarized as “Designing a few-shot object
detection model that uses fine-tuning approach for recognizing traffic signs with limited
data and is robust in real world settings”.

1.3 Research Challenges

In the TSR system, a camera mounted in a vehicle captures an image of a real traffic scene,
which is then processed to recognize traffic signs. During this process, many challenges
may be faced by TSR system such as:

(a) Blurring: Images may get out of focus and complicated if the camera is not po-
sitioned properly. It can be difficult for the Traffic Sign Recognition (TSR) tech-
nology to distinguish and classify such unclear images.If the camera is not fixed
properly, the pictures can become blurry. Blurred pictures are difficult to recognize
by the TSR system. Even if the TSR model has been trained to recognize traf-
fic signs accurately, the blurred images can create confusion and lead to incorrect
classification. It is essential to make sure the camera is positioned and oriented cor-
rectly in order to capture images of the traffic signs that are clear and sharp. This
will improve the TSR system’s precision and efficiency, especially in real-world
scenarios where the environment can be complicated.

(b) Lighting Conditions: Image acquired under different lighting conditions such as
by daylight or night will be different and the same traffic sign may end up in dif-
ferent classes. When traffic signs are captured in different lighting conditions, the
resulting images can appear quite different. Image acquired under different lighting
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conditions such as by daylight or night will be different and the same traffic sign
may end up in different classes. For example, a sign that is captured during the day
may appear differently than the same sign captured at night. Due to this variation in
lighting conditions, the same traffic sign can end up being classified into different
classes by a Traffic Sign Recognition system. This is why it is important to account
for variations in lighting when training and testing the system, to ensure that it can
accurately recognize traffic signs regardless of the lighting conditions.

(c) Weather conditions: In different weather conditions such as rainy, foggy, and
snowy, the pictures taken by the camera might not be up to the mark for traffic sign
detection.Because weather conditions have the potential to have a considerable im-
pact on both image quality and the TSR system’s functionality. For instance, if it’s
raining, the camera lens can get wet and produce hazy pictures. Similar to when it’s
foggy outside, poor visibility might lead to hazy pictures. Additionally, in snowy
situations, the camera may record overexposed photos, which may impair the sight
of traffic signs in the picture. In order to provide accurate traffic sign detection in
all weather circumstances, it is essential to take weather factors into account when
developing the TSR system.

Figure 1.3: Traffic sign in rainy weather shown in [3]

(d) Occlusion: One of the biggest challenges in traffic sign recognition is occlusion.
It refers to the situation where objects like poles, trees, buildings, or even other
vehicles cover the traffic sign either partially or completely. These occlusions can
make it difficult for the TSR system for detecting and recognizing the traffic sign
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accurately. In some cases, the TSR system may ignore the occluded traffic sign
altogether, while in other cases, it may misclassify the occluded image as a different
traffic sign.

Figure 1.4: Occluded Traffic sign shown in [3]

(e) Faded color: Faded traffic signs can pose a significant challenge to the TSR sys-
tem. Because of exposure to sunlight, climatic conditions, and other environmental
variables, traffic signs’ colors may deteriorate over time. As a result, the colors can
become less distinct, making it challenging for the system to correctly detect the
sign. This is especially problematic when the meaning of the sign is largely de-
pendent on the color. A fading red stop sign, for example, could be misinterpreted
for a yield sign, posing serious safety issues. To mitigate this issue, it is essential
to ensure that the TSR system is trained with a diverse set of images that captures
different levels of color degradation.

(f) Similarity: In some cases, the traffic sign recognition (TSR) system might confuse
objects that resemble traffic signs with actual traffic signs. This could potentially
lead to incorrect information being displayed to the driver, causing confusion or
even danger on the road. For instance, a TSR system may misinterpret a circular
logo on a truck as a ”Stop” sign, leading to unnecessary and dangerous braking by
the driver. In such cases, it is important for the TSR system to be able to differentiate
between actual traffic signs and other objects that may resemble them, such as logos
or street art.

(g) Scene complexity: The TSR system may struggle to precisely detect every traffic
sign when there are several of them in an image. This is because it can be difficult
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for the system to tell some indicators apart from others when they overlap. The
TSR system can also have a hard time recognizing all of the traffic signs because
there are other things in the image. In such circumstances, the system might give
priority to detecting one sign over the others, potentially misclassifying or failing
to detect other signs.

1.4 Research Contributions

• Domain Adaptation: The model is trained on a source traffic sign dataset and
fine-tuned on a target traffic sign dataset to improve performance in the real-world
environment with various lighting, angles, and settings.

• Warm Model: All layers, including pre-trained layers, are optimized and learned,
allowing the model to extract more detailed features and enhance the ability to
differentiate between different traffic signs.

• Pseudo support set: Generated during training, it simulates a new class and aids
in increasing the training examples through strong and weak augmentation strate-
gies such as scaling, flipping, and rotation, improving the model’s generalization
capabilities.

• Instance-level feature normalization: Normalizing the model’s retrieved features
at each instance level enhances generalization capability and reduces bias.

1.5 Organization

We have organized the rest of our thesis as follows:

In chapter 2, we discuss some existing work related to few-shot object detection. Various
methods for few-shot object detection in existing literature are discussed in depth in this
section.

Chapter 3 contains our methodology with the necessary diagrams for our thesis.

In chapter 4, we analyze the result we obtain from our methodology. A comparison
between existing methods and proposed methods is also shown followed by a brief dis-
cussion and analysis of the obtained result.

In the fifth chapter of our thesis, we will wrap up by providing an analysis of the factors
contributing to the accuracy of our model.
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Chapter 2

Background Study

After going through the introduction we can easily understand our generalized research
domain is Few-shot object detection and our specific research domain is Few-shot traffic

sign detection and recognition. Now due to a severe lack of research on few-shot traffic
sign detection, we could only read about generalized few-shot object detection. And from
that, we accumulated the knowledge of generalized few-shot object detection and applied
that knowledge on our specific domain few-shot traffic sign detection. As far as we know
there is only one paper available on few-shot traffic sign detection which is “Meta-YOLO:
Meta-Learning for Few-Shot Traffic Sign Detection via Decoupling Dependencies” [16].
For some obvious reasons, we are not covering this paper in our report. First of all, this
paper only detects and does not recognize. Second, in the result section, they compared
their model with some models which are not few-shot models. And these comparisons
are done on a dataset called MIST [A multi-illuminant synthetic image test set] which is
not a traffic sign dataset. They compare their model with other basic models like different
versions of YOLO [14] using the traffic sign dataset but they did not use any state-of-
the-art architecture. They did not even give the code repository so that we can try and
implement it. Moreover, this paper used Meta-learning and in the next subsections of this
section, we are going to discuss why we will not use meta-learning.

Before discussing why we will not use meta-learning we should discuss how many types
of learning we have in a few shot object detection. There are three types of learning which
are,

1. Meta-Learning [17–19]

2. Metric Learning [20]

3. Transfer learning [6, 9]
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Before going in depth about each learning type we want to state that we will use Transfer
Learning for our proposed method. Now, why did we not use the fine-tuning [21] term
here? Because fine-tuning is a type of transfer learning. Transfer learning means we
trained on the source domain but we are getting tested with the target domain. And fine-
tune means before getting tested on the target domain, we will train our network with
a few samples of the target domain. Since samples are scant we call this approach a
few-shot approach. Hence we are using a fine-tuning approach to transfer learning in our
proposed method.

Now we would like to cover six papers in our background study. And with these six
papers, we will also be able to go through all the types of learning.

We will be going through Meta-RCNN [18] to cover meta-learning. Then we have A-
RPN [5] to give a brief overview of Metric Learning in few-shot object detection. At
last we will cover 4 papers TFA [6], FSCE [9], De-FRCNN [8] and CD-FSOD [22] for
transfer learning. Since we will be using transfer learning in our proposed method we
are giving more emphasis on this topic and that’s why we are discussing four papers
on transfer learning. Another thing to mention before starting is that we will also use
cosine similarity [23] in our proposed method. If we use layman’s terms, using cosine
similarity we can find how much two vectors are similar. Now the use of it here is we
can find how much our proposed regions are similar to our target. If it is more than a
threshold value then, we get our targeted object in our proposed region. But the use of
this cosine similarity is a bit different in our proposed method. In our proposed method we
use cosine similarity score to boost our softmax score so that we get better classification
results. More details will be given in the later sections. We will find this cosine similarity
very common in transfer learning to get a better classification score.

