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Abstract

Due to the complexity and constraints of the underwater environment, underwa-

ter picture enhancement is a difficult task. In order to improve underwater images

that have problems with low contrast, blurriness, and color mistakes, this research

suggests a deep learning-based technique. Residual Networks (ResNet) and Super-

Resolution Generative Adversarial Networks (SRGANs) are combined in the sug-

gested method. In order to restore fine details and improve overall contrast and

sharpness, ResNet extracts residual information. SRGANs produce enhanced under-

water picture versions at high resolution, enhancing visual integrity.

Extensive testing on several underwater picture datasets reveals the suggested

method’s superior performance. Comparing it to cutting-edge methods, objective

quality indicators such as contrast augmentation, image sharpness, and color accu-

racy confirm its efficiency. Qualitative evaluations show that the underwater pho-

tographs have significantly improved in terms of contrast, blurriness, and color re-

production. This increases their ability to be analyzed and interpreted as well as

their visual appeal. Marine research, underwater robots, and inspection systems can

all benefit from better underwater image quality. Improved visual quality is bene-

ficial for accurate underwater object identification, biodiversity measurement, and

extending our understanding of underwater ecosystems. In conclusion, this study

provides a deep learning-based technique for enhancing underwater image quality

that combines ResNet and SRGANs. The method addresses low contrast, blurriness,

and color mistakes to produce notable improvements. Its effectiveness is supported

by the experimental findings and qualitative evaluations, emphasizing its potential to

advance underwater photography methods and applications.

x



Chapter 1

Introduction

We provide a succinct summary of the theory that we have discussed so far in this part.
We first provide a quick overview of underwater image improvement. An introduction
to picture enhancement follows this. Based on our research and the research gaps we
identified in the challenges section, we then present the problem statement. We’ll wrap
off the chapter by outlining the goals, anticipated contributions, and structure of the thesis.

1.1 Image enhancement

A potent method for improving an image’s visual appeal and communication potency is
image augmentation. Image augmentation enhances the visual quality of an image by
changing its colors, contrast, and sharpness, for example, or makes the intended message
more powerful. This method can be applied manually using specialized picture editing
software or automatically utilizing specialized algorithms that enhance photographs.

Image augmentation has a wide range of uses in numerous industries. Image augmenta-
tion is essential to improving the aesthetic appeal of photos in the realm of photography
since it helps photographers better express their artistic vision. Image augmentation gives
photographs life, increases their visual impact, and brings out features that may have been
muted during the original capture by changing colors, contrast, and sharpness.

Similar to photography, image augmentation techniques are used in videography to im-
prove video frames, guaranteeing viewers an engaging visual experience. Videos become
more bright, interesting, and intriguing when the color balance, contrast, and sharpness
are optimized.

Additionally, picture augmentation has useful uses in medical imaging. By enhancing

1



1.2. UNDERWATER IMAGE PROCESSING 2

medical pictures like X-rays or MRI scans with this approach, medical personnel can
better see important anatomical features or abnormalities. Medical image augmentation
improves patient care by changing picture features to help with accurate diagnosis and
better interprofessional communication.

The development of deep learning algorithms in recent years has completely changed
picture augmentation methods. Deep learning-based methods for producing realistic and
high-quality augmented images, like Generative Adversarial Networks (GANs) and Vari-
ational Autoencoders (VAEs), have proven to be remarkably effective. These methods
can accurately imitate different artistic styles and learn from massive datasets, enhancing
photos in a more intelligent and context-aware way.

Last but not least, image augmentation is a flexible approach used in photography, videog-
raphy, and medical imaging to improve the aesthetic appeal and communicative effect of
images. It offers a way to improve colors, contrast, and sharpness, enabling photogra-
phers, videographers, and medical professionals to get their desired visual results. This
is done by utilizing sophisticated algorithms and image editing software. Image augmen-
tation techniques are constantly evolving thanks to deep learning developments, enabling
more creative expression and enhancing visual comprehension across a variety of areas.

1.2 Underwater Image Processing

Underwater image processing can be divided into some categories. The following dia-
gram will give a clear idea.

Figure 1.1: Underwater Image Processing categories
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1.3 Underwater Image enhancement

Our focus is mainly on strategies for underwater image improvement among the different
types of image processing techniques. Enhancing underwater photos entails enhancing
the visual appeal and interpretability of photographs taken in aquatic settings. Under-
water photographs frequently experience issues including blurriness, distortion, and low
contrast because of the peculiar characteristics of water, including light absorption and
dispersion. A variety of strategies can be used to solve these problems and improve the
visual quality of underwater photos, including:

• Color correction: Images are colored differently when taken underwater due to
changes in light absorption at various wavelengths. The natural hues of underwater
photos can be adjusted and restored using color correction procedures, improving
their visual accuracy and appeal. These methods account for the specific color
biases introduced by the aqueous medium by adjusting the color balance.

