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Abstract

The evolution of web technologies has brought forth innovative coding structures,

among which JavaScript and WebAssembly stand out prominently. This paper

presents Wasmosys, a state-of-the-art source code analyzer designed to generate

and unify Abstract Syntax Trees (ASTs) for JavaScript and WebAssembly code.

It aims to pave the way towards advanced vulnerability detection and mitiga-

tion in these modern web environments.Wasmosys tackles two major challenges:

creating a seamless combination of separate ASTs and standardizing AST labels

for JavaScript and WebAssembly. The system comprises four primary modules.

The first two modules, written in JavaScript and C respectively, generate ASTs

from JavaScript source files and WebAssembly Text (WAT) files. The third mod-

ule constructs a unified AST from the generated JS and Wasm ASTs, and the

fourth module, a connector written in python, links the system with a Neo4j

graph database hosted in a Docker container.Despite its capabilities, tested on

a limited version of WasmBech, Wasmosys currently presents certain limitations,

including the use of AST over Code Property Graphs (CPG), manual AST uni-

fication, and constraints in the experimental dataset. These limitations serve as

insights for future development, hinting at the prospect of an even more robust

and accurate tool for JavaScript and WebAssembly code analysis.



Contents

1 Introduction 5

2 WebAssembly 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Execution Environment . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 WebAssembly Architecture . . . . . . . . . . . . . . . . . . . . . . . 8

2.9 WebAssembly Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.10 Code Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.11 Calling Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 WebAssembly Vulnerability 10

3.1 Memory Corruption Vulnerabilities . . . . . . . . . . . . . . . . . . 10

3.1.1 Stack-based Buffer Overflow . . . . . . . . . . . . . . . . . . 10

3.1.2 Heap Metadata Corruption . . . . . . . . . . . . . . . . . . 11

3.1.3 Injecting Code into Host . . . . . . . . . . . . . . . . . . . . 11

3.2 Side Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Spectre-PHT (Pattern History Table) . . . . . . . . . . . . . 12

3.2.2 Spectre-BTB (Branch Target Buffer) . . . . . . . . . . . . . 12

3.2.3 Spectre-RSB (Return Stack Buffer) . . . . . . . . . . . . . . 12

3.2.4 Sandbox Breakout . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.5 Sandbox Poisoning . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.6 Host Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Proposed Mitigation 13

1



4.1 Multi Memory Implementation . . . . . . . . . . . . . . . . . . . . 13

4.2 MS-Wasm Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Address Space Layout Randomization . . . . . . . . . . . . . . . . . 14

4.4 Safe Unlinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5 Guard page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.6 Swivel-SFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.7 Swivel-CET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Mitigation Challenges 15

6 WebAssembly Binary Analysis 15

6.1 Wasabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 WasmBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 Fuzzm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.4 Wassail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.5 Wasmati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Problem Description 19

8 Compiler Data Structures 20

8.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.1 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.3 AST Construction . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.4 Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1.5 Relationships and Attributes . . . . . . . . . . . . . . . . . . 21

8.2 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.2.1 Sequential edges . . . . . . . . . . . . . . . . . . . . . . . . . 22

8.2.2 Conditional edges . . . . . . . . . . . . . . . . . . . . . . . . 22

8.2.3 Jump edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8.3 Program Dependency Graph . . . . . . . . . . . . . . . . . . . . . . 23

8.3.1 Data dependencies . . . . . . . . . . . . . . . . . . . . . . . 23

2



8.3.2 Control dependencies . . . . . . . . . . . . . . . . . . . . . . 24

8.3.3 Anti-dependencies . . . . . . . . . . . . . . . . . . . . . . . . 24

8.3.4 Output dependencies . . . . . . . . . . . . . . . . . . . . . . 24

8.4 Code Property Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.4.1 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.4.2 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.4.3 Type Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.4.4 Method Call . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.4.5 Variable Access . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.5 Code Property Graph in Vulnerability Detection . . . . . . . . . . . 27

8.5.1 Building the CPG . . . . . . . . . . . . . . . . . . . . . . . . 28

8.5.2 Defining vulnerability patterns . . . . . . . . . . . . . . . . . 28

8.5.3 Querying the graph database . . . . . . . . . . . . . . . . . 28

8.5.4 Pattern matching and vulnerability Identification . . . . . . 29

8.5.5 Contextual analysis . . . . . . . . . . . . . . . . . . . . . . . 29

8.5.6 Reporting and remediation . . . . . . . . . . . . . . . . . . . 29

8.6 Abstract Syntax Tree in Vulnerability Detection . . . . . . . . . . . 30

8.6.1 Building the AST . . . . . . . . . . . . . . . . . . . . . . . . 30

8.6.2 Defining vulnerability patterns . . . . . . . . . . . . . . . . . 30

8.6.3 Querying the graph database . . . . . . . . . . . . . . . . . 31

8.6.4 Pattern matching and vulnerability identification . . . . . . 31

8.6.5 Contextual analysis . . . . . . . . . . . . . . . . . . . . . . . 31

8.7 Difficulties in CPG Generation Compared to AST . . . . . . . . . . 32

8.7.1 Abstraction Level . . . . . . . . . . . . . . . . . . . . . . . . 32

8.7.2 Parsing and AST Generation . . . . . . . . . . . . . . . . . 33

8.7.3 Data Flow and Control Flow Analysis . . . . . . . . . . . . 33

8.7.4 Intermediate Representation . . . . . . . . . . . . . . . . . . 33

8.7.5 Building the Graph . . . . . . . . . . . . . . . . . . . . . . . 34

9 Proposed Solution 34

3



10 Implementation 36

10.1 Wasmosys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 Evaluation 42

11.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 44

12 Limitations 45

13 Conclusion 47

4



1 Introduction

WebAssembly, or Wasm, is a byte code format that is designed to run directly

on web browsers, as a compilation target for various server side languages to run

on the browser such as C/C++ to rust. It was released in 2017 and its goal

is to run high performance codes in browsers, which means the client would be

able to load the whole server code directly and run it on their device. Despite

being so young, it’s gaining traction in the web development community quickly

because of its lightweight memory consumption and simple execution style with

the sand-boxing method. By analyzing Alexa’s most visited sites, it was found

that, 1 in 600 sites of top one million most visited websites uses Wasm modules

[1]. With its increasing use, possible security risks in Wasm binaries are also

surfacing, which will require deep analysis in order to ensure the practicality of

Wasm binaries in modern web development. Static analysis, on the other hand, is

a method of finding out vulnerabilities by analyzing code without running it. The

use case of static analysis relies on the fact that it doesn’t need to run the code

while analyzing it. It gives a proper security layer over the running of the certain

portion of the code. In case of analyzing the code, WebAssembly provides a text

format called WebAssembly Text Format, which is used to give users a better

readability. The task of static analyzer here is to find vulnerable code patterns.

In case of WebAssembly, dynamic analysis of the code works as a faster method

to detect potential security vulnerabilities. The Code Property Graph (CPG) is

regarded as one of the most prominent discoveries in the field of static analysis and

it is widely used in every case of static analysis techniques. The CPG provides a

graph mining based algorithm which in turn matches a pattern based query on the

graph database and it works efficiently as the code is saved in the graph database

as nodes and edges with relations in-between.