2.1 Meta-Learning Based Approach

Meta-learning refers to learning something that is not learned in the standard problem.
It is a way of hyperparameter optimization. Meta-learning speeds up and optimizes the
hyperparameters of the networks that are not trained yet.

The model is trained in multiple stages for meta-learning. Initially, a model is trained
using the base dataset. Then, an episodic training scheme is applied on the resulting
model where each episode from the base dataset has the N-way-K-shot. This sequence
of training is known as meta-training. When the generated model is applied to novel
categories, this phenomenon is referred to as meta-testing. After the meta-training, the
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finetuning is done on a uniform dataset of base classes and novel classes so that the model
can detect both base and novel categories. Otherwise, meta-finetuning is applied with
only the novel class in order to detect only the novel categories.

Better region proposals and fewer missed detection result from an aggregation process
when Faster R-CNN [24] is used as the detector. Usually, the support vectors are aggre-
gated with the features of query RoI. The RPN (Region Proposal Network) must, however,
generate one RoI at least for each relevant object in order to do this. Unless this is the
case, not even the finest aggregation method will help in locating the expected object.
Nonetheless, the RPN is only trained on base categories. The RPN may not generate
suitable RoIs for identifying objects if the novel categories diverge significantly from the
base categories. As a result, in the base case, the channel-wise multiplication also known
as the Hadamard product of the query features and the support vectors is generated. Ad-
ditionally, channel-wise multiplication is combined with subtraction and concatenation
to perform a more difficult computation. Such aggregation is built upon by Meta Faster
R-CNN [4]. Moreover, AttentionRPN architecture designed by Fan et al. [5] aggregates
query and support features prior to the region proposal network. The spatial correlations
between the support image and the query image aren’t always aligned. Meta Faster R-
CNN [4] also addresses this spatial misalignment.

Figure 2.1: Spatial misalignment due to convolution-based aggregation addressed in [4]

The support features and RoI features are spatially aligned using two attention modules
and then the foreground areas are emphasized. In addition, redundant information can
be reduced while improving feature sensitivity and stability for both novel and base cate-
gories via a new aggregation approach of features using a learnable soft-threshold opera-
tor.

However, the episodic training method for meta-learning is complicated. In addition, a
dual-branch design makes it more difficult to achieve. In more recent research, certain
categories of meta-learning have received less attention, and their performance is lagging
behind. The population size needed also grows rapidly as the number of parameters to
learn increases. Meta-learning may require careful hyperparameter optimization since it
might be sensitive to the mutation technique. Furthermore, especially for big models like
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Figure 2.2: Proposed Meta-Classifier with Attentive Feature Alignment [4].

CNNs, their fitting performance is typically worse than gradient-based approaches.

2.2 Metric Learning Based Approach

In this section, we will learn about the usage of metric learning [20]in few-shot object
detection. Let’s first discuss metric learning in image classification, we assign different
islands for different categories or classes of samples we are trying to recognize or classify.
Then in the inference stage, we take a query image and make a query island and calculate
the shortest distance between the query island and all other islands. The class of that
island which has the shortest distance from our query island is the proposed class for the
query image. This way we do image classification using metric learning and the same
goes for object detection. We just use different objects to make different islands. And
using objects is possible because we have bounding boxes to get the objects.

Now authors of this paper stated that their motivation was the work of Siamese Neural
Network for One Shot Image Classification [25]. The Siamese network has an architecture
that has a severe influence on metric learning. Hence we can say metric learning also has
an influence on A-RPN [5]. But most of the time metric learning is used as a booster
for better classification scores. Because according to FSCE [9] and DeFRCNN [8] the
main error is classifying novel objects as learned base classes. That’s why both of these
papers used other modules to improve classification scores. FSCE used a contrastive
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head aligned with the regressor head and classifier head. Whereas DeFRCNN used a
Prototypical Calibration Block to improve the softmax classification scores. More details
will be provided in later sections. We can see that though FSCE and DeFRCNN both have
a fine-tuning approach they heavily used metric learning to improve their classification
score. That’s why we also used cosine similarity to improve our classification scores in
our proposed method. Because we know cosine similarity is the building block of metric
learning.

Now let’s dive deep into A-RPN [5]. The authors of this paper claim they have two
contributions.

A general few-shot object detection network: This network has similar architecture to
Faster RCNN [24]. The authors added two things extra to the architecture and one new
strategy for training. The first one is attention RPN(Region Proposal Network) and the
other one is a multi-relational detector. And the strategy is a contrastive training strategy.
A-RPN is used at an early stage to get less and compact region proposals and a multi-
relation detector is used at a later stage which suppresses & filters out false detection in
the confusing background.

Attention RPN: Our RPN in our vanilla FRCNN proposes regions that can have our
target objects. But in a few shot evaluation settings, we give some support samples and
give a query image and tell our network to find the target objects in the query image
using the information of support samples. Here we use A-RPN so that we can use the
information of support samples. So we learn from supporting samples that what we need
to find in our query image. Here using supporting samples we are giving extra attention
to query images so that we can get fewer and better region proposals for the next stage.

Now X is the feature map of the support set and Y is the feature map of the query set. We
use X as kernel and slide it through on the Y in a depth-wise cross-correlation manner
[26]. In the below equation, we can see G, and here G is the resultant attention feature
map. Now the value of G h,w,c is the score of cross correlation of X and Y from h,w
coordinate on channel c. ‘From h,w coordinate’ means we put the kernel X’s (0,0) element
on the (h,w) element of Y. Then put X’s (0,1) on Y’s (h, w+1) and this goes on until we
cover all the elements of X.

Gh,w,c =
∑
i,j

Xi,j,c · Yh+i−1,w+j−1,c, i, j ∈ {1, ...., S} (2.1)

Multi-Relation Detector: From Figure 2.3, we can get three relation heads. Global
relation means similarity between two images. Local relation means similarity between
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one pixel of one image and one pixel at the same position of another image. Patch relation
is the complex one where we try to find similarity between one pixel of one image to all
the pixels of another image and vice versa. The local relation head is basically depth-wise
cross-correlation but for box predictors. Global relation is deep embedding for global
matching and patch relation is a deep nonlinear metric for patch matching. After doing
experiments authors came to the decision that it is better to use all the relation heads. Patch
relation being the most complex one should work better alone but due to complexity it is
data-hungry and does not perform well like global and Local. Nonetheless, we need a
patch relation head to get nonlinear learning which boosts AP.

Figure 2.3: Multi-Relation Detector in [5]. Different relation heads model different rela-
tionships between the query and support image.

Preparing a new dataset FSOD : A new dataset is proposed by authors claiming present
datasets do not follow the few shot evaluation settings. According to them, category
diversity is more important than the amount of per category samples. And Table 2.1
proves that their claim is right.

We can see that with each increment of the number of categories we have better AP and
each one has more AP than MS COCO.
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Table 2.1: Experimental results of our model on FSOD test set with different numbers of
training categories and images in the 5-way 5-shot evaluation.

Dataset No. of Class No. of Images AP50 AP75

COCO 80 115k 49.1 28.9
FSOD 300 26k 60.3 39.1
FSOD 500 26k 62.7 41.9
FSOD 800 27k 64.7 42.6

Now let’s discuss some important characteristics of the FSOD dataset. FSOD dataset has
1000 categories whereas MS COCO has only 80 categories. Though it has a tremendous
amount of categories, the amount of samples per category is much less than MS COCO.
FSOD has a total of 66000 images whereas MS COCO has a total of 123287 samples.

FSOD also follows the same convention of MS COCO for naming their categories. They
have 83 parent semantics which have further split into 1000 categories. Here one example
can be parent semantic is CAR for both AUDI and MERCEDES leaf categories.

The images of FSOD are from Open Image Dataset [27] v4 and Imagenet [28]. They
processed the samples before adding it to the main dataset. Like there are some samples
that have categories like ice bear and polar bear. But they both mean the same thing. So
they had to use one single-parent semantic for those categories. 531 categories are from
imagenet and 469 categories are from Open Image Dataset. The split is 800/200 while
training/testing.