• Brightness and contrast adjustment: Because of the light’s scattering properties
in water, underwater photographs may appear low contrast and have a small dy-
namic range. Details in the image can be improved by modifying brightness and
contrast levels, making the image more aesthetically appealing and increasing vis-
ibility in general. Contrast adjustments aid in sharpening the distinction between
various objects and elements in the image, while brightness adjustments improve
visibility of darker areas.

• Sharpening: The sharpness and visibility of minute details in underwater pho-
tos can be diminished by the refraction of light as it travels through the water. To
improve the image’s sharpness overall and bring out minute details, sharpening pro-
cedures can be used. Underwater photographs can recover the clarity that was lost
by using algorithms that highlight edges and high-frequency components, revealing
the fine details of the scenes that were photographed.

• Noise reduction: Due to the difficult lighting circumstances and the presence of
particles in the water, underwater photographs frequently have high degrees of noise
and grain. These artifacts are suppressed using noise reduction techniques, produc-
ing images that are clearer and more appealing to the eye. The quality of underwater
photos can be greatly enhanced by using denoising algorithms that effectively de-
crease noise while preserving crucial image information.

The visual quality of underwater photographs can be considerably improved by using
these image enhancement techniques, allowing for better interpretation and analysis in
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a variety of underwater imaging applications. Enhancing underwater photographs and
making them appropriate for scientific research, marine exploration, and other underwater
imaging domains requires a mix of color correction, brightness and contrast improvement,
sharpening, and noise reduction. These methods aid in restoring the scene’s natural ap-
pearance, enhancing image details, and enhancing underwater photographs’ overall visual
appeal and clarity.

1.4 Problem Statement

Autonomous underwater vehicles (AUVs) have become effective instruments for a variety
of tasks recently, such as mapping the seafloor, analyzing underwater scenes, collaborat-
ing with humans and robots, and monitoring marine organisms. For essential functions
like object tracking and scene comprehension, these vehicles significantly rely on high-
quality photos. However, because of things like light scattering, absorption, and low
visibility, underwater imaging is extremely difficult. These problems frequently cause the
quality of acquired photographs to degrade, leading to the loss of crucial details, decreased
contrast, and distorted colors. The usefulness of AUVs in underwater environments can
be hampered by the hazy and noisy appearance of underwater photographs, even when
using high-tech cameras.

A complete image enhancement solution is urgently needed to address these issues and
allow AUVs to function optimally in the underwater environment. In order to meet this
need, this research suggests a cutting-edge and reliable deep learning-based method for
improving underwater image quality. The suggested model seeks to address important
challenges such color distortion correction, contrast enhancement, noise reduction, and
resolution improvement by utilizing the power of deep neural networks.

Many computer vision tasks, such as object detection, segmentation, and image recogni-
tion, have been successfully completed using deep learning. Deep neural networks are
well-suited for addressing the particular difficulties of underwater picture enhancement
because of their capacity to learn sophisticated image representations and capture fine
details.

The development of a sophisticated deep learning model specifically suited for underwater
image enhancement is the main goal of this study. We seek to develop a strong framework
capable of successfully repairing and enhancing underwater photographs by training the
model on substantial datasets of underwater image data and fine-tuning its parameters. In
addition to improving visual quality, the suggested approach will also make underwater
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photographs easier to understand and use for a variety of purposes in AUVs and similar
underwater imaging systems.

The results of this study have enormous potential for the underwater imaging industry.
The suggested deep learning-based approach has the potential to revolutionize AUV op-
erations by greatly enhancing the quality and authenticity of underwater photographs.
This would enable more accurate data analysis, effective marine research, and accurate
environmental monitoring. The knowledge gathered from this study can also help us com-
prehend the undersea environment better and help us realize the enormous potential that
lies beneath the waters. Based on our overall objective and purpose, we name our problem
as follows-

”Designing a residual and generative adversarial network based underwater image en-
hancement method that can improve images by reducing bluish and greenish color and
boosting resolution.”

1.5 Challenges

To increase the overall quality and visual integrity of the photos that are being taken, it
is necessary to solve a number of issues that underwater image processing brings. These
difficulties result from the undersea environment’s inherent features, such as light refrac-
tion, absorption, and scattering effects. These problems lead to decreased image quality,
which makes it challenging to extract useful information. The following difficulties must
be overcome-

• The distortion brought on by light refraction, absorption, and scattering in water
results in poor image quality for underwater images. These effects cause color
changes, which lessen how natural-looking underwater photographs appear. To
address these problems and improve the appearance of underwater photos’ colors,
color-correcting techniques are frequently used.

• Absorption of Red Wavelengths: In deep water, red wavelengths are absorbed more
quickly, creating some difficulties:

– Low Contrast: It is difficult to detect objects and details in underwater pho-
tographs due to the absorption of red wavelengths.