5



2 WebAssembly

2.1 Overview

WebAssembly is designed to be the byte code format in web. It is used as a

portable compilation target for programming languages, enabling its use in web

client and server applications [2]. As of January 2023, WebAssembly is supported

in 95.12% browsers including 4 major browser engines, i.e. Mozilla Firefox, Google

Chrome, Safari and Microsoft Edge [3].

2.2 Background

JavaScript is the primary language of web browsers. Most modern web frame-

works compile or transpile into JavaScript so that the applications can run on

the browser. But it wasn’t perfect. For loose typing, implicit coercion, callback

hell and lack of modular system javascript was poorly designed and lacked proper

specifications for running high performance applications. Modern day applications

sometimes need on-device machine learning capabilities and performing high over-

load of calculations which are provided by the webgl and opencl format. These

would have worked better with a new bytecode format. However, there has been

ongoing research for a new bytecode format in browsers for a long time. The

goal was to have a safe, fast, portable and compact language that can act as the

compilation target for high level languages. Microsoft’s ActiveX, NaCl (Native

Client) [4], Emscripten [5] and many other technologies have been developed in

order to attempt this feat but they were not good enough to replace the old and

renowned JavaScript because they were not portable enough and lacked several

features including high performant code structure and simplicity, sandboxing and

other prominenet WebAssembly featueres. In 2017, the first version of WebAssem-

bly was released and it proved itself to be the most complete browser byte code

format in existence [6].
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2.3 Compilation

Wasm is a 32-bit machine language which is designed to be compiled primar-

ily from C/C++ and Rust which gives a compilation target for the server side

languages and creates a sandbox like environment to execute code by browser

forntends which includes arbitrary client codes that are onot secured[7]. The

C/C++/Rust source file is compiled into Wasm binaries directly, but an interme-

diate assembly-like syntax can be extracted, which is known as a wat (WebAssem-

bly Text) file [8].

2.4 Data Types

Unlike other bytecode languages, Wasm supports 4 type primitives - i32 (32-bit

integer), i64 (64-bit integer), f32 (32-bit float) and f64 (64-bit float).

2.5 Control Flow

WebAssembly uses structured control flow where function instructions are nested

in blocks. Branches can transfer the flow to the end of these blocks only. A

separate indirect call method is used for function pointers, which controls program

flow using indices from a function table. This WebAssembly code snippet creates

Figure 1: A simple Wasm module (in WAT format) that shows if-else control

flow example

a function $max that takes two parameters, $x and $y, both of type i32 (32-bit

integer). The if operation tests the condition (whether x >y), and if true, it

returns $x, else it returns $y.
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2.6 Memory

Storage in Wasm is designed as a global single array of bytes, i.e. simple linear

memory. Memory address pointers are in i32 data type, as the addresses are

32-bit. Heap and stack are both implemented onto the linear memory. Wasm

allocates memory on its own and does not provide memory management.

2.7 Execution Environment

Wasm modules are executed in a host environment like web browsers or NodeJS.

They provide the Wasm modules with necessary APIs, e.g. browser API. These

environments provide a sandbox environment for the Wasm modules, so that un-

safe activities can be prevented.

2.8 WebAssembly Architecture

Figure 2: A High Level View of WebAssembly Execution Architecture.

2.9 WebAssembly Syntax
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Figure 3: A simple Wasm module (in WAT format) that adds two 32-bit inte-

gers (i32 ) and returns the sum.

2.10 Code Comparison

Figure 4: Code Comparison (C++ vs x86 vs WAT)

2.11 Calling Mechanism
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Figure 5: Mechanism of accessing Wasm module data/function from JavaScript

programs

3 WebAssembly Vulnerability

3.1 Memory Corruption Vulnerabilities

Memory corruption vulnerabilities include a set of primitives that enables attack-

ers to overwrite program memory causing unpredictable and malicious behaviour.

These are the most common vulnerabilities found in memory unsafe languages.

There is a possibility of these vulnerabilities translating into Wasm binaries when

compiled. After decades of hardening, possible memory corruptions in x86 binaries

are well defined with proper mitigation. The same cannot be said for WebAssem-

bly. Possible memory corruption vulnerabilities in WebAssembly can be [9]:

3.1.1 Stack-based Buffer Overflow

WebAssembly dynamically allocates memory and does not provide any manual

memory management. Even though Wasm VM isolates Wasm module memory

access, parts of C/C++ function data are stored on unmanaged stack of the VM.

So, stack-based buffer overflow vulnerabilities are prevented in internal memory

but not the linear unmanaged memory of Wasm sandbox. Native platforms can

prevent this type of exploitations using stack canaries. Wasm modules can increase
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their memory allocation with certain API calls. That means, it is possible to

control the memory allocation size and insert corrupted input data into the stack

to invoke stack overflow. Native platforms use guard page to prevent this type of

attacks but such mitigation is absent in WebAssembly. The unmanaged stack in

WebAssembly execution memory contains function-scoped data. With a proper

write primitive, it is possible to overwrite function-scoped local data in the stack.

3.1.2 Heap Metadata Corruption

Wasm developers can choose their preferred memory allocator as per their intended

use. Default Wasm allocators ”dlmalloc” is hardened against heap metadata cor-

ruption attacks. However, since the binary size is an important consideration in

web development, developers may use lightweight allocators which might not be

hardened against memory corruption. In this case, if there is no fortification,

attackers can write to adjacent metadata of chunks in heap memory when these

allocators allocate/de-allocate memory. Linear stack based overflow can easily

overwrite heap data as heap and stack share the same linear memory in We-

bAssembly. Native mitigation like guard pages are absent in WebAssembly, which

means there is no way to avoid overflow based vulnerabilities in the linear memory.

3.1.3 Injecting Code into Host

As mentioned before, WebAssembly modules use different API calls from its host

environment in order to extend its uses to practical environment. Using func-

tions like eval/exec, found in browser/NodeJS host environment, Wasm modules

can be developed to execute code in the host environment. As a result, host

environment vulnerabilities can be exploited from within Wasm modules. The ar-

rays of possible exploitation include remote code execution, cross site scripting etc.

A detailed study onWasm design and specifications [9] indicates that these old vul-

nerabilities found in the high level programming languages that can compile into

Wasm, may translate into equivalent vulnerabilities in Wasm binaries. Though
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there are certainly more fortification in WebAssembly by default, security is not

completely guaranteed.

3.2 Side Channel Attacks

Side channel attacks target the execution environment of the system by exploiting

indirect effects of a system or its hardware. An example of this is Spectre [7],

which affects modern microprocessors. Recent processors use branch predictions

to increase performance and throughput. On these processors, execution resulting

from a branch misprediction may leave side effects that can reveal private data.

JavaScript Just-In-Time (JIT) compilers and transpilers are directly affected by

this vulnerability.

Wasm isolates untrusted modules using run time as well as compile time checks.

This includes heap memory access and indirect function call checks. The validity of

return addresses are also ensured using a safe stack. However, these fortifications

can be bypassed using the following techniques [7]:

3.2.1 Spectre-PHT (Pattern History Table)

The pattern history table (PHT) can be exploited to confuse the conditional

branch predictor and make it mispredict a path. A wrong path execution like

this can be exploited to bypass control flow and memory isolation.

3.2.2 Spectre-BTB (Branch Target Buffer)

BTB helps in predicting the target address of indirect jump instructions in pro-

grams. Similar to PHT, BTB’s entries can be changed maliciously to change

control flow to a specific target.