2.3 Fine-tuning Based Approach

Wang et al. used fine-tuning based approach in Frustratingly simple few-shot object de-
tection [6] also known as the Two-Stage Fine Tuning Approach(TFA). In this paper, we
got introduced to the fine-tuning based approach and the later papers got better and better
with the fine-tuning approach. Here we also explain the problems with meta-learning and
why A-RPN is not a fine-tuning based approach.

Problems with meta learning: In meta-learning we learn for specific tasks and then
accumulate the knowledge to do better in novel sets. But this mainly works in episodes.
So with increasing classes of support sets, the meta-learning approach becomes memory
inefficient. And the algorithm of meta-learning is so complex that they tend to overfit
on few samples. That’s why normal fine-tuned FRCNN works better than some meta-
learning approaches. Another thing is that most of the meta-learning approach is used
for image classification. Object detection is very different from image classification be-
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cause in object detection we also need to do both localization and recognition, not just
recognition like image classification.

The training strategy for A-RPN [5] is quite different from the usual fine-tuning based
approaches. Here we give the support set to networks and give query sets to another
network. These networks share weights. So here we don’t fine-tune our networks with
support sets, rather we give it to networks like online processing in the inference stage
and get the output of final proposals with corresponding scores from networks that work
on query sets. The network architecture is like below image,

Figure 2.4: Illustration of Two Stage Fine-Tuning Approach (TFA) [6]

So authors of this paper implemented TFA with two intuitions,

• Feature representation learned from base classes is enough and we don’t need our
backbone to learn the feature representation of novel sets. We can just transfer the
knowledge learned from base classes to novel classes. Hence we don’t need to do
backpropagation on backbone, RPN and ROI feature extractor while we are in the
fine-tuning stage. We can just do backpropagation on the box predictor or the last
two layers of FRCNN network.

• This works because backbone and RPN do not learn about classes. They just learn
how to differentiate foreground from background. Then in the second stage, we
do classification and regression. That’s why we don’t need to fine-tune the feature
extractor ( backbone, RPN, ROI ).

With the above two intuitions in mind, authors froze the feature extractor and region
proposal networks and just fine-tune the last two layer classifier head and regressor head
with support sets. All other steps are quite similar to normal FRCNN training. Up to
this is called a few shots with fine-tuning. Then they also tried another variant by adding
cosine similarity which is called TFA w/cos. Now in the below equation, we can find there
is F(x) which is an input feature and we find the cosine similarity of it with the weight of
different classes. Our final output class will be, whose weight has the highest score with
our input feature F(x).
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si,j =
αF(x)Ti wj

∥F(x)i∥∥wj∥
(2.2)

We have previously mentioned that deep detectors encounter significant issues with over-
fitting in scenarios involving few-shot learning. The disparity between few-shot detection
and general object detection is more pronounced compared to the gap observed in few-
shot image classification. The FSCE [9]method can be considered as the next best alterna-
tive to TFA. MPSR which focuses on multi-scale positive sample refinement for few-shot
object detection, addresses the scale bias inherent in few-shot datasets and represents an
improvement over TFA. However, it should be noted that MPSR’s positive refinement
branch requires manual selection, which can be seen as somewhat less elegant. In the
baseline TFA approach, the performance for novel classes diminishes when the RPN and
ROI feature extractor are unfrozen. Nevertheless, we have discovered that this behavior
can be reversed and actually improve the results for novel detection if the training is ex-
ecuted properly. In FSCE, only the backbone is frozen, while an additional head with
two existing box predictor heads is added. This allows the authors to fine-tune the FPN
pathway and RPN while keeping the backbone fixed. This approach has proven effective
in coordinating the activation of backbone feature maps for novel objects, while also mit-
igating the risk of overfitting. The authors of FSCE employed the FRCNN, a two-stage
detection framework, where the RPN utilizes backbone feature maps to generate region
proposals. The ROI head then classifies each region proposal and performs bounding box
regression if an object is predicted to be present. The authors realized that the primary
source of error lies in misclassification after successfully detecting the target instances.
As a result, they introduced a contrastive head, consisting of a classifier head and a re-
gressor head. This contrastive head aims to group instances of the same class together
while creating a separation between instances of different classes. From our perspective,
the key contributions of this paper are:

Unfrozen RPN and ROI: The authors kept RPN and ROI unfrozen with two modifica-
tions. The backbone feature extractor is frozen during fine-tuning while the ROI feature
extractor is supervised by a contrastive objective. First, they took twice as many proposals
as TFA after Non-Max Suppression (NMS). This secures the potential positive anchors
which have low scores. Second, take half of the sampled proposals suggested by ROI
because these regions mostly contain background.

Contrastive learning: Authors applied batch contrastive learning used in Supervised
Contrastive Learning [29] to introduce more intra-class similarity and more inter-class
distinction.
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CPE (Contrastive Proposal Encoding) loss: Sun et al. criticized methods with com-
plex algorithms that can easily overfit and perform poorly in few-shot evaluation settings.
That’s why they have chosen contrastive learning to learn discriminative object proposal
representations without complexing the model.

A supervised contrastive objective with specific considerations for detection will be op-
timized to reduce the variance of object proposal embeddings from the same category
while pushing different category instances away from each other. A common approach to
do this same thing is to use a large margin classifier used in Large margin deep network
for classification [30], but with our trials, category-level positive-margin-based classifiers
do not work in this data-hungry setting.

With contrastive learning, the algorithm learns to build representations that do not concen-
trate on pixel-level details but encode high-level features effective enough to distinguish
different images.

Transfer learning methodologies follow a fundamental two-phase approach using a single-
branch architecture [7]. Initially, the detector is trained on base categories, with the
weights of all components frozen except for the RoI head responsible for bounding box
regression and classification [7].

Figure 2.5: Two-phase single-branch architecture of transfer learning used in [7]

In the second phase, fine-tuning takes place on the last layers for both base and novel cat-
egories, using a training set with balanced data selections and K shots per category [7]. To
account for feature variations between base and novel categories, a modification is made
to Faster R-CNN, utilizing cosine similarity for classification [7]. This straightforward
approach outperforms complex meta-learning strategies and has been enhanced through
various techniques [7].

To further optimize training, the training objective can be updated with revised loss func-
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tions, focusing on foreground areas or specific features [7]. Limiting gradient flow within
the detector or making minor adjustments to the training process can also improve the
training of detector components [7].

In their work on Decoupled Faster R-CNN (DeFRCN), Qiao et al. propose modifying
the backbone in both training phases. They discovered that contradictions arise during
training because the ROI head aims to differentiate categories while the RPN aims to
learn class-agnostic region proposals. They found it crucial to scale the gradient from the
ROI head to the backbone, rather than allowing it to flow from the RPN to the backbone.
During the first phase on the base dataset, the gradient from the ROI head is scaled by 0.75,
ensuring that the backbone learns slightly less than the rest of the detector. Throughout
the training on the base and novel datasets in the second phase, scaling the gradient by
0.01, which effectively freezes the backbone, is essential. This scaling greatly enhances
performance, especially in the second phase when the gradient from the RPN is stopped
and the gradient from the ROI head is scaled. The authors also noted that when trained
with ample data, Faster R-CNN benefits from gradient scaling when used as a general
object detector.

Figure 2.6: Comparison of Faster R-CNN and DeFRCN from [8]

To prevent catastrophic forgetting for base categories at the finetuning phase, In CFA,
Guirguis et al. [7] developed a new gradient update strategy that takes into consideration
the angle between gradients for samples of the base dataset and samples of the novel
dataset. Although the main goal of this gradient optimization method is to conserve the
performance of base categories, it also has a positive effect on the performance of novel
categories.

Regarding optimal gradient flow and inter-class separability, the loss has to be reduced.
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Similar to two-branch meta-learning, a contrastive loss in an auxiliary branch can con-
tribute to enhance the distinct ability of the features.