– Blurred Images: The blurring that results from light dispersion in water lessens
the sharpness and clarity of underwater photographs.
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– Color Degradation: The overall aesthetic quality of underwater photos can be
impacted by the absorption of red wavelengths, which can also cause color
deterioration.

• Diversity of Underwater Conditions: Diverse degradation variables are presented
by the vastly different underwater environments:

– Shallow Coastal Waters: Further picture deterioration occurs in shallow coastal
waters due to other factors including suspended particles and vegetation.

– Deep Oceanic Waters: The difficulties in deep oceanic waters are mostly
caused by increasing water pressure and a lack of light.

– Muddy Waters: Suspended sediments and extreme turbidity in murky or muddy
waters significantly degrade visibility and image quality.

Choosing the right architecture becomes essential when using deep learning techniques
to improve underwater image quality. Datasets of underwater picture training have been
used to train a variety of deep learning architectures. To meet the above-mentioned special
issues, it is crucial to take into account architectures that produce effective outcomes
quickly. The requirement for a comprehensive design that can handle both difficulties at
once is shown by recent architectures that either concentrate on color distortion reduction
or resolution upscaling separately.

In this research, we offer a brand-new deep learning architecture created especially for
the enhancement of underwater images. By efficiently resolving color distortion and us-
ing cutting-edge techniques for resolution enhancement, our suggested design attempts
to overcome the difficulties associated with underwater photography. Our method offers
a complete solution for improving the visual quality of underwater images by concur-
rently addressing these important problems. We illustrate the effectiveness and potential
of our architecture to fully realize underwater imaging’s potential and improve a variety
of underwater domains through comprehensive experimentation and evaluation.

1.6 Objectives of the Thesis

The objectives of this thesis are as follows:

1. Create a sophisticated image enhancement model that efficiently adjusts the con-
trast, gets rid of the haze, fixes color divergence, and lessens the effect of various
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water kinds. The model promises to improve the visual appeal of underwater photos
dramatically.

2. Implement a resolution enhancement component within the proposed model to im-
prove the image resolution. This component should effectively enhance the fine
details and improve the overall sharpness of the underwater images.

3. Analyze the effectiveness of the suggested architecture both with and without changes.
We want to evaluate how the changes will affect the model’s overall performance
using comparison analysis. The performance of the model will be optimized with
the aid of this analysis, which will offer insights into the efficacy of various com-
ponents. The quality of the augmented images will be assessed using quantitative
metrics like peak signal-to-noise ratio (PSNR), structural similarity index (SSIM),
and subjective evaluations.

4. Perform a complete performance analysis of the suggested approach. In order to
evaluate our architecture, results from previous studies using other architectures
will be compared to those from our architecture. The proposed method will be
thoroughly examined in this comparative analysis, which will also highlight its con-
tributions to and developments in the field of underwater image enhancement.

5. Describe the drawbacks and difficulties of the suggested strategy and make sugges-
tions for future research trajectories. Determine what needs further work so that
underwater image enhancing systems can perform better and be more reliable.

These objectives will enable this thesis to advance cutting-edge techniques for underwa-
ter image enhancement. The proposed model and its evaluations will provide beneficial
insights that will aid researchers and industry professionals working in the field in im-
proving the visual quality of underwater images for a variety of applications, including
marine research, underwater exploration, and underwater robotics.



Chapter 2

Literature Review

We will undertake a thorough and in-depth analysis of recent developments in the field
of underwater image enhancement in this section. The goal is to examine and evaluate
the previous research that has been done to solve the difficulties unique to improving
underwater photographs. The emphasis will be on examining publications that use deep
learning techniques, which are consistent with the methodology outlined in our model.

Image enhancement is only one of the many computer vision jobs where deep learning
has proven to be a potent tool. It is especially well suited for addressing the distinc-
tive properties of underwater photos due to its capacity to learn complicated features and
patterns from large-scale data sets. We intend to discover cutting-edge strategies and
methodologies that have been successfully applied for underwater image improvement by
thoroughly reviewing the literature on deep learning approaches.

We will examine and assess the major advancements made in the field of underwater
picture enhancement as a result of these studies during our evaluation. We will look at the
approaches, architectures, and algorithms put forth in these works, paying close attention
to how well they deal with issues like color distortion, poor contrast, and blurriness that
are frequently present in underwater pictures.

We will also take into account how well these methods work in various underwater cir-
cumstances and with various types of water (such as dirty water, deep ocean water, and
shallow coastal water). We can decide whether deep learning-based techniques are best
for our proposed model by analyzing their advantages and disadvantages in distinct un-
dersea situations.