3.2.3 Spectre-RSB (Return Stack Buffer)

RSB stores the return addresses of executed call instructions and helps in predict-

ing the return points from executed functions. By overflowing RSB using a series
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of call and ret instructions, control flow of the program can be hijacked.

3.2.4 Sandbox Breakout

Wasm is widely used in FaaS (Function as a Service) platforms, where Spectre-

PHT or BTB can be used to access data/control outside the sandbox. This is

known as Sandbox breakout.

3.2.5 Sandbox Poisoning

After using Spectre attack to misdirect the control flow, sandbox data can be

leaked by accessing data from sandbox cache or similar state stores.

3.2.6 Host Poisoning

The host runtime can also be exploited in a similar way as sandbox, and host

system data can be accessed maliciously.

4 Proposed Mitigation

While finding vulnerabilities in WebAssembly, studies have proposed [9] possible

mitigation for different types of attacks. For memory corruptions, the following

mitigation can be directly incorporated into WebAssembly standard:

4.1 Multi Memory Implementation

Rather than having a single linear memory, multi memory system in WebAssem-

bly [10] can enable the system to have separate data spaces for heap, stack and

constant data. As a result, indirect overflows and pointer forging can be prevented

for the most part. This is a proposed specification for WebAssembly and may be

implemented into the language in the future.
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4.2 MS-Wasm Proposal

The MS-Wasm Proposal [11] suggests the addition of memory segments of specific

size and lifetime in the WebAssembly language. Implementing this may prove to

be hard for hosts but it provides high memory safety.

4.3 Address Space Layout Randomization

Using the presently available linear memory with randomized address layout, an

additional layer of security can provided against memory based exploits. This

causes obfuscation of memory locations of contiguous data segments in the pro-

gram.

4.4 Safe Unlinking

Safe unlinking may prevent metadata corruption as it disables exploits from writ-

ing into arbitrary chunks in memory.

4.5 Guard page

Guard Page protection mechanism triggers page fault when the stack grows into

restricted guarded pages. If such page fault occurs during any exploitation, the

program will simply crash and invalid data access can be prevented.

To address side channel attacks like Spectre, Swivel [7] has been developed to

mitigate exploitation:

4.6 Swivel-SFI

Swivel-SFI mitigates sandbox breakout, sandbox poisoning and host poisoning

through a series of fortifications. These fortifications include the use of a separate

stack to protect return addresses, Branch-To-Branch flushing to prevent polluting

Branch-To-Branch entries and elimination of Code-Based-Partioning poisoning.
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4.7 Swivel-CET

Swivel-CETmitigates sandbox breakout and poisoning with shadow stack, forward-

edge Control Flow Integration and conditional BTB flushing. It also includes

register interlocking and leak prevention during execution to provide poisoning

detection and fortification. This, even if the vulnerabilities are exploited, the de-

fenses can protect data from getting leaked.

5 Mitigation Challenges

The biggest challenge in the face of WebAssembly security updates is browser

support. There is a large number of browsers in the market and all of them need

to support Wasm in order for it to become the staple byte code for web. Thus,

WebAssembly specification update means that the maintainer of all these browsers

will need to update their VMs accordingly to match the new security standard.

This method has no alternative and as a result it will take some time for Wasm

to mature into what it aims to become.

6 WebAssembly Binary Analysis

WebAssembly security requires continuous analysis of Wasm modules and pro-

grams to develop further. Native application domain already has a huge number

of tools to have their binaries analyzed for security concerns. Since WebAssembly

is a new language, there is a scarcity of tools in this field. However, many high

quality tools have been developed already. Some of these tools are:

6.1 Wasabi

Wasabi [8] is a framework for dynamic analysis of WebAssembly binaries. This

open source framework instruments Wasm binary while preserving program be-
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haviour and affecting performance and size slightly. A security researcher can use

Wasabi to write general-purpose custom dynamic analyses, e.g. instruction count,

call graph extraction and analysis, memory tracing and taint analysis.

6.2 WasmBench

WasmBench [12] is the largest open-source Wasm binary database. It gathered

real WebAssembly programs from existing websites using web crawling, GitHub

repositories and manual module extraction. For any binary analysis toolset, a

dataset of real binaries is required for experimentation and validation. WasmBench

can fulfill that role for future binary analysis tools targeting Wasm.

Types Count

Games 25

Text Processing 11

Visualization 11

Media Processing 9

Demo 7

Wasm Test 5

Chat 3

Online Gambling 2

Barcode & QR code scanning 2

Room Planning & Furniture 2

Blogging 2

Crypto-currency wallet 2

Regular Expressions 1

Hashing 1

PDF Viewer 1

Table 1: WebAssembly binary type count in 100 randomly selected samples

from WasmBench
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6.3 Fuzzm

Fuzzm [13] is a greybox fuzzer for WebAssembly binaries. It integrates an AFL

style fuzzer to test inputs on Wasm binaries. The main goal of this fuzzer is

to identify suspicious program behaviour, which is not present in WebAssembly

toolchain by default. Fuzzm provides hardening against stack and heap based

attacks with the use of canaries. As it is the only fuzzer available for WebAssem-

bly at present, Fuzzm is pioneering in the development of binary fuzzer targeting

Wasm.

6.4 Wassail

Wassail [14] (WebAssembly static analyzer and inspection library) is a toolkit to

perform lightweight and heavyweight static analysis of WebAssembly modules.

The tool uses a practical implementation of the program slicing concept.

Program slicing is a program decomposition technique based on a specific program

point called the slicing criterion, which identifies a subprogram of the code rele-

vant to the slicing criterion, here slicing criterion is a specific point in the program

the analyzer is interested in It has numerous applications in debugging, program

comprehension, software maintenance, and vulnerability detection.

Program slicing approaches can be divided along multiple dimensions. Static

approaches compute a slice that preserves the behavior for all possible program

inputs, while dynamic approaches consider only a subset of the input.

The program slice with respect to a slicing criterion (s, v) is then computed as

follows: Start with the set just containing the statement ’s’. Then, iterative add

to the set any statement that directly or indirectly affects the value of a variable at

a statement in the set. This iterative process continues until no more statements
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can be added, at which point you have your program slice. This will include all

the statements that could potentially influence the value of ’v’ at the statement

’s’, directly or indirectly. This is a static program slice because it considers all

possible executions of the program. It is also possible to define a dynamic program

slice, which only considers a specific execution of the program.

The first two phases of this three-phase algorithm computes a closure of a Wasm

binary. To produce an executable slice, the algorithm’s third phase implements

a stack-preserving approach to produce a valid execute Wasm program from the

closure slice.

6.5 Wasmati

Wasmati [15] is a tool for analyzing and debugging WebAssembly (Wasm) code.

It includes a set of features for disassembling Wasm code, visualizing control flow

graphs, and identifying potential vulnerabilities.

Wasmati is implemented to understand the potential security issues which in turn

can be used to analyze both the compiled Wasm code and the source code which

was used to generate it.

Some features of Wasmati include:

• Disassembly

Disassembly of WebAssembly code into the human readable format which

will make it easier to understand the way of the code to work and it will

also identify the potential security vulnerabilies.

• Visualization Wasmati has the feature of visualizing the source code with

the code property graph database. Code Property Graph consists of 3 sub-

graphs.

– Abstract Syntax Tree A WebAssembly module is parsed and the

tree containing high level abstraction of the code is made from that
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Figure 6: Wasmati Code Property Graph

parsing.