Benchmark outcomes testify to the effectiveness of Faster R-two-stage CNN’s detector
for transfer learning methods. Li et al. [31]identified that false positive classifications, or
category confusion, are the principal cause of the performance decrease for novel cate-
gories in Faster R-CNN. As a result, they improve the classification in a separate branch
that increases classification ability and is trained on samples that were incorrectly cate-
gorized as false positives. The cropped picture of the object is processed directly. The
classification outcome is then integrated with one of the initial branches of the Faster
R-CNN.

Many novel categories have low classification scores, as stated by Qiao et al. in De-
FRCN [8]. They get to the same conclusion as Li et al. [31], that it is troublesome to
have criteria for classification that has translation invariant features and localization that
has translation covariant features. They provide a prototype calibration block (PCB) to
address this problem by performing score refinement to get rid of false positive classifi-
cations with high scores. Hence, a score refinement can help in reducing the number of
false positive classifications in detectors based on Faster R-CNN.

Figure 2.7: The architecture of DeFRCN [8].

As opposed to meta-learning, which requires complex episodic training, transfer learning
processes offer a considerably simplified training pipeline. Transfer learning processes
can achieve state-of-the-art performance by adding certain methods to be able to fine-
tune as many detector components as possible, such as changing the training objective or
transmitting knowledge between the base and novel categories.

Cross-domain means we train on the source domain and get tested on the target domain.
But what all the above papers did was a train on one domain and get tested on unseen
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samples of that same domain. Only DeFRCNN tried a cross-domain approach where
authors trained their network with COCO and tested it with PASCAL VOC. Even that
is not a complete cross-domain approach because COCO and PASCAL VOC have some
categories which are the same or at least they are from the same domain. One example
can be that both COCO and PASCAL VOC have animal images though the class might
be different, the domain is the same which is ANIMALS.

In CD-FSOD: A Benchmark For Cross-domain few-shot object detection [22] find this
huge flaw in the present few-shot evaluation settings. That’s why they proposed a new
benchmark or evaluation setting called CD-FSOD (cross-domain few-shot object detec-
tion). Now after forming this new evaluation setting, they tested all the models suggested
by the above papers. And their performance was not satisfactory. Even one FRCN just
fine-tuned did better than all the above models (Meta-RCNN, TFA, FSCE, DeFRCN).
Obviously, they introduced some changes to make vanilla FRCN work better. We will
first discuss the intuitions behind the changes and then the changes.

1. First of all, why did all the above models underperform? Because during the fine-
tuning stage, there are always some modules of those models which got frozen so
that they will not overfit the few training samples. Which modules of which models
got frozen is clearly illustrated in Table 2.2.

Method Backbone RPN ROI Head
Attention-RPN ✓
Meta-RCNN ✓

H-GCN ✓
TFA w/cos ✓ ✓ ✓

FSCE ✓
DeFRCN ✓

Table 2.2: The freezing module comparison for existing FSOD approaches

Now, these models really don’t get overfitted but that was in a few-shot evaluation
setting where the source and target domains are the same. But in cross-domain few
shot evaluation settings, these models get overfitted with the source domain when
the modules of feature extractors are frozen and since it got overfitted with the
source domain, it underperforms when tested with the target domain. That’s why
authors experimented with unfrozen modules in cross-domain few-shot evaluation
settings and the performance got better.

2. Just unfreezing modules did very well but our authors did not stop there, they pro-
posed a new method that does not require changing the internal architecture of the
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model. They just used a very interesting and elegant fine-tuning strategy. They
divided their approach into the training and testing stage. The testing phase has
different stages.

(a) Training Stage:
In this stage, we train our detector (Basic FRCN) with the source domain (MS
COCO).

(b) Testing Stage:
We copy the weights of the detector and copy it to a student (another basic
FRCN). Then we train the student with support sets just like FRCN-ft. Here
we keep all the modules of the student unfrozen. Then we get another ba-
sic FRCN as a teacher and copy the weights of the students to the teacher.
This is the initiation of the distillation step. So we have our support images
and we augment those images in two different ways. Strong augmentation
has color jittering, grayscale conversion, cutout patches, and gaussian blur.
Weak augmentation has only random horizontal flips. Then we pass the weak
augmented support set image through the teacher and got the pseudo labels.
Teachers will put bounding boxes where he is confident enough that there is a
target object. Now the bounding boxes given by the teacher are called pseudo
labels. Then we pass strongly augmented images through the student and get
bounding boxes where he is confident enough that there is a target object.
We compare students’ bounding boxes with ground truth which gives us su-
pervised loss (Ls) and by comparing students’ bounding boxes with pseudo
labels we get distillation loss (LD). We compute the total loss L using the
equation below,

Now we need to update weights. So, using the total loss L we update the
weights of the student using the equation below,

Ws ← αWs + γ
δL

δWs

(2.3)

Then we use student’s weights to update teacher weights using the below
equation,

Wt ← αWt + (1− α)Ws (2.4)

The way a teacher’s weights get updated is called EMA (Exponential mean
average) update. We are storing the average of students in the teacher. Since
we are averaging one’s learning it means that we are getting more generalized
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knowledge that is not overfitted with any support sets. Again, taking distilla-
tion loss works like regularization which also prevents overfitting to the source
domain. Then at the inference stage, we use our teacher model and we don’t
do any sort of augmentation on the query sets.

Now that all the intuitions and changes are discussed let’s discuss the cross-domain
datasets. So base training is done on MS COCO. It also experimented with PASCAL
VOC but the result was not up to the mark. The cause is clear with a more diversified
category and an ample number of samples, the network produces better results.

After base training on the source domain MS COCO, authors use ArTaxOr, UODD,
DIOR, and ChestX as target domains. The reasons for using them are,

1. ArTaxOr: This has the image of arthropods. These are natural images but fine-
grained specific to biology. Problem is that these require lots of annotations.

2. UODD: This has the image of arthropods. These are natural images but fine-grained
specific to biology. Problem is that these require lots of annotations.

3. DIOR: Satellite images. These were chosen because they have lost perspective but
have higher resolution and discriminative images.

4. ChestX: This might be the most difficult one in these four target domain datasets.
This has radiological images. Lost two color channels and not a natural scene. This
might have more differences with source domain COCO than all the other three
target domain datasets.

Now the authors chose the FRCN because it works well on the ChestX. Since it works well
on the most difficult dataset, we can say that it has the capability of being the most gener-
alized network among Fully convolutional one-stage detector(FCOS) [32], RetinaNet and
Deformable-DETR.



23

Chapter 3

Methodology

Our proposed methodology is a multi-step process designed to improve the accuracy and
robustness of the traffic sign detection system using few-shot learning.The methodology
is built on the framework of few-shot learning, which entails training a model to learn
from a small set of examples. The goal in this scenario is to detect traffic signs from a
small number of samples.We have included a number of innovative features that improve
the model’s accuracy and capacity to detect traffic signs in real-world environments.

We begin with domain adaptation, in which the model is trained on a source domain and
then fine-tuned on a target domain to increase performance in the target domain. The
target domain in the context of traffic sign detection is the real-world environment in
which traffic signs may appear under various lighting situations, angles, and settings.

After that we unfreeze component while training allows the model to optimize and learn
the parameters of all layers, including the pre-trained layers.This allows the model to
learn more detailed features from the data and improve its ability to distinguish between
different traffic signs.

We also introduce the usage of a pseudo support set, which is a collection of samples
generated during training to simulate a new class. We start with a step of preprocessing
that comprises both strong and weak augmentation strategies. The goal is to create new
images from the existing dataset by applying transformations such as scaling, flipping,
and rotation. The goal of this step is to increase the amount of training examples and
improve the model’s generalization capabilities.

Finally, our suggested methodology incorporates instance-level feature normalization,
which is a strategy for normalizing the model’s retrieved features at each instance level.
This strategy aids in improving the model’s generalization capability and reducing the
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Figure 3.1: Basic Architecture of Faster RCNN

impact of intra-class variability. When these characteristics are coupled, the suggested
methodology becomes a robust and successful strategy for few-shot traffic sign detection.
Now we’ll dive into a detailed explanation of the proposed methodology’s aspects.
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Figure 3.2: Proposed Architecture
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3.1 Domain Adaptation

Domain adaptation is a process of adapting a model trained on one domain (source do-
main) to work well on another domain (target domain).