We want to get a thorough grasp of the present state-of-the-art deep learning algorithms
for underwater image enhancement through a thorough assessment of the existing litera-

8
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ture. Our proposed model will be developed using this knowledge, enabling us to take use
of the most efficient methods and strategies to improve the visual quality of underwater
photos. Our ultimate goal is to enable a wide range of applications in industries includ-
ing marine research, underwater exploration, and underwater robots while also helping to
enhance underwater imaging technology.

Jun Ao et al. introduced an original technique called Adaptive Linear Stretch (ALS)
[8] in the field of improving underwater images. By improving the objective quality of
the stretched image and maintaining computing efficiency, ALS strives to go beyond the
constraints of conventional linear stretching techniques. The essential characteristic of
ALS is its adaptability, which is attained by using a threshold that can be adjusted and
obtained from the histogram of the image.

The main goal of the ALS approach is to restore color in underwater photographs. The
adaptable threshold is established by studying the image’s histogram, which enables ALS
to precisely alter the color distribution and resolve color cast problems. Due to ALS’s
adaptive nature, which enables it to dynamically adjust to each image’s unique properties,
the contrast and color appearance of the images are improved.

The usefulness of the ALS approach for improving underwater photographs has been ex-
perimentally evaluated. According to the results, there has been a noticeable improvement
in image contrast, a decrease in color cast, and an overall improvement in the subjective
quality of the photographs. Additionally, ALS maintains a low computing cost while
achieving these improvements, making it an effective option for real-time applications or
situations with limited resources.

The ALS method’s contribution to underwater image color correction rests in its effec-
tiveness and simplicity. ALS offers the path for enhanced visual quality and greater inter-
pretability of underwater photographs by effectively addressing the issues related to color
distortion. Numerous applications, such as marine research, underwater exploration, and
underwater robots, are significantly impacted by these developments.

In conclusion, the ALS method developed by Jun Ao et al. offers a fresh strategy for im-
proving underwater images. As a result of ALS’ adaptability and excellent computational
implementation, color aberrations in underwater photographs are successfully corrected,
resulting in better image contrast and subjective quality. The successful outputs of this re-
search lead to the creation of straightforward yet effective algorithms for correcting color
aberrations in underwater images, enabling a variety of real-world uses and facilitating
further developments in the field.

The goal of this work (ALS method) is to create a simple and efficient algorithm for
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correcting the color of underwater images. The results -

Def SSIM MES PSNR H PT(s)
Original 21.64 1.00 – – 6.79 –
HE 137.93 0.72 1680.44 15.88 7.95 8.05
Gani’s Method 58.34 0.92 326.42 22.99 7.47 5.08
ALS 113.00 0.77 1343.65 16.85 7.90 0.56

Table 2.1: Quantitative comparison between ALS and various methods

Figure 2.1: Comparison of ALS method and original picture
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Smitha Raveendran et al. have proposed a revolutionary way for improving the quality
of underwater photos by integrating a revised image creation model into an existing deep
learning-based methodology. A backscatter estimating module and a direct-transmission
estimate module, both built using convolutional neural networks, make up the two mod-
ules that make up the suggested technique. The enhanced underwater image is created by
further processing these modules and the input image with a reconstruction module.

The parametric rectified linear unit (PRelu) [9] and dilated convolution [10] techniques are
used to enhance the neural network’s performance. Dilated convolution gives the network
a bigger receptive field, allowing for improved contextual information acquisition, while
PRelu increases the network’s fitting capability by adding learnable parameters to the
rectified linear unit.

The effectiveness of the suggested strategy is assessed using the UIEB and URPC-2020
benchmark datasets. The experimental findings show how the technique can considerably
improve the quality of underwater photos. The suggested method successfully decreases
the negative impacts brought on by underwater imaging conditions, such as scattering and
absorption, by accurately measuring the back-scatter and direct transmission components.

The performance of the deep learning-based system for underwater picture enhancement
has improved overall thanks to the adoption of the revised image creation model and
the use of PRelu and dilated convolution techniques. The testing results show that the
suggested method is effective and that it is suitable for a variety of underwater imaging
applications and has the potential to improve the quality of underwater images.
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Figure 2.2: Framework of proposed method

Figure 2.3: Backscatter and direct-transmission estimation
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Peng Liu et al. proposed cycle-consistent adversarial networks (CycleGAN) [11] to gen-
erate synthetic underwater images for training convolutional neural network models. The
very-deep super-resolution reconstruction model (VDSR) [12] is also introduced for use
in underwater image resolution applications, leading to the development of the Under-
water Resnet [13] model, a residual learning model for underwater image enhancement
tasks. The loss function and training mode are also improved by introducing a multi-term
loss function incorporating mean squared error loss and a proposed edge difference loss,
and by implementing an asynchronous training mode. These modifications are intended
to enhance the performance of the multi-term loss function. Many image-to-image trans-
lation models use per-pixel difference loss functions such as the MSE or L1 loss function.
These loss functions attempt to minimize the difference between two images at the pixel
level. However, using the MSE loss function, as the original VDSR model did, can lead
to higher peak signal-to-noise ratio (PSNR) [14] scores but poor visual results. This is
because the MSE loss function averages the differences at the pixel level and does not
consider higher-level information, such as overall structure. As a result, the MSE loss
function can average the solution and make image details too smooth, which is not con-
ducive to enhancing high-frequency information.