– Control Flow Graph This graph depicts the control flow of the pro-

gram.

– Data Dependency Graph: Dependency of the data is depicted by

this graph.

• Vulnerability analysis

Wasmati is the static analysis tool that is used for different types of common

vulnerabilities in the WebAssembly code, the examples can include buffer

overflows, user-after-free, indirect-object relocation error.

7 Problem Description

Existing literature and toolset -

• Supports Wasm binaries only

• Does not support Wasm execution environment

• The exposed Javascript function inside the WebAssembly code cannot be

analyzed.

19



8 Compiler Data Structures

8.1 Abstract Syntax Tree

An abstract syntax tree is a structured representation of syntactic structure of a

code. The intermediate representation is defined by these structures, which are

produced while compilation or when the program is parsed. This is typically used

in programming languages related tools for analysis and transformation. [16]

The ast removes the details of the syntax or textual representations and gets

the skeleton of the code by making an abstraction over the syntax. The logical

structure and connection between various elements of the code is produced such

as statements, nested expressions, identifiers, variables and different control flow

statements.

8.1.1 Lexical Analysis

The first step while making an ast is the scanning or the lexical analysis which

produces a stream of tokens. We know the source code is dividied into tokens, such

as keywords, identifiers, operators, literals and different types of tokens. These

are the basic building blocks while building the parse tree.

8.1.2 Parsing

The tokens which we get as the result is then parsed by a parser with respect to the

rules of the programming language. It validates the syntax and produces a parse

tree. Parse tree is an intermediate representation which captures the structure

of the code which is based on those production rules. Parse tree is a detailed

reflection of the code.

8.1.3 AST Construction

We can construct the AST from parse tree by de-sugaring another level of tex-

tual details with more abstract and concise detail. This involves discarding non-
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essential nodes that do not contribute to the rules of the program, such as paren-

theses or punctuation marks. In addition to that, some structural nodes might be

combined to represent higher level constructs.

8.1.4 Node Types

AST represents different elements of the code including assignment operations, bi-

nary operations, function calls, loops, and different types of operations. These are

typically organized in a hierarchical structure, where child nodes are represented

by sub-expressions or sub-statements.

8.1.5 Relationships and Attributes

The ast represents the relationships to indicate the flow and dependencies between

different part of the code is dictated by the nodes. For example, control flow

constructs like if-else statements or loop child node, which represent structures

like branches. Also, nodes can have attributes that are stord information relevant

to their related language constructs such as the name of a variable or the operator

in the expression.

The representation of the code from the AST makes it simple to manipulate

the structure of the program. ASTs are used in different kinds of programming

tools, which are compilers, interpreters and different kinds of static analyzers,

optimizations and code refactoring, also code generation. [16]

8.2 Control Flow Graph

A control flow graph is a graphical representation of the execution path of the

program which provides a visual representation of the program states and structure

of its control that are organized and their interaction. A CFG is usually used in

analysis of the software, program optimization and design of compiler related tools

and techniques.

A usual CFG is made of nodes and edges. Every node describes a basic block

which is a list of instructions which doesn’t have any jump statements or branches

21



in the middle. These blocks are mainly made by dividing the code into pieces

where control flow goes and gets out only through the first and last instructions.

These nodes are ideally represented by the rectangles or the circles and they have

the instructions or statements of the program.

Control flow of the basic blocks are represented by the edges of the CFG. There

are three types of edges:

8.2.1 Sequential edges

The edges which are sequential indicates the normal control flow and then to the

next. A block A is followed by block B then there will be a sequential edge from

A to B.

8.2.2 Conditional edges

Conditional branches such as if-else or loop execution path is represented by these

programs. There is a labelling process and these labels determine which path is

taken. As an example there is a condition that can be x > 6, a conditional edge

will be constructed from the if statement block, which will be then corresponding

to the true branch, and there will be another edge which is conditional to the basic

block from the conditional edge from the false branch.

8.2.3 Jump edges

Jump edges or unconditional branches in the program is represented by these

edges, statements can include go-to or break or continue statements. These edges

allow control flow to skip one or multiple blocks and then transfer the control to

a specific target based basic block.

The concept of CFG gives a proper overview of the execution code’s control

flow which allows the users to reason about the code behaviour in addition to

performing various code analyses which can also be used to find unreachable codes,

identifying loops and their boundaries, determining program execution path and

analyzing code complexity and many more things.
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Static CFG’s are the usual types of CFGs which are made based on the source

code or the intermediate code of the program the dynamic ones are a bit different.

The dynamic CFG’s are produced by analyzing the runtime of the code adding

analysis of performance capturing the execution paths which are taken during the

code execution.

The control flow graphs are the type of tool which can be used to reason

about the execution path of a program and thus helping the end users and makes

the compiler able to perform various tasks which are used for optimizations and

debugging purposes.

8.3 Program Dependency Graph

Program Dependency Graph (PDG)[17] is a graphical representation which de-

picts the dependencies between the statements that we get from the actual code

representation. We can get a view of data flows with the statements that actu-

ally interact within a program. The usual use cases include program analysis,

optimization and understanding the behaviour of the software.

The PDG consists of nodes and edges. Each node in the PDG represents a

program statement, such as assignments, function calls, or control flow statements.

The nodes are usually labeled with the statement or expression they represent.

Edges in the PDG represent the dependencies between statements. There are

different types of dependencies that can be captured in a PDG:

PDG have edges which draws the dependencies between various statements. There

are multiple types of dependencies that are depicted in a PDG:

8.3.1 Data dependencies

Data dependencies are the type of dependencies which gets the control flow of data

between various statements. As an example an assignment operation can be re-

garded as a proper example for data dependency, such as if there is an assignment

expression and the next one is using that certain value then there is a data depen-

dency operation happening between the two statements. Data dependencies can
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be further differentiated as read-after-write, write-after-read and write-after-write,

based on the order, the sequence of which the data will be accessed.

8.3.2 Control dependencies

The dependencies which capture the control flow between the statements are called

the control dependencies. These type of dependencies depicts the order of the

execution, which are in the control flow constructs like conditionals, loops etc. An

example of control dependency might be if a while loop executes based on the

condition then the statements inside that loop are based on that certain condition

which gets perfectly depicted on the control flow graph of the certain execution

path.

8.3.3 Anti-dependencies

If the execution of a statement is dependent on the future update of a variable

then these type of dependency is called anti-dependency. For example, a statement

using a variable which will be modified in a later statement then we can say there

can be an anti-dependency between the statements.

8.3.4 Output dependencies

The type of dependencies where multiple statements write to the same variable

are the type of dependencies which are called output dependencies. For example,

if a statement writes to a variable and then another statement reads or writes the

same variable, it will turn into an output dependency between them.

The PDG provides a detailed view of the dependencies which are inside the

program execution by which it makes the program optimization and analysis pos-

sible for the end users. It also helps to find potential performance bottlenecks,

race conditions and ways for parallelization of execution of the program. Through

the analysis of the PDG, end users can identiffy dependencies which may make

the program able to impact the performance and correctness with enabling the

informed decisions for optimization and refactoring.

24



PDG are used to analyze programs, such an application can be data-flow anal-

ysis where program dependency graphs are used to find the definitions of variables,

which in turn forms the use-def chains. It identifies the definitions, identifies the

uses, identifies the uses and then creates the chains. These can be studied to find

the program paths, finding loops and detecting various unreachable codes.