Our proposed methodology for traffic sign detection builds on the concept of domain
adaptation, which has been explored in several existing works such as DEFRCN [8],
CDFSOD [22], and ARPN [5]. In DEFRCN, the MSCOCO dataset was divided into
base and novel classes for training and testing respectively. Similarly, CDFSOD used
MSCOCO as the base dataset for training and ArTaxOr, UODD, and DIOR datasets for
testing.

However, we were particularly interested in the approach taken in the ARPN [5] paper,
where they created a new dataset called FSOD specifically designed for few-shot learning.
This dataset had 800 base classes for training and 200 novel classes for testing.

As we aim to build a traffic sign detection system, our source and target domains do
not necessarily have to be distinct. Therefore, we decided to merge different traffic sign
datasets. The datasets we have used are:

1. German traffic sign dataset

2. LISA dataset

3. Chinese dataset

German traffic sign dataset, LISA dataset and Chinese dataset to create a base dataset as
the source domain for our model. We then used the Bangladeshi Traffic Sign dataset as
our target domain.

To implement domain adaptation in our proposed architecture, we first trained our model
on the source domain and then fine-tuned it on the target domain.

The incorporation of domain adaptation in our methodology improves the model’s ability
to generalize and perform well on unseen data. This is because it allows the model to learn
and recognize common features between the source and target domains and adjust its
weights accordingly. This reduces the risk of overfitting to the training data and improves
the model’s ability to accurately detect traffic signs in real-world scenarios.
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Figure 3.3: Domain adaptation on Proposed Architecture

3.2 Warm Model

While performing background studies, we have found that TFA, CDFSOD and Defrcn
are all papers that propose methods for few-shot learning using deep learning models. In
order to improve the performance of their models, they all employ the strategy of freezing
certain layers during training. However, it has been observed that this approach can result
in a decrease in accuracy.

Figure 3.4: Freezing layers in TFA [6]

The reasons behind decreasing accuracy are:

1. Frozen layers are not updated during training, which means that they may not be
able to learn to represent the features of the input data that are important for traffic
sign detection.

2. Frozen layers can cause the model to become overconfident, as they may not be
able to learn to represent the uncertainty in the data.
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3. Frozen layers can make the model less resistant to changes in the input data because
they can’t adjust to new data distributions.

Figure 3.5: Freezing layers in FSCE [9]

Furthermore, when a layer is frozen during training, its weights remain constant and are
not changed during the training process. When the layer is a pre-trained feature extrac-
tor that has acquired useful features for the job at hand, freezing it allows the model to
concentrate on learning other parts of the task.

However, if too many layers are frozen, the model may not be able to adapt to the specific
characteristics of the dataset it is being trained on, and its performance may suffer as a
result. This is because the fixed weights of the frozen layers may not be able to capture
the nuances and variations in the data that are important for the task.

In contrast, training a model without freezing any layers allows all of the weights to be
updated during training, which can help the model adapt to the specific characteristics of
the dataset and improve its performance. This is especially important in few-shot learning,
where the model needs to learn from a small number of examples and may not have access
to a large pre-existing set of features to leverage.As we are not freezing any layers we call
our model warm model, because the model will not be frozen it will remain warm!

Therefore, in our methodology for traffic sign detection, we have chosen to train the
FRCN layers of our model without freezing anything. This allows the model to learn
from the support set and adapt to the target domain, improving its accuracy in real-world
scenarios.
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Figure 3.6: Unfreezed Layers(Warm Model) in Proposed Architecture

3.3 Pseudo Support Set

Data augmentation is a technique that involves creating new synthetic data samples from
existing training data to improve the performance of machine learning models. The CDF-
SOD paper implemented a combination of strong and weak augmentation techniques,
which played a critical role in improving the accuracy of their model. Strong augmenta-
tion techniques such as Gaussian blur, color jitter, and cutout helped to introduce variabil-
ity in the training data, making the model more robust to changes in lighting conditions,
image quality, and other factors that can affect the performance of the model in real-
world scenarios. On the other hand, weak augmentation techniques such as horizontal
flip helped to introduce diversity in the dataset, enabling the model to learn more gener-
alizable features that can be applied to different scenarios.

Inspired by this approach, we decided to experiment with data augmentation in our own
model, using the Bangladeshi traffic sign dataset. We fine-tuned the CDFSOD model with
various hyperparameter values to determine the best combination for traffic sign detection.
We found that setting alpha and gamma to 0 resulted in the best performance.
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In CDFSOD the total Loss were,

L = LS + λLD (3.1)

Now if we put λ=0 then the equation becomes,

L = LS (3.2)

Besides, we needed to perform EMA update in CDFSOD following this equation,

Wt ← αWt + (1− α)Ws (3.3)

Using the hyperparameter value for α = 0 we get,

Wt ← Ws (3.4)

The absence of the distillation loss and the collapsing of the teacher model into the student
model were the results of our hyperparameter experiments. This means that we can now
eliminate the teacher model from our architecture, and instead focus solely on the stu-
dent model. Previously, we had employed the EMA update method to adjust the teacher
model’s parameters using those of the student model, but now that we have trained our
student model by combining three traffic sign datasets, it has surpassed the performance
of the teacher model. This allows us to skip the EMA update step altogether.

To enhance the performance of the student model, we applied strong data augmentation
techniques such as Gaussian blur, cutout, and color jitter to the support set. We referred to
this augmented support set as the ”pseudo support set.” Instead of using the teacher model,
we trained our FRCN model again using this pseudo support set. As a result, our 5-way 5-
shot model is now essentially a 5-way 10-shot model, since we are using the same support
set twice during the training process. Overall, these adjustments have enabled our model
to achieve higher accuracy and better performance on traffic sign detection tasks.

This approach allowed our model to achieve better accuracy, especially in scenarios where
there is limited training data or when the data has limited variability. Overall, the incor-
poration of data augmentation in our model enhanced the robustness and generalization
capabilities of the model, making it more effective for real-world applications.
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Figure 3.7: Pseudo-Support Set incorporated in Our Architecture

3.4 Instance-Level Feature Normalization

In the context of FRCNN, it is important to have translation invariant features for the box
classifier, as it should be robust to changes in object position. On the other hand, the box
regressor requires translation covariant features to accurately predict the bounding box
coordinates.

Instance-level feature normalization is a technique used to normalize the features of each
instance in a dataset. This is done by subtracting the mean of the features and dividing by
the standard deviation of the features. This ensures that all of the features have a mean of
0 and a standard deviation of 1.

By making the features more comparable, instance-level feature normalization can be
utilized to improve the performance of machine learning models. This is significant be-
cause distinct features may have varying scales and ranges. We can verify that all of the
characteristics are on a same scale by normalizing the features, making it easier for the
machine learning model to learn from the data. The prediction in a normal neural network
is computed using the dot product of the weight vector and the input features:

ŷ = wT ∗ x (3.5)

Instance-level feature normalization, on the other hand, uses a separate algorithm to nor-
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malize the features and assure instance-specific modifications. The formula to be used
is:

si,j =
αF(x)Ti wj

∥F(x)i∥∥wj∥
(3.6)

Instance-level feature normalization aids in the normalization of our model’s scores or val-
ues. In comparison to the previous implementation, this normalization reduces or brings
the scores closer together. As a result, by modifying the weights, our model attempts to
improve these ratings. This change results in higher confidence scores, showing better
assurance in our model’s predictions.

We provide a more balanced and consistent depiction of the data by normalizing the
scores. This balance enables our algorithm to better comprehend and compare the various
ratings, resulting in a more accurate estimate of the level of confidence associated with
each prediction. In other words, the normalization procedure scales up the scores, making
them more comparable and reliable.

The goal of this continuous weight updating method is to maximize the scores and, thus,
the model’s confidence. As the weights are adjusted, the model becomes more fine-tuned
and flexible to the precise patterns and properties of the data it is trained on. This adapt-
ability enables the model to better capture the complexities of the input data and produce
more accurate predictions.