A residual learning model is the UResnet that has been proposed. It is made up of Res-
Blocks [13], which combine the result of one convolution layer with the input of another.
By using ResBlocks, the information from the top layer can be fully communicated to the
layers below ResBlock [13] stacking enables the training of deeper networks. The super-
resolution reconstruction models EDSR [15] and SRResnet [16] served as inspiration for
UResnet. The head, torso, and tail make up the three primary parts of the suggested
UResnet model.

There is only one convolution layer in the head. In light of how long training takes, the
body portion stacks 16 ResBlocks in the following sequential order: [Conv-BN-ReLU-
Conv-BN]. One convolution can be found in the tail. There are 34 convolution layers in
total. The network uses a 33 convolution with a 1 pixel stride and a 1 pixel zero-padding to
preserve the geometry of feature maps, enabling UResnet to receive inputs of any shape.
This work achieved good result in PSNR [14] and SSIM [17] metrics.
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Figure 2.4: UResnet model with EDL

Hema Krishnan et al. presented a method for improving the perceptual quality of un-
derwater images. To do this, synthetic underwater images are generated using UwGAN.
The UResNet [7] model, which incorporates various loss functions such as edge differ-
ence loss (EDL) and mean square edge (MSE) loss, is then used for underwater image
enhancement. An asynchronous training mode is also implemented to enhance the per-
formance of the multi-term loss function. This proposed UnderwaterGAN achieved a
better score than CycleGAN [11] in UICM, UISM, UIconM and UIQM [18] metrics but
could not have better results in PSNR [14] and SSIM [17] metrics.

Figure 2.5: Input images and corresponding enhanced images
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Alireza Aghelan et al. improved Real-ESRGAN by using a high-order degradation
process to generate low-resolution (LR) degraded images. Instead of training the Real-
ESRGAN model from scratch, transfer learning is used by fine-tuning the model on un-
derwater image datasets after it has been trained on natural image datasets. The model
is fine-tuned using Google Colab Pro, with a batch size of 10 per GPU, Adam optimizer
with a learning rate of 0.0001, and exponential moving average. A combination of L1
loss, perceptual loss, and GAN loss functions is used for fine-tuning. The model is fine-
tuned for 10300 iterations (approximately 8 epochs) and saved, and then fine-tuned for an
additional 26000 iterations (approximately 20 epochs) and evaluated for performance.

Md Jahidul Islam et al [6] present a model for enhancing the quality of underwater im-
ages in real-time using a generative adversarial network. They use an objective function
to evaluate the perceptual quality of the images based on various factors such as color, tex-
ture, and style. The authors also introduce a dataset of underwater images with varying
levels of quality, captured using different cameras under different visibility conditions.
The model is trained using both paired and unpaired data from this dataset. The enhanced
images are shown to improve the performance of standard models for tasks such as un-
derwater object detection, human pose estimation, and saliency prediction. The authors
suggest that the model could be used in the autonomy pipeline of visually-guided under-
water robots.

Figure 2.6: Generator

Figure 2.7: Discriminator: A Markovian PatchGAN
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Pritish Uplavikar et al [19] propose a model for enhancing underwater images by learn-
ing to disentangle the features of the images from the effects of different types of water
(viewed as different domains). They train the model on a dataset of images of 10 differ-
ent types of water, and show that it performs better in terms of SSIM and PSNR scores
compared to previous methods for most of the water types, and also generalizes well to
real-world datasets. The enhanced images produced by the model also improve the per-
formance of a high-level vision task (object detection).

Figure 2.8: CNN based encoder decoder

Zhenqi Fu et al. [1] address the difficulty of boosting underwater photos that suffer from
various degradation induced by different water types by introducing a potent approach
called SCNet. The authors provide a number of normalization approaches within SCNet
to accomplish their goal of learning features that are unaffected by the particular water
conditions.

To create multi-scale representations, SCNet uses a U-Net architecture and normalization
methods at each size. Whitening and standardization with re-injection of the first two
seconds are the two essential steps in the normalization procedure [1]. The method effec-
tively decorrelates activations across spatial dimensions by using whitening, and channel-
wise correlation is eliminated by standardizing and re-injecting the initial two moments.
SCNet may learn resilient and water-type invariant features thanks to these normalizing
techniques, producing improved underwater photos.

The authors ran tests on two real-world underwater image datasets to gauge SCNet’s per-
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formance [1]. The outcomes show that SCNet is quite good at improving photos of a
variety of water kinds. The technique performs admirably in terms of visual quality im-
provement, suggesting that it could be an effective tool for enhancing underwater images.