The program dependency graph is a formidable tool which can be used as a

representation that will capture the dependencies between different program state-

ments. The PDG provides a higher level representation of the above mentioned

dependencies which enables the end user to reason about program behaviour, thus

facilitating program understanding and analyzing codes in a detailed manner, in

turn which will give the users insights into the data flows and the statements

that interact within a program thus improving the performance, correctness and

maintainablitiy.

8.4 Code Property Graph

The code Property Graph (CPG)[?] is the kind of representation which gets the

different aspects of the source code, program skeleton and can reason between

their relationships. This kind of property graph provides a detailed view of the

programs different static and dynamic properties and behaviour in turn which

enables program analysis of the advanced kind also the visualization and the overall

reasoning about the program.

Inside the graph database the CPG is made of different nodes and edges. The

nodes which are in the CPG are related to different types of code entities such

as classes, methods and different types of variables, statements and expressions.

Every node is labeled with different types of information about the program struc-

ture such as its name, type or different values. The edges there represent the CPG

which depicts the relationships and dependencies between the program entities.

The CPG captures different types of relationships and dependencies:
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8.4.1 Control Flow

The control flow edges of the Code Property Graph represent the execution path

of the control flow between the statements of the program. They depict the order

of execution, and the possible paths that can go through the program. Thus they

make understanding of the code from different types of control behaviour, they

can identify loops and they can detect the codes that are unreachable.

8.4.2 Data Flow

The edges which are called data flow are the flow of data from various parts of the

program, from different named entities. They depict the way values get passed

from one named entity to the other one. Data dependencies, reaching definitions or

taint analysis - different types of anlayses can be done from these kind of data-flow

edges.

8.4.3 Type Hierarchy

The representation of inheritance or sub-type kind of relationships between dif-

ferent types of classes and interfaces. The depiction of class hierarchy and poly-

morphism within the code is very indetailed in these cases. Type hierarchy edges

enable type-based analysis, method dispatch and different types of understanding

of various kinds of object-oriented features.

8.4.4 Method Call

The invocation of methods or functions within the program is represented by the

method call edges. The calling relationships are depicted by these kind of edges.

This edges are important for getting the reasoning out of program behavior, there

are different types of inter procedural analysis which can be done by this and there

are different types of function calls which can be detected through the method call

edges.
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8.4.5 Variable Access

Variable access edges can represent the access to different kinds of variables within

the program. They depict read and write access to different types of variables,

which in turn enables the analysis of different types of variable usage, the types of

liveness analysis and there are different types of detection between shared variables

which can be reasoned through the variable access edges.

The Code Property Graph (CPG) is considered as a powerful representation

which is captured by the various aspects of the source code, code structure and

the types of relationship between these codes. The code property graph structuer

provides a detailed view of the static propertyies of a program and the dynamic

behaviour which in turn enables advanced tyeps of program analysis, visualization

and different types of understanding. By representing the code as a graph, the

CPG allows for a wide range of program analysis techniques. It enables advanced

static analyses, such as control flow analysis, data flow analysis, points-to analysis,

or program slicing. It also facilitates dynamic analyses by capturing runtime

behavior, such as profiling, runtime checks, or security analysis. The CPG will

get an addition of properties and different kind of metadata which will be able to

enrich the representation. It can include properties about various code evaluation

metrics and smells with comments and source code locations. These properties

will in turn enhance the kind of capabilities which will provide a better way of

reasoning about the source code.

8.5 Code Property Graph in Vulnerability Detection

The CPG can be used to find different types of vulnerabilities by leveraging the

contextually rich representation of code and the relationship that are stored in a

graph db. The graph database will give the end users the ability to efficiently query

and traversal of different types of CPG, which in turn will enable vulnerability

detection techniques which will exploit different types of graph structures including

different types of properties.

Here is a step-by-step explanation of how CPGs can be used to detect vulner-

27



abilities from a graph database:

8.5.1 Building the CPG

The CPG can be built using 3 types of different graphs which are built from the

source code. The grpahs include the Abstract Syntax Tree, Control Flow Graph

and the Program Dependency Graph. These graphs can extract the different

entities such as control flow, data flow, method calls and different types of variable

acceses, which are in turn depicted as edges which are in the graph.

8.5.2 Defining vulnerability patterns

There are different types of vulnerabilities which are in turn being built from

different types of vulnerability patterns. These patterns represents different vul-

nerability signatures, different characteristics which indicates the presence of a

vulnerability. For example, a certain method call can be specified by a pattern

which has a kind of sequence that is indicated that a buffer overflow, a pattern can

be generated for this kind of specific data flow, which eventually leads to buffer

overflow.

Figure 7: An example cypher query for finding buffer overflow in WebAssembly

Here, the query looks for the store function. This function is used to write data

into the WebAssembly linear memory, those which don’t have the checkbounds

functions. It finds the out of bounds correctly.

8.5.3 Querying the graph database

The process which detects the vulnerability involves the querying of graph database

which is used by the defined vulnerability patterns. There are different types of

queries which can be formulated to traverse the graph and that can be used to
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identify the instances where the pattern can be matched with the different struc-

tures or properties of the certain code. Thus, the queries can be expressed which

will be regarded as a graph query language and then the structure can be stored

as a graph inside the graph traversal API, which can be regraded as a property

graph.

8.5.4 Pattern matching and vulnerability Identification

The CPG is traversed by the queries which in turn look for nodes and edges that

can be matched with the defined vulnerability patterns. When a match is found, it

is indicated that the presence of a potential vulnerability, which will be identified.

The specific nodes and edges involved with the match can provide information

about the vulnerable code section which can be regarded as location of the code,

or some relevant variables or a different data source.

8.5.5 Contextual analysis

The vulnerabilities which were identified needs to be analyzed in a more detailed

manner, with the context of the codebase. User input, data sanitization, variable

scopes, security configuration can be used to determine the actual presence and

the severity of the vulnerabilities which can be found. This type of analysis can

be used to filter out the false positives and can be used as a providing factor for

a more accurate assessment which can be used to analyze the vulnerability.

8.5.6 Reporting and remediation

The final part is the reporting and remediation of the vulnerability to the develop-

ers or the security audit team for more investigation. The CPG can be used as a

major factor in terms of vulnerability, its impact and the recommended mitigation

strategies which, by leveraging them, the graph representation, the report can give

a clear visualization for the vulnerable code sections and their relationships which

by aiding developers makes them understand and fix the issue.

The use of a graph database for storing the CPG enables efficient querying and
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traversal of the code, making vulnerability detection scalable and performance

higher. Additionally, the graph structure allows for more sophisticated analyses,

such as graph-based algorithms or path finding, to uncover complex vulnerabilities

that may involve multiple code paths and interactions.

Overall, leveraging the power of graph databases and CPGs enables effective vul-

nerability detection by providing a comprehensive representation of code and its

relationships. It enhances the accuracy and efficiency of the detection process, en-

abling developers and security professionals to identify and address vulnerabilities

in a timely manner.

8.6 Abstract Syntax Tree in Vulnerability Detection

The AST is a tree like structure, which represents the syntactic structure of the

source code. It gets the hierarchical relationships between program elements, such

as different types of expressions, statements and different types of declaration. In

case of vulnerability detection the AST is widely used as it provides a structured

representation of the structure which can be leveraged later for different kinds of

analysis and pattern matching.