Figure 3.8: Instance Level Feature Normalization incorporated in Our Architecture
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Chapter 4

Results and Discussions

4.1 Dataset

To ensure the effectiveness and robustness of our model, we diligently generated a thor-
ough training and testing dataset in the dataset portion of our thesis. We combined three
separate datasets to train our model:

1. German traffic sign dataset

2. Lisa dataset

3. Chinese dataset

This merging approach enabled us to use a wide variety of traffic sign samples, capturing a
wider diversity of forms, colors, and patterns often observed in real-world circumstances.

We used the Bangladeshi Traffic Sign dataset for assessment and testing, since it provided
a solid baseline for analyzing our model’s performance in identifying and categorizing
traffic signs particular to the Bangladeshi environment. By utilizing this dataset, we aimed
to validate the generalizability and adaptability of our model across different geographical
regions, ensuring its suitability for practical applications.

By incorporating these datasets into our study, we strived to create a comprehensive and
representative collection of traffic sign images, enabling our model to learn and recognize
the distinctive characteristics of traffic signs in a wide range of scenarios.
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4.2 Experimental Setup

Throughout our research, we ensured a fair and consistent experimental setup to accu-
rately compare the performance of different models. Here are the specific details of our
setup:

Optimization Parameters: We utilized Stochastic Gradient Descent (SGD) as the opti-
mizer, with a learning rate of 0.01 to control parameter adjustments based on gradients.
Momentum with a value of 0.9 was applied to aid convergence by keeping the model
moving in the right direction. Weight decay, with a coefficient of 5e−4, was implemented
to prevent overfitting and promote generalization..

Backbone Networks: We used Faster RCNN as our base detector and Resnet50 as the
backbone architecture for feature extraction.

4.3 Evaluation Metric

The performance metric we are going to use for our model is Mean Average Preci-
sion(mAP). Generally, mAP is used to evaluate object detection models. Ours is a traffic
sign detection model which falls under the category of object detection. Hence, we are
using mAP as our evaluation metric.To compute mAP, we need to first compute the Aver-
age Precision (AP) for each class of traffic signs in the dataset. AP is the area under the
precision-recall curve for a given class. In information retrieval and classification tasks,
precision and recall are frequently employed metrics. To calculate precision and recall in
a detection or classification task, we use two different formulas.We will briefly discuss
these formulas in more details in next few paragraphs.

To compute AP, we first sort the detection results by their confidence scores, from high to
low. The precision and recall at that point in the list are then computed for each detection
result. These values are then used to plot the precision-recall curve. The area under this
curve is denoted by AP. This procedure is repeated for each kind of traffic signs in the
dataset. Finally, we compute the mean of all AP values to obtain the mAP for our model.

Using mAP as our evaluation metric allows us to measure the overall performance of our
traffic sign detection model. It takes into account both the precision and recall of our
model for each class of traffic signs, which gives us a more comprehensive understanding
of its effectiveness in real-world scenarios.

To properly understand mAP we need to understand the following metric first:
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(a) Intersection over Union(IoU): In object detection tasks, one of the key evaluation
metrics used is Intersection over Union (IoU). IoU, which stands for Intersection
over Union, is a common evaluation metric used in object detection tasks. The IoU
is a way to check how well the predicted bounding box matches the actual ground
truth bounding box.

IoU measures the overlap between the two boxes, and the resulting value ranges
from 0 to 1. When the IoU value is 1, it means that the predicted box perfectly
aligns with the ground truth box. Bounding by a threshold IoU value we can decide
whether the prediction is True Positive(correctly classified as positive), True Neg-
ative(correctly classified as negative), False Positive(incorrectly classified as posi-
tive), False Negative(incorrectly classified as negative).The IoU threshold plays a
crucial role in determining the accuracy of the model, and it is often optimized dur-
ing the training process to improve performance.

(b) Precision: Precision is the measurement of the proportion of predicted positives
that are actually correct. Precision is a metric that tells us how many of the pre-
dicted positive results are actually correct. It helps us measure the accuracy of our
model’s predictions by comparing the number of true positive results (correctly de-
tected traffic signs) to the total number of predicted positive results. In simpler
terms, precision tells us how precise or exact our model’s positive predictions are.
Mathematically we can write,

Precision, P =
TruePositive

TruePositive+ FalsePositive
(4.1)

(c) Recall: Recall is the measurement of the proportion of actual positives that were
predicted correctly.In other words, recall indicates how many of the actual positive
examples were correctly identified by the model. When the recall value is low, it
means that the model is not able to detect all the objects of a particular class. This
can result in important objects being overlooked or incorrectly classified, making it
essential to have a high recall value. Mathematically we can write,

Recall, R =
TruePositive

TruePositive+ FalseNegative
(4.2)

(d) Average Precision: Average precision is the area under the Precision-Recall graph.Average
Precision in class specific. We need to calculate Average Precision(AP) for each
class.The average precision is a way of measuring the performance of the model by
considering both precision and recall. It’s calculated by calculating the area under



4.4. QUANTITATIVE ANALYSIS 35

the precision-recall curve. Calculating the value and then averaging it across all
classes in the dataset yields the average precision for each class. This enables us
to assess the model’s effectiveness for each particular class and pinpoint any areas
that require improvement. We can check that the model is doing well overall and
make improvements as needed by looking at the performance for each class.

(e) Mean Average Precision: Mean Average Precision(mAP) is the average of AP(Average
Precision) over all detected class. It is a metric that calculates the average precision
score for all the different classes present in the dataset. Essentially, we calculate
the average precision for each class, and then take the mean of all these values to
get the mAP score. This allows us to evaluate the overall performance of the model
across all the different classes and ensure that it is able to detect and classify all
relevant objects accurately. Mathematically we can write,

mAP =

∑
AP

n
(4.3)

Here, n indicates the number of classes.

When we see mAP@0.75, it means that the metric was calculated by setting the
Intersection over Union (IoU) threshold to 0.75. The IoU measures how well the
predicted bounding box overlaps with the ground truth bounding box.

In the past, mAP was evaluated only at a single IoU threshold of 0.5. However, the
COCO challenge made the evaluation more challenging by redefining mAP@0.5 to
mAP@[0.5:0.05:0.95]. This means that the mAP is now calculated and averaged
over a set of ten different IoU thresholds ranging from 0.5 to 0.95, with a step
frequency of 0.05. This allows for a more comprehensive evaluation of the model’s
performance across different levels of overlap between the predicted and ground
truth bounding boxes.

4.4 Quantitative Analysis

Since we have discussed the core idea of the evaluation metric mAP, we can evaluate
our model performance.We have implemented the DeFRCN model and measured
the performance of the model in the Bangladeshi Traffic Sign Dataset. Table 4.1
shows the results of DeFRCN on the Bangladeshi traffic sign dataset on different
AP such as 50,75 and different support set sizes such as 1 shot, 2 shot, 10 shot, etc.
Here nAP means novel class Average Precision.
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Table 4.1: DeFRCN on Bangladeshi Traffic Sign

Shots AP AP50 AP75 nAP nAP50 nAP75 Time Taken
Repeat 0 1 25.949 40.482 26.593 25.949 40.482 26.593 eta: 1:22:23

2 28.978 42.966 33.469 28.978 42.966 33.469 eta: 2:02:21
3 30.447 46.044 35.418 30.447 46.044 35.418 eta: 2:46:37
5 33.279 49.507 37.624 33.279 49.507 37.624 eta: 3:34:56

10 35.817 51.08 42.418 35.817 51.08 42.418 eta: 7:11:36
Repeat 1 1 27.282 42.299 28.351 27.282 42.299 28.351

2 29.332 42.687 34.705 29.332 42.687 34.705
3 30.506 46.161 35.686 30.506 46.161 35.686
5 33.05 48.72 37.943 33.05 48.72 37.943

10 35.868 51.725 42.323 35.868 51.725 42.323
Repeat 2 1 27.177 42.318 27.492 27.177 42.318 27.492

2 29.41 43.014 34.222 29.41 43.014 34.222
3 29.96 45.529 34.392 29.96 45.529 34.392
5 32.488 47.771 37.703 32.488 47.771 37.703

We have also measured the performance of TFA w/FC [6], FRCN-ft [24], CD-
FSOD [22] on Bangladeshi Traffic Sign Dataset. Table 4.4 shows the comparison
between these methods. For comparison, we have used 5 way 15 shot. Comparing
the mAPs of these methods we see, CD-FSOD performs better than FRCN-ft [24]
and TFA w/FC [6]. The reason behind this result is that the strategy CD-FSOD [8]
uses that is EMA update performs better in cross-domain as well as traditional
settings. Although in FRCN-ft [24] some of the layers are fine-tuned, it can not
exceed the performance of CD-FSOD.On the other hand, TFA w/FC [6] gives a
very poor mAP as it freezes all the layers.