In conclusion, Fu et al. suggest SCNet [1], a technique that solves the various degrada-
tion in underwater photos brought on by various types of water. To successfully enhance
underwater photos, SCNet learns water-type invariant features and incorporates normal-
ization techniques within a U-Net architecture. The experimental outcomes on real-world
datasets confirm SCNet’s capability to manage various types of water and generate no-
table visual quality enhancements. This study advances the field by outlining a possible
method for improving underwater images.

Figure 2.9: Normalization of the U-Net’s spatial and channel dimensions [1]

Chongyi Li et al. make a substantial addition to the field of underwater image improve-
ment through the development of a brand-new dataset, the Underwater Image Improve-
ment Benchmark (UIEB) dataset [2]. This dataset was created primarily to assess how
well image-enhancing techniques work in aquatic settings. It has a sizable collection
of actual underwater photographs that have been painstakingly tagged with factual data,
making it an invaluable tool for furthering this field’s state-of-the-art.

The authors also suggest the Water-Net architecture, a gated fusion network made to im-
prove underwater photos [2], in addition to the dataset. In comparison to earlier state-of-
the-art methods, the Water-Net architecture achieves superior improvement outcomes by
using projected confidence maps and performing controlled fusion. Comprehensive ex-
perimental assessments are used to show the success of the suggested strategy and empha-
size its potential for overcoming the difficulties associated with underwater photography
circumstances.

Li et al. underline the need of using specialized datasets and customized algorithms for
the goal of underwater picture enhancement by introducing the UIEB dataset and the
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Water-Net architecture. The report emphasizes the potential for additional advancements
in this sector while also highlighting the necessity for specialized tools and methods to
address the distinctive features of underwater imaging.

Future research and development in underwater image enhancement will have a strong
basis thanks to the combination of the UIEB dataset and the Water-Net architecture. This
research increases our understanding of underwater imaging difficulties while also en-
couraging the investigation of novel strategies to raise the bar for excellence in this field.

Method MSE↓ PSNR↑ SSIM↑
Fusion-Based [20] 1.1280 17.6077 .07721
retinex-based [21] 1.2924 17.0168 0.6071
GDCP [22] 4.0160 12.0929 0.5121
histogram prior [23] 1.7019 15.8215 0.5396
blurriness-based [24] 1.9111 15.3180 .6029
Water CycleGAN [25] 1.7298 15.7508 0.5210
Dense GAN [26] 1.2152 17.2843 0.4426
Water-Net [2] 0.7976 19.1130 0.7971

Table 2.2: Full-reference image quality assessment in terms of MSE, PSNR and SSIM on
testing set

Figure 2.10: An overview of the Water-Net architecture that has been proposed [2]. A
gated fusion network called Water-Net fuses the inputs with the projected confidence
maps to produce the improved outcome.
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Chongyi Li et al. describes a novel strategy for improving the visibility of underwater
photographs using a multi-color space embedding method [3]. Their suggested technique
entails converting underwater photographs into several color spaces before merging the
generated images to get an improved output. The authors use a dataset of actual un-
derwater images to show the efficacy of their method and contrast it with a number of
cutting-edge picture enhancing techniques.

Li et al. provide the Ucolor architecture together with an attention mechanism in order
to handle the difficulties posed by underwater environments such as turbidity and scat-
tering [3]. To adaptively improve the visibility of underwater photographs, the Ucolor
architecture integrates several color spaces and automatically chooses essential elements.
The suggested method significantly enhances image clarity by fusing the properties of
many color spaces.

The authors also suggest a decoder network that makes use of underwater image medium
transmission information in addition to the Ucolor architecture. This guidance mecha-
nism aids the network in prioritizing the areas with the worst quality degradation, im-
proving picture enhancement performance. This method significantly raises the quality
of underwater photographs by making use of deep neural network technology and the
understanding of underwater imaging.

The suggested method beats numerous cutting-edge image enhancement algorithms across
a variety of assessment parameters, according to experimental results [3]. In situations
where there is extreme degradation, it successfully improves the visibility and quality of
underwater photographs. This innovative method has a lot of potential for real-world use
and makes a significant addition to the field of underwater image improvement.

Figure 2.11: A description of Ucolor’s architecture [3].
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Christian Ledig et al. proposed SRGAN, a generative adversarial network (GAN) For
image super resolution (SR). They suggest an adversarial loss and a content loss make up
a perceptual loss function. The use of SRGAN results in highly significant improvements
in perceptual quality, according to a thorough mean-opinion-score (MOS) test. In com-
parison to any state-of-the-art method, the MOS scores generated with SRGAN are closer
to those of the original high-resolution photos. The main contribution of the paper is -

• With the 16 blocks deep ResNet (SRResNet) that is tuned for MSE, they achieved
a new state of the art for image SR with high upscaling factors (4), as evaluated by
PSNR and structural similarity (SSIM).