Here’s an explanation of how the AST is used to detect vulnerabilities from a

graph database:

8.6.1 Building the AST

By parsing the source code, the AST is first constructed. The AST depicts the

syntactic structure of the code and records the connections between various el-

ements. Each node in the AST represents a particular syntactic element, such

as an if statement, a function call, or a variable declaration. The parent-child

connections between the nodes represent the hierarchy and nesting of the code

8.6.2 Defining vulnerability patterns

Next, vulnerability patterns or rules are defined. These patterns specify the syn-

tactic structures or combinations of elements that indicate the presence of a vul-
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nerability. For example, a pattern might define a specific sequence of method calls

that is indicative of a cross-site scripting (XSS) vulnerability.

8.6.3 Querying the graph database

The AST can be transformed into graph representation and then it can also be

stored in graph database for querying effciently. The vulnerability detection pro-

cess will also involve formulating queries for the graph query language so that

it can traverse the AST graph which is stored in database. These queries are

designed such way so that they can match the defined vulnerability patterns.

8.6.4 Pattern matching and vulnerability identification

The queries traverse the AST graph, looking for nodes and edges that match the

defined vulnerability patterns. When a match is found, it indicates the potential

presence of a vulnerability. The specific nodes or edges involved in the match pro-

vide information about the vulnerable code section, such as the location, relevant

variables, or data sources.

8.6.5 Contextual analysis

Identified potential vulnerabilities can be used for further contextual analysis and

this performance can be considered as factors such as different kinds of user input,

the data sanitization, different kinds of variable scopes or security configurations

to determine the actual presence and the severity of the vulnerabilities. The

contextual analysis can be used to help filter out the false positives providing a

more accurate asesment of the vulnerability.

Vulnerability detection is scalable and performant thanks to the use of a graph

database to store the AST and enable efficient querying and traversal of the code.

The graph structure makes it possible for complex analysis methods to identify

vulnerabilities that may involve numerous code paths and interactions, such as

graph-based algorithms or path finding.

In general, the AST acts as an essential intermediate representation for finding

31



vulnerabilities. Developers and security experts can efficiently analyze the struc-

ture and relationships of the code to find vulnerabilities by converting the AST

into a graph and using a graph database. The AST and graph database combina-

tion improves the detection process’ accuracy and effectiveness, making it easier

to spot potential security flaws and fix them.

8.7 Difficulties in CPG Generation Compared to AST

8.7.1 Abstraction Level

The AST contains the syntactic structure of the source code with a very high

level of abstraction compared to others. It captures the hierarchical relationships

between the program elements such as different kinds of statements, expressions

and declarations and their organization within the code properties. The AST then

fouces on the syntax and the static strucutre of the code, which abstracts many

details related to the dynamic behavior, the dataflow and different types of control

flow. This higher level of abstraction then makes the AST generation process very

simple and more straightforward.

Parsing and Language-specific Tools: The process of generating an AST is well-

supported by parsing techniques and language-specific tools. Many programming

languages provide built-in or third-party libraries for parsing the source code and

generating an AST representation. These tools handle complex aspects such as

lexical analysis, parsing, and building the tree structure based on the grammar

rules of the language. Developers can leverage these tools to generate an AST

without having to build the entire infrastructure from scratch.

Standardized Structure: The AST has a standardized structure that is common

across different programming languages. While the details may vary depending on

the language, the fundamental concepts and relationships captured by the AST

(such as parent-child relationships, expressions, and statements) remain consis-

tent. This standardization simplifies the process of generating and manipulating

the AST, as developers can rely on established conventions and patterns.

In contrast, generating a Code Property Graph (CPG) involves capturing a more
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comprehensive representation of the code, including dynamic behavior, data flow,

and control flow. The CPG’s main goal is to get both the static properties and the

dynamic interactoins within the source code. This will need additional analysis

and the data processing which is beyond the syntactic analysis which is performed

for the Abstract Syntax Tree.

Below are the steps to build up a CPG:

8.7.2 Parsing and AST Generation

The first step is to parse the source code and based on that making of a parsing

tree which will in turn become an abstract syntax tree. This involves the procedure

of lexical analysis, parsing and the building of the tree structure which is based on

the the grammar of the language, which is similar to the AST generation process.

8.7.3 Data Flow and Control Flow Analysis

When the AST will be generated, there will additional analysis which will be

performed to capture the data flow which will be within the code. This analysis

involves traversing the AST, tracking variable assignments, data dependencies,

method invocations, and control structures (such as loops and conditionals). This

information is then used to establish the data flow and control flow edges in the

CPG.

8.7.4 Intermediate Representation

Generating a CPG often requires transforming the AST and other analysis results

into an intermediate representation suitable for graph-based representation. This

involves mapping the AST nodes, control flow information, and data flow informa-

tion to graph nodes and edges, incorporating additional properties and metadata

as needed.
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8.7.5 Building the Graph

Finally, the transformed information is used to construct the graph representa-

tion of the CPG. This involves creating nodes to represent program entities (e.g.,

classes, methods, variables) and connecting them with edges to represent the var-

ious relationships (e.g., control flow, data flow, method calls). This step requires

building the graph structure and populating it with the relevant information cap-

tured during the analysis process.

The generation of a CPG is more involved than generating an AST because it en-

compasses a broader scope, capturing a richer set of properties and relationships

within the codebase. The additional analysis steps and the need for an intermedi-

ate representation add complexity to the process. However, the CPG provides a

more comprehensive representation of the code, enabling advanced program anal-

ysis and detection of complex vulnerabilities that go beyond the capabilities of the

AST.

9 Proposed Solution

Figure 8: Architecture of the proposed solution

The proposed solution is designed to provide a comprehensive analysis of JavaScript

and WebAssembly (Wasm) code in a seamless, integrated manner. The overall

workflow consists of five significant steps:

1. Input: The first step involves receiving the JavaScript and WebAssembly

source codes as input. This JavaScript code calls the Wasm code, integrat-

ing these two distinct languages. This type of coding paradigm is becom-
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ing increasingly prevalent as developers leverage the benefits of Wasm in

JavaScript environments for performance-critical components.

2. AST Generation: In the next step, Wasmosys separately generates the

Abstract Syntax Trees (AST) for the JavaScript and WebAssembly source

code. The JavaScript AST Generator uses the Babel library, while the We-

bAssembly AST Generator uses a custom-built lexer and recursive descent

parsing algorithm. Each generator exports the resulting AST to a JSON file

3. AST Unification: After generating the separate ASTs, the next step in-

volves manually connecting the two ASTs to create one unified tree. The

AST Reconstruction phase accomplishes this by identifying key nodes in

both trees and then carefully linking these nodes to form a single, suitable

AST. This is done manually and during the merge the connecting nodes of

javascript AST and WebAssembly AST are the points of respective function

calls. The unification is done manually label by label.

4. Database Insertion: Once the unified AST is created, a Python script

inserts it into a Neo4j graph database. This graph database is hosted in a

Docker container. The Neo4j Connector, written in Python, plays a crucial

role here by bridging Wasmosys and the Neo4j database.

5. Pattern Analysis: Pattern analysis can be conducted with the unified

AST in the database. This is where Cypher queries are vital. Using Cypher

queries, the Wasmosys system can probe into the suitable AST to identify

potential patterns, vulnerabilities, or other insights within the JavaScript

and WebAssembly source code. This powerful querying ability makes Was-

mosys indispensable for comprehensive source code analysis.