After conducting an extensive series of experiments, we have obtained valuable
insights into the performance and accuracy of our model under various settings.
The results of these experiments are meticulously documented and presented in
the form of a comprehensive Table 4.4, which provides a detailed overview of the
achieved accuracy across different configurations and parameters.

Table 4.2: Methods tested on Bangladeshi Traffic Sign Dataset, mAP @ 0.5

Method/Shot 5 way 15 shot
TFA w/FC 10.346
FRCN-ft 20.048

CD-FSOD 24.7996

Throughout our experimentation and evaluation process, we have employed the
widely recognized mean average precision (mAP) metric with an intersection over
union (IoU) threshold of 0.5 as our chosen accuracy measure. This metric provides
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a comprehensive assessment of the model’s ability to accurately detect and localize
traffic signs in various scenarios.

By setting the IoU threshold at 0.5, we ensure that the predicted bounding boxes
align sufficiently with the ground truth annotations, indicating a successful detec-
tion. The mAP score takes into account both precision and recall, providing a
holistic measure of the model’s performance across different classes and detection
thresholds.

Table 4.3: Comparison between our implementations and SOTA Architec-
tures(mAP@0.5, 5 way n-shot; n=1,2,3,5,10)

Method
Shot

1 Shot 2 shot 3 Shot 5 Shot 10 Shot

TFA 5.17 9.48 4.67 11.52 12.43
TFA w/cos 12.44 13.09 12.96 15.03 18.68
FRCN-ft 16.16 24.99 25.88 39.2 58.10
DeFRCN 24.63 23.55 26.74 27.87 35.84

CD-FSOD 14.91 25.46 25.29 39.36 56.15
(λ = 2, α = 0.4)

Ours 2x 21.39 26.44 30.27 42.02 57.79
Ours 4x 19.13 29.47 29.88 43.09 63.57

In our research, we have implemented and evaluated our model using a 5-way n-
shot framework, where n takes values from the set 1, 2, 3, 5, 10. This approach
allows us to assess the performance of our model across different levels of shot,
representing the number of support examples available for each class during train-
ing.

During our evaluation, we compared the performance of several existing models,
including TFA, TFA with cosine similarity, FRCN-ft, DeFRCN, CDFSOD, as well
as our own models labeled as Ours(2x) and Ours(4x). These models were selected
based on their relevance and potential to address the challenges of few-shot learning
in the context of traffic sign detection.

In Ours(2x), we introduced a strong augmentation strategy where we performed
intensive data augmentation techniques on the images, resulting in the generation
of additional augmented images. This effectively doubled the size of the support set,
hence the name 2x. By augmenting the data in this manner, we aimed to enhance
the model’s ability to generalize and learn robust representations for improved few-
shot learning performance.

Similarly, in Ours(4x), we further extended the augmentation approach by gener-
ating three additional augmented images from each original image, resulting in a
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total of four augmented images per sample. This intensive augmentation strategy,
labeled as 4x, aimed to provide the model with an even more diverse and compre-
hensive set of training examples, facilitating better learning and adaptation to novel
classes.

The table clearly illustrates the performance of different models in terms of accu-
racy. TFA emerges as the worst performer, followed by TFA with cosine similarity,
and then DeFRCN. FRCN-ft shows a slightly better performance, ranking as the
third-best model, with accuracy comparable to that of CDFSOD.

However, our model outperforms all these state-of-the-art (SOTA) models in every
shot except for the 1-shot scenario. Whether it’s the 2x or 4x variant, our model
surpasses the others in terms of accuracy. This highlights the effectiveness and
superiority of our proposed approach in few-shot learning tasks.

The results presented in the table provide a clear indication of the performance
differences among the models evaluated. TFA consistently demonstrated the lowest
accuracy across all shot levels.

The performance of TFA was observed to be the lowest among the evaluated mod-
els due to its approach of freezing all layers except for the head. By freezing the
majority of the layers, the model’s ability to adapt to the specific characteristics of
the dataset is limited. As a result, its performance suffers, especially in the context
of few-shot learning tasks where the model needs to generalize well with limited
training examples. In contrast, other models that employ different strategies such
as fine-tuning or partial freezing of layers demonstrate better performance as they
allow for more flexibility in adapting to the dataset.

However, when TFA was combined with cosine similarity, we observed significant
improvements in accuracy. For example, in the 1-shot scenario, the accuracy in-
creased from 5.17% to 12.44%.

TFA with cosine similarity and instance level normalization at the head outper-
formed TFA without these modifications. The inclusion of instance level normal-
ization at the head of the TFA model helps to reduce the intra-class variance and
improve the accuracy of novel classes, while minimizing the decrease in detection
accuracy for base classes. This normalization technique ensures that the features
of each instance in the dataset are appropriately normalized, leading to improved
model performance. Therefore, the utilization of instance level normalization in
TFA with cosine similarity contributes to its superior performance compared to the
original TFA model.

On the other hand, DeFRCN outperformed both prominent models and our own
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model in the 1-shot setting. This can be attributed to the design of DeFRCN, which
is specifically tailored to excel when the number of images in the support set is
limited. As a result, as the number of shots increases in DeFRCN, the improvement
in mean Average Precision (mAP) becomes less substantial. Additionally, other
prominent models surpass DeFRCN when the number of shots exceeds 1.

DeFRCN is specifically designed for robust generalization, which is crucial for
few-shot learning tasks. It incorporates a Gradient Decouple Layer that decouples
the Region Proposal Network (RPN) and ROI (Region of Interest) head from the
backbone network. This decoupling allows DeFRCN to achieve the highest level of
generalization among the models evaluated.

In the context of 1-shot learning, where there is limited training data available,
high generalization power becomes particularly important. DeFRCN excels in this
regard by effectively decoupling the RPN and ROI head, enabling it to adapt and
generalize well to novel classes with minimal training examples.

By prioritizing generalization and leveraging the benefits of decoupling, DeFRCN
surpasses other models in terms of performance, making it the top performer in the
1-shot scenario. Its ability to generalize effectively even with limited training data
sets it apart as a powerful model for few-shot learning tasks.

In the FRCN-ft (Faster R-CNN fine-tuned) model, no layers are frozen during the
fine-tuning process. This means that all layers of the model, including both the
backbone and the detection heads, are updated and adjusted based on the target
dataset.

Contrary to this approach, CDFSOD claims that by fine-tuning their model with cer-
tain frozen layers, their method can surpass state-of-the-art (SOTA) architectures.
They argue that their specific combination of frozen and unfrozen layers allows
their model to adapt better to the target dataset, resulting in improved performance.

CDFSOD perform same as FRCN-ft. Because since our evaluation setting is in
neither like cross domain nor like FSOD, the student model in FSOD is already
a well-performing model. Further generalizing this model may actually lead to a
decrease in performance. Therefore, with the specific hyperparameter values of
α = 0.4 and λ = 2, CDFSOD does not significantly modify its pre-trained model
based on FRCN-ft. Instead, it retains the knowledge and characteristics learned
from the FRCN-ft model. So with CDFSOD does not change its burned model on
FRCN-ft that much.

We have enhanced the basic architecture of Faster RCNN by incorporating Domain
Adaptation, Warm Model, Pseudo-Support Set, and Instance Level Feature Normal-
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ization. By leveraging the best features from state-of-the-art (SOTA) architectures,
our model outperforms others in most categories. The only exception is DeFRCN,
which has a specific advantage as explained earlier. Notably, our model surpasses
all other models in the 2-shot, 3-shot, and 5-shot categories when using 2x aug-
mentation. In the 1-shot category, DeFRCN performs better, and in the 10-shot
category, FRCN-ft outperforms our variant, Ours(2x). However, our other variant,
Ours(4x), outperforms all models except DeFRCN in the 1-shot category.