• They suggested SRGAN, a GAN-based network that has been tailored for a novel
perceptual loss. Here, instead of using the MSE-based content loss, they calculated
a loss using the VGG network’s feature maps, which are more resistant to changes
in pixel space.

• With the help of a thorough mean opinion score (MOS) test performed on images
from three publicly available benchmark datasets, they were able to establish that
SRGAN is now, by a wide margin, the state of the art for the estimate of photo-
realistic SR images with high upscaling factors (4).

The result comparison of their work is mentioned in the table-

Figure 2.12: Performance of different loss functions for SRResNet and the adversarial
networks on Set5 and Set14 benchmark data. MOS score significantly higher p < 0.05
than with other losses in that category
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Zhiming Zhang at al. The authors proposed an approach based on SRGAN (Super-
Resolution Generative Adversarial Network) to enhance the quality of underwater im-
ages. In their method, they modified the standard SRGAN pipeline. Initially, the training
images were preprocessed using the Dark Channel Prior (DCP) technique. Subsequently,
the SRGAN model was applied to increase the resolution of the photos. In this process, a
low-resolution image was initially upscaled to the desired target resolution using bicubic
interpolation. Then, a three-layer convolution network performed nonlinear mapping to
generate high-resolution images. They made several improvement in the vanilla srgan -

• Generator improvement: The authors optimized the SRGAN model by replacing
a single 9*9 convolution layer with two 5*5 convolution layers. They found that
both configurations have similar feature extraction capabilities, but using two 5*5
convolutions significantly reduces computational complexity. Additionally, the tra-
ditional SRGAN algorithm faced challenges related to inadequate reconstruction of
image details and unstable training. To address these issues, the authors removed
the Batch Normalization layer in the residual block and reduced the number of pa-
rameters, aiming to achieve stable training.

• Discrimonator improvement: The authors employed the VGG19 model as a dis-
criminator in their approach. They randomly combined the generated super-resolution
(SR) image and the high-resolution (HR) image and fed it into the discriminator
model for evaluation. The final layer of the network incorporated the Sigmoid acti-
vation function after applying the convolution-BN (Batch Normalization) layer and
Leaky PReLu. The output of the discriminator was expected to be a discriminative
probability within the range of [0, 1]. Ideally, the HR image should have a value
close to 1, indicating a clear underwater image, while the SR image should ap-
proach 0, indicating an underwater image generated by the generator. The training
of the model was concluded when the output of the discriminator approached 0.5.

• Improvement of loss function: In their approach, the authors incorporated both L1
content loss and VGG19 perceptual loss in addition to utilizing the loss mechanism
provided by the GAN (Generative Adversarial Network). Due to the presence of
outliers in underwater photos, L1 loss was chosen as it is more robust and less
affected by these outliers compared to L2 loss. Although applying only the content
loss function can achieve a higher peak signal-to-noise ratio (PSNR), it leads to a
loss of high-frequency information and the texture details of the image, resulting
in suboptimal overall image quality. To preserve sharper edge information in the
reconstructed high-resolution image, the authors employed a pre-trained 19-layer
VGG network to extract high-level features from the image. These features were
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then added as a perceptual loss term to the model’s overall loss, enhancing the final
image quality.

Figure 2.13: Improved SRGAN image reconstruction result



Chapter 3

Datasets

Image datasets that are taken underwater are important for the advancement of image
processing methods.

3.1 UIEB Dataset

A benchmark dataset for improving underwater photographs, consisting of 950 genuine
underwater shots, was generated by Li et al. [2] in 2019. Out of these, 890 images had
appropriate reference pictures, while the remaining 60 underwater images were deemed
difficult since relevant reference pictures weren’t available. This dataset was used to con-
duct a thorough qualitative and quantitative analysis of current underwater image enhanc-
ing techniques. Additionally, the suggested underwater image enhancement benchmark
for training Convolutional Neural Networks (CNNs) was applied to the development and
training of a baseline underwater image enhancement network known as Water-Net. The
benchmark analyses and the introduction of Water-Net provided important insights for
future research in the area of underwater picture enhancement by shedding light on the
capabilities and constraints of cutting-edge algorithms. Some sample images from this
dataset are shown below-

23
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Figure 3.1: Constructed Image from the UIEB dataset. Top row: raw underwater image
taken in diversed underwater scene, Bottom row: corresponding reference results

3.2 MBARI dataset

The Monterey Bay Aquarium Research Institute provided 666 photos of fish for the
MBARI underwater image dataset, which was assembled by Yang et al. (2019).