This is the essential workflow of Wasmosys. By executing this workflow, Was-

mosys enables developers and analysts to understand better and inspect the com-

bined behavior of JavaScript and WebAssembly code, further advancing state of

the art in source code analysis.
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10 Implementation

10.1 Wasmosys

Figure 9: Wasmosys - Modules

Wasmosys is the implemented tool that aims to generate a unified Abstract Syn-

tax Tree (AST) from the source code of the Javascript and WebAssembly bundle.

It takes source code as input and utilizes a series of specialized modules to break

down the JavaScript and WebAssembly parts separately, transform them into their

respective ASTs, and then unify them into a singular AST. This unified AST is

generated to enable developers or security analysts to understand and inspect the

combined behavior of JavaScript and WebAssembly code more intuitively.

Moreover, Wasmosys also provides a standard querying interface that leverages

the Cypher Query Language, a robust, declarative graph query language widely

used for querying graph databases. This Cypher querying interface gives users a

powerful tool to probe into the unified AST. It allows them to conduct deep inspec-

tions and facilitate many use cases ranging from security vulnerability detection

to performance optimization and refactoring analysis.

The Wasmosys system is a comprehensive source code analysis tool that is mod-

ularly designed. It comprises five main interconnected modules that work collec-

tively to deliver a unified JavaScript and WebAssembly AST. Each module has
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its unique functionalities, as detailed below:

1. JavaScript AST Generator:

The JavaScript AST Generator module plays a crucial role as the first com-

ponent in the Wasmosys system. Its primary function is to take a JavaScript

source file as input and utilize the Babel library to automatically generate

the Abstract Syntax Tree (AST). This AST will represent the structural

representation of the source code which will contain the syntactic elements

and their hierarchical relationships. By leveraging the Babel library, the

Javascript AST generatror will transform the Javascript source code into a

strucutre which will look like a tree that will correctly reflect the syntax and

organization of the code. The babel compiler employs a parser analyzing

the source code and the constructs which are based on the language’s rules.

Once the AST is generated it is exported as a JSON file. This JSON format

will allow for easy serialization and portability of the AST, facilitating the

further processing and the analysis by other components in the Wasmosys

system. The Javascript AST which will be represented as a json file, it will

be able to provide a comprehensive and structured representation of the

code. It captures essential information such as function definitions, variable

declarations, control flow structures, expressions, and more. This level of

detail enables subsequent components in the Wasmosys system to perform

in-depth analysis, vulnerability detection, and security assessment. Export-

ing the JavaScript AST as a JSON file enhances interoperability and enables

seamless integration with other modules in the system. The JSON format is

widely supported and easily consumable by various programming languages

and tools, making it a convenient choice for exchanging and processing the

AST data. By automatically generating the JavaScript AST through the

JavaScript AST Generator module, Wasmosys sets the foundation for sub-

sequent stages of analysis and security assessment. The availability of the

AST in a JSON format empowers the system to perform comprehensive
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static analysis, enabling the detection of potential vulnerabilities, identify-

ing security risks, and aiding in code optimization and improvement efforts.

2. WebAssembly AST Generator:

The second module, WebAssembly AST Generator module serves as the

second crucial component within the Wasmosys system. Its purpose is to

process WebAssembly Text (WAT) files, which contain human-readable rep-

resentations of WebAssembly code, and generate the corresponding Abstract

Syntax Tree (AST). This module takes inspiration from Wasmati, a well-

known tool for WebAssembly analysis. Implemented in the C programming

language, the WebAssembly AST Generator module employs a custom-built

lexer specifically designed to tokenize the WebAssembly source code. The

lexer breaks down the WAT file into a series of discrete tokens, which rep-

resent the fundamental building blocks of the WebAssembly syntax. Using

a recursive descent parsing algorithm, the module then utilizes these tokens

to construct the Abstract Syntax Tree (AST) of the WebAssembly code.

The recursive descent parsing technique involves recursive functions that

correspond to grammar productions in the WebAssembly language. These

functions consume the tokens and build the AST nodes based on the syntac-

tic rules and structure defined by the WebAssembly specification. The AST

nodes generated by the WebAssembly AST Generator module are labeled

according to commonly used compiler token names, providing a standard-

ized representation of the WebAssembly code structure. This labeling en-

ables subsequent analysis and processing stages to leverage well-known nam-

ing conventions and facilitates interoperability with other tools and systems

within the Wasmosys framework. Similar to the JavaScript AST Genera-

tor module, the WebAssembly AST Generator module exports the generated

AST as a JSON file. This JSON format allows for easy serialization, storage,

and exchange of the AST data.

The JSON representation can make sure that the compatibility issue and the
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seamless integration with other modules within the Wasmosys system work

properly. Exportation for the WebAssembly AST as a JSON file enables

further analysis and processing by subsequent componenets in the system.

The generated AST will be served as the foundation for the static analysis,

vulnerability detection and the assesment of security for WebAssembly code.

The JSON formats flexibility and widespread support will make it a suitable

choice for sharing and processing the AST data across different programming

languages and tools. It will play a vital role by converting the wasm text

files to abstract syntax trees. Leveraging a custom lexer and a recursive

descent parsing algorithm, it will be able to construct the AST nodes from

the WAT file’s tokens. The result will indicate an AST which will be labeled

with other common compiler constructs, and then will be exported as a json

file .

3. AST Reconstructor:

The AST reconstruction phase is the manual phase of the whole module. In

this phase what we try to achieve is to make a unified AST from both of

javascript and WebAssembly runtime. The problem arises when two differ-

ent AST’s have different labelling for abstract syntax tokens. This is done

with careful consideration. The procedure is to find the relevant nodes which

are representing the calls to WebAssembly functions from javscript or calls

to javascript functions from WebAssmbly modules. This linking produces

an AST which is used as a comprehensive representation of the entire appli-

cation. This phase plays a pivotal role in performing comprehensive analysis

and assessment, taking into account the interplay between the high-level adn

low-level code components.

4. Neo4J Connector:

Neo4j Connector is the fourth module, it is used as the connector module

between the Wasmosys system and the Neo4j database. The connector driver

is written in python and it connects to the Neo4j graph database, that can
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run locally or in cloud. The connector is used as the intermediary to send

the unified AST to the graph database, where the graph is stored for future

querying and the analysis of the graph data.

The Neo4J Connector module leverages the Python Neo4J driver or an ap-

propriate library to establish a connection to the Neo4J graph database.

This connection allows the connector program to interact with the database

and perform operations such as data insertion, retrieval, and manipulation.

Once connected to the Neo4J graph database, the connector program is re-

sponsible for transferring the unified AST into the database. It maps the

nodes and relationships within the AST to the appropriate entities and edges

in the graph database schema. The connector program carefully traverses

the unified AST and translates its nodes into Neo4J nodes, representing

program entities such as functions, variables, and control flow structures.

It establishes relationships between these nodes to capture the connections

and dependencies within the code. The properties and metadata associated

with each AST node are stored as attributes of the corresponding Neo4J

nodes, enabling the preservation of critical information during the transfer

process. By storing the unified AST in the Neo4J graph database, the Was-

mosys system gains the capability to perform efficient and powerful querying

and analysis on the codebase. The graph database’s graph-based structure

allows for flexible exploration of relationships and dependencies within the

code, enabling advanced vulnerability detection, security assessment, and

optimization efforts.

The neo4j graph database can run locally and the connector module stores

the unified AST efficiently in that database. This storage mechanism serves

as a central repository of the source code which are represented as nodes.