4.5 Qualitative Analysis

Figure 4.1: Qualititive Analysis on TFA

In our qualitative analysis, we conducted a thorough examination of the model’s
predictions on various test samples. We assessed the model’s performance in terms
of object detection accuracy, localization precision, and its ability to handle chal-
lenging scenarios and diverse object classes.

Qualitative analysis plays a crucial role in evaluating the performance and capa-
bilities of our proposed model. By examining the qualitative aspects, we can gain
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insights into the model’s behavior, its ability to generalize, and its overall effective-
ness in solving the problem at hand.

In our qualitative analysis, we conducted a thorough examination of the model’s
predictions on various test samples. We assessed the model’s performance in terms
of object detection accuracy, localization precision, and its ability to handle chal-
lenging scenarios and diverse object classes.

Figure 4.2: Qualititive Analysis on FRCN-ft

From Figure 4.1 it is clear that, TFA’s performance in traffic sign detection is sub-
optimal as it tends to erroneously identify unrelated objects as traffic signs. This
deficiency hinders its ability to accurately distinguish true traffic signs from irrel-
evant objects within the scene, potentially leading to incorrect interpretations and
decisions in real-world applications.

Furthermore, Figure 4.2 shows that the performance of FRCN-ft in detecting traffic
signs in the given image is inadequate. Despite fine-tuning the model, it fails to
accurately identify and localize the traffic signs present in the image. This limi-
tation suggests the need for further improvements or modifications to enhance its
performance specifically for traffic sign detection tasks.
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Figure 4.3: Qualititive Analysis on CD-FSOD

Additionally, as depicted in Figure 4.3, the performance of CDFSOD in the detec-
tion of traffic signs in the provided image is unsatisfactory. Despite undergoing
fine-tuning, the model struggles to precisely recognize and locate the traffic signs
depicted in the image. Although this model has detected the traffic sign, it has also
detected random object as traffic signs.This drawback emphasizes the necessity for
additional enhancements or alterations to improve its effectiveness, particularly in
the context of traffic sign detection tasks.

On the other hand, Figure 4.4 shows that even though other models could not detect
the traffic sign properly, Ours has exhibited exceptional performance in this regard.
Not only did our model successfully identify and locate the traffic sign, but it also
exhibited a notable absence of false detections or misclassifications of unrelated ob-
jects as traffic signs. This substantiates the superior performance and effectiveness
of our model compared to the other models under evaluation.

We observed that our proposed model consistently demonstrated robust object de-
tection capabilities across different environmental conditions, lighting variations,
and occlusion scenarios. The model successfully identified and localized traffic
signs with high accuracy, providing reliable results in real-world scenarios.
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Figure 4.4: Qualititive Analysis of Ours Model

Furthermore, our model showcased a remarkable ability to generalize well to novel
traffic sign classes and unseen test samples. It effectively learned and recognized
various traffic sign categories, including stop signs, speed limit signs, yield signs,
and more. This capability is crucial for real-world applications where the model
must adapt and respond accurately to new and evolving traffic sign variations.

4.6 Ablation Studies

In order to understand the impact of each component in our model architecture,
we conducted an ablation study where we systematically selected specific compo-
nents while removing others. This allowed us to evaluate the contribution of each
component towards the overall performance of our model. The following ablation
experiments were performed:
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Table 4.4: Ablation Studies on FSBD(2x) on 5 way 3 shot

DA WM PS ILN 3-shot mAP@0.5
2.657

✓ 8.91
✓ ✓ 11.01
✓ ✓ 11.08
✓ ✓ 24.19
✓ ✓ ✓ 28.70
✓ ✓ ✓ ✓ 29.49

(a) Removing Domain adaptation, Warm Model, Pseudo Support Set and In-
stance Level Normalization: Without incorporating any additional compo-
nents or modifications as proposed in our model, the mean Average Precision
at IoU threshold of 0.50 (mAP@0.5) achieved a low value of 2.657%. This
outcome validates our hypothesis that without implementing the proposed en-
hancements, the model’s performance would not meet the desired expecta-
tions. Thus, it emphasizes the necessity of incorporating the proposed com-
ponents to improve the overall performance and effectiveness of our model.

(b) Adding only Domain adaptation: By incorporating Domain Adaptation with
our base model, we have observed a significant improvement in the mean Av-
erage Precision at IoU threshold of 0.50 (mAP@0.5), achieving a value of
8.91%. This substantial increase in performance highlights the importance of
Domain Adaptation in enhancing the model’s ability to adapt and generalize to
different datasets. As a result, we have consistently utilized Domain Adapta-
tion in our subsequent experiments and model iterations, as it has consistently
proven to be effective in boosting the detection accuracy of our model.

(c) Adding Domain Adaptation and Pseudo-Support Set: The integration of
Domain Adaptation and the utilization of a Pseudo-Support Set have resulted
in a mean Average Precision at IoU threshold of 0.50 (mAP@0.5) of 11.01%.
By incorporating Domain Adaptation, our model has become more adept at
adapting to the specific characteristics of the target dataset, enhancing its per-
formance in terms of detection accuracy. The inclusion of the Pseudo-Support
Set has further bolstered our model’s ability to handle the few-shot learning
scenario by providing additional training samples that simulate novel class
instances.

(d) Adding Domain Adaptation and Instance Level Feature Normalization:
The inclusion of Domain Adaptation and Instance Level Feature Normaliza-
tion techniques has resulted in a mean Average Precision at IoU threshold
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of 0.50 (mAP@0.5) of 11.08% . By incorporating Domain Adaptation, our
model is able to adapt to the specific characteristics of the target dataset, im-
proving its performance in terms of detection accuracy. Additionally, the ap-
plication of Instance Level Feature Normalization has further enhanced the
model’s ability to reduce intra-class variance and improve the detection accu-
racy of novel classes.

(e) Adding Domain Adaptation, Warm Model:The incorporation of Domain
Adaptation and Warm Model techniques has significantly improved the per-
formance of our model, resulting in a mean Average Precision at IoU threshold
of 0.50 (mAP@0.5) of 24.19%. The addition of the Warm Model component
alone has led to a substantial increase in performance, boosting the mAP@0.5
from 11.08% to 24.19%. This highlights the importance of using a warm
model training approach, as it allows the model to adapt and fine-tune its
parameters specifically to the target dataset, resulting in enhanced detection
accuracy.

(f) Adding Domain Adaptation, Warm Model and Pseudo-Support Set: The
inclusion of Domain Adaptation and Warm Model techniques significantly im-
proved the performance of our model, resulting in a mean Average Precision
at IoU threshold of 0.50 (mAP@0.5) of 28.70%. This demonstrates the effec-
tiveness of these strategies in enhancing the accuracy of our traffic sign detec-
tion system. By adapting the model to different domains and utilizing a warm
model training approach, we were able to better capture the specific charac-
teristics of the dataset and improve the overall detection performance. The
higher mAP@0.5 achieved indicates the model’s ability to accurately identify
and localize traffic signs in diverse scenarios.

(g) Adding All the Components: Inclusion of all the proposed components in
our model architecture resulted in the highest mean Average Precision at IoU
threshold of 0.50 (mAP@50) across various settings. This indicates that our
model outperformed other state-of-the-art (SOTA) architectures in terms of
detection accuracy. By integrating domain adaptation, warm model training,
pseudo-support set augmentation, and instance level feature normalization,
we were able to enhance the performance of our model and achieve superior
results. The comprehensive combination of these components contributed to
the improved accuracy and effectiveness of our traffic sign detection system.
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Chapter 5

Conclusion

In this work, we propose a method for recognizing traffic signs using fine-tuning
based few shot object detection. Since our presented method follows few-shot
learning, it performs well even with a limited number of instances per class. Fur-
thermore, our method uses a fine-tuning based model which exceeds the alternative
approach which is meta-learning. We believe our proposed method will outperform
all the existing works related to the recognition of traffic signs using a few shot
object detection techniques. We can perform computational and analytical analysis
after we are done experimenting with our proposed methodology. Apart from that,
we intend to include the contrastive head used in FSCE [9] in our modified classi-
fier head in the future to increase intra-class similarity and inter-class variance. We
hope the addition of this contrastive head in our proposed method will increase our
performance in the future.
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