This connector module acts as one of the most important middle-end be-

tween the Wasmosys system and the graph database. The connector is

written in python which establishes a connection to the local neo4j graph

database and it makes the transfer of the unified AST into the database.
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This makes the efficient storage, querying and the analysis of the source

code within the graph databsase, which in turn, provides the foundation for

advanced program analysis and the security assessment.

5. Graph Database:

The fifth module is the databases, which is hosted in a docker container for

the ease of deployment and the database is highly scalable, so that the large

source codes can be analyzed faster. The Neo4j connector module leverages

the python Neo4j driver to establish connection. This allows the connector

program to interact with the module which is responsible for transferring

the unified AST into database. It maps the nodes and the relationships

within the AST to the proper entities and edges in the graph database. The

mapping of AST nodes are done here and it translates its nodes to Neo4j

nodes. Thus representing the program entities such as variables, functions

and the control flow statements. This module produces the relationships be-

tween them and creates a repository which is a graph database, querying on

the database based on patterns will find the vulnerability. The graph struc-

ture enables seamless exploration of relationships and dependencies within

the code which enables advanced vulnerability detection, security assess-

ment and optimization efforts. The Neo4j connector module ensures that

the unified AST is stored in an efficiently within the graph database.

The above mentioned modules are designed so that they can work together so

that they can produce a unified javascript and WebAssembly Abstract syntax tree.

Thus, the combined AST is then stored in a graph databsase, and it enables the

user to analyze the integradted code structure using the CQL, and this modular

design of the Wasmosys ensures the extensibility and the maintainability, and thus

it makes into a robust tool which can be used for source code analysis.
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11 Evaluation

To find the functionality and the efficiency of Wasmosys, a series of experiments

were done which involved javascript and WebAssembly specimens with the known

vunlerabilities. This section is here to discuss the experimental procedure, the

accuracy of the results, encountered errors and the overall performance of the

Wasmosys system.

11.1 Evaluation Procedure

The experiment was began with selecting 35 WebAssembly specimens from the

WasmBench dataset. These WebAssembly files were then converted into We-

bAssembly Text (WAT) format. Simultaneously, 35 corresponding JavaScript files

were generated, each with known vulnerabilities and a single WebAssembly mod-

ule call within.

These sets of JavaScript and WebAssembly files were fed into Wasmosys, where

the system generated the ASTs for both, unified them, and inserted them into

the Neo4j graph database. Once the unified ASTs were in the database, Cypher

queries were used to detect vulnerabilities in the source code. In parallel, the time

taken by Wasmosys to generate WebAssembly ASTs was recorded and compared

with the time taken by Wassail, another popular AST generator, for performance

benchmarking.

11.2 Accuracy

The accuracy of Wasmosys was measured in terms of its capability to detect known

vulnerabilities in the given sets of JavaScript and WebAssembly files. The experi-

ment results showed that Wasmosys could detect all the JavaScript vulnerabilities.

However, some of the WebAssembly vulnerabilities were missed by the system.

Nonetheless, the system produced no false positives or negatives, demonstrating

high accuracy in detected vulnerabilities.
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Figure 10: Wasmosys - 35 Data Points

11.3 Errors

Throughout the experimental process, the system encountered three types of er-

rors. These errors originated from WebAssembly files containing calls to Exported

Tables and Exported Memory Buffers. This indicates that Wasmosys currently
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Figure 11: Wasmosys - Accuracy Data

has limitations handling specific Wasm features, and further work is needed to

improve this aspect of the system.

11.4 Performance Evaluation

To measure Wasmosys’s performance, the time taken to generate WebAssembly

ASTs was recorded and compared with the time taken by another AST generator,

Wassail. It is important to note that the JavaScript AST generation time was not

considered in this comparison, as all the JavaScript files in this experiment were

similar. The detailed performance data has yet to be mentioned here. Still, it was

found that the time performance of Wasmosys was comparable to that of Wassail,

demonstrating its viability as an efficient tool for generating ASTs from source

code.
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Figure 12: Wasmosys - Performance Analysis

12 Limitations

While Wasmosys stands as an innovative tool for generating unified ASTs for

JavaScript and WebAssembly code, the current iteration of the system presents

certain limitations, which were revealed during the experimental process. These

limitations serve as learning points and areas for future enhancement and refine-

ment of the system.

1. Use of AST over CPG:

The original plan for Wasmosys involved using Code Property Graphs (CPG)

due to their effectiveness in representing both a program’s control and data

flow. However, Wasmosys utilizes Abstract Syntax Trees (AST) in the cur-

rent implementation. There were two primary reasons for this decision.
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Firstly, the construction of CPG involves combining four separate graphs,

which proved complex and challenging for performance. Secondly, merging

the different JavaScript and WebAssembly CPGs was found to be difficult

due to a lack of research in this area.

2. Manual AST Unification:

The second limitation of Wasmosys is the manual unification of JavaScript

and WebAssembly ASTs. The original plan called for an automatic fusion

of these two ASTs using Cypher queries. However, due to the differences in

AST labels produced by the two AST generators and the inability to find

suitable paths automatically with Cypher queries, the process had to be

done manually. This manual unification could introduce inconsistencies and

inefficiencies, hindering the system’s scalability.

3. Experimental Size and Dataset

The third limitation lies in the size and nature of the dataset used for test-

ing Wasmosys. The original plan was to use the WasmBench dataset for

testing the capabilities of Wasmosys. However, due to a lack of dataset in-

corporating both JavaScript and WebAssembly code and time constraints for

creating a large, suitable dataset, the team resorted to using 35 customized

JavaScript-WebAssembly programs for testing. This smaller, custom dataset

partially represented the wide range of potential scenarios Wasmosys might

encounter in real-world applications.
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13 Conclusion

To conclude, Wasmosys is an AST based static analysis tool that covers the whole

WebAssembly execution path when used with function calls. While it has limi-

tations, it creates a new method to cover JavaScript’s exposed functions, and it’s

called the Wasm file, together with the help of AST or Abstract Syntax Tree.By

leveraging the Abstract Syntax Tree (AST), Wasmosys has introduced a novel

method to analyze JavaScript’s exposed functions within the context of Wasm

files. This approach allows for a more thorough examination of the code and

enables the detection of vulnerabilities and potential security risks that might

have otherwise been overlooked.Throughout this thesis book, the limitations of

Wasmosys have been acknowledged. These limitations include the dependence

on function calls and the inherent challenges in analyzing more complex control

flow and data flow within the WebAssembly execution path. However, the re-

search conducted demonstrates that despite these limitations, Wasmosys still pro-

vides valuable insights and contributes to the enhancement of security measures

in the context of Wasm.The utilization of AST in conjunction with the Wasm file

presents a promising avenue for further research and development in the realm

of WebAssembly security analysis. By expanding the capabilities of Wasmosys

to address its limitations, future iterations of the tool could provide even more

comprehensive and effective detection of vulnerabilities and security threats in

WebAssembly-based applications. Overall, this research work has shed light on

the potential and significance of Wasmosys as an AST-based static analysis tool

for WebAssembly. It has opened up new possibilities for improving security mea-

sures in Wasm files by harnessing the power of the Abstract Syntax Tree. With

continued exploration and refinement, Wasmosys holds promise for enhancing the

security posture of WebAssembly applications and contributing to the broader

field of software security.
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