3.3 RUIE Dataset

The Underwater Image Quality Set (UIQS), Underwater Color Cast Set (UCCS), and
Underwater Task-driven Testset (UHTS) are the three distinct subsets that make up the
Real-world Underwater Image Enhancement (RUIE) dataset, which was first introduced
by Liu et al. (2020). Each subgroup focuses on solving a particular difficulty in underwa-
ter picture enhancement, such as enhancing visibility quality, removing color casts, and
simplifying more complex detection and classification tasks.

Figure 3.2: Sample images from RUEI dataset [4] and improvement through different
method
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3.4 SQUID Dataset

The collection includes a variety of file types, including distance maps, RAW photos, TIF
files, and camera calibration files. It comprises of 57 stereo pairs that were recorded at
four separate locations in Israel: two in the Mediterranean Sea and two in the Red Sea,
which reflect temperate and tropical water conditions, respectively. One location in the
Red Sea is a coral reef known as ”Katzaa,” which has 15 stereo pairs and is situated at a
depth of 10-15 meters. The second location is a shipwreck called ”Satil,” which has eight
stereo pairs and is located at a depth of 20 to 30 meters. Two rocky reef ecosystems can
be found in the Mediterranean Sea, 30 kilometers apart. The first location is Nachsholim,
which has 13 stereo pairs with a depth range of 3-6 meters. The second site is Mikhmoret,
which has 21 stereo pairs and is located at a depth of 10 to 12 meters.

Figure 3.3: Sample images from SQUID Dataset [5]

3.5 DIV2K Dataset

This study analyses the state of the art based on the outcomes of the NTIRE 2017 chal-
lenge and proposes a new dataset (DIV2K) [27] for example-based single image super-
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resolution. This was the first of its kind challenge, which had six competitions, attracted
hundreds of participants, and had many different solutions submitted.

3.6 EUVP dataset

Islam et al.’s work introduces the EUVP dataset [6] which aims to enhance underwater
visual perception. The photos in the EUVP collection were captured by seven distinct
cameras during deep-sea excursions and research involving humans and robots in a range
of visibility situations. Almost 12,000 pictures are divided into 3 groups:

• Underwater Dark: It has total 5,550 images

• Underwater ImageNet: It has total 3,700 images

• Underwater Scenes: It has total 2,185 images

Each image has a companion ground truth image. For adversarial training, this dataset
can be used. We have selected the EUVP dataset to work with our model because of its
variety and size.

Figure 3.4: Sample images from EUVP dataset(Underwater Dark)
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Figure 3.5: Sample images from EUVP dataset(Underwater ImageNet)

Figure 3.6: Sample images from EUVP dataset(Underwater Scene)



Chapter 4

Proposed Architecture

The objective of our proposed method is to enhance underwater image along with in-
creasing the resolution in a minimal amount of time. To do so, we have proposed a model
that consists of Residual Network (ResNet) and Super-Resolution Generative Adversarial
Networks (SRGANs). We will first enhance the image by removing blue and greenish
hue and then increase the resolution by SRGAN. But we will not use the default SRGAN
model. We will bring several changes [28] in the SRGAN model. We will discuss them
one by one.

4.1 ResNet

ResNet is a neural network architecture that was introduced in 2015 in a paper called
”Deep Residual Learning for Image Recognition” [13]. It was developed by Kaiming
He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. The name ”ResNet” [16] is short for
”Residual Network.”

It has been observed that adding more layers to a neural network can actually decrease its
performance. This phenomenon may be due to various factors such as the optimization
function, the initialization of the network, and the vanishing gradient problem. The van-
ishing gradient problem refers to the difficulty that the network has in learning from the
back-propagated error signal when the gradients are very small, which can occur when
the network is very deep.

To solve this, skip connection [29] is introduced through Resnet. Skip connection is the
core of residual blocks. In a neural network with skip connections, the output of a layer
is computed differently than in a traditional neural network. In a traditional network, the

28
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output of a layer is obtained by multiplying the input by the weights of the layer and
adding a bias term. However, in a network with skip connections, the output is obtained
by adding the input to the output of the previous layer using a skip connection. This helps
to preserve the gradient signal as it flows through the network, making it easier for the
model to learn. So Skip connections in ResNets help to alleviate the vanishing gradient
problem [30] in deep neural networks by providing an alternative path for the gradient to
flow through. They also allow the model to learn identity functions, which means that the
performance of the higher layers is at least as good as that of the lower layers, and not
worse.

Key features of Resnet -

1. ResNet incorporates Batch Normalization [31], which is a technique used to im-
prove the performance of neural networks. Batch Normalization adjusts the input
layer in a way that reduces the issue of covariate shift, which refers to a change in
the distribution of the input data that occurs during training. By normalizing the
inputs, the network is able to learn more efficiently and achieve better performance.

2. ResNet uses Identity Connections to help prevent the vanishing gradient problem
[30]. This can occur when the network is very deep, and can make it difficult for the
network to learn effectively. Identity connections work by connecting the output of
a layer to the input of a higher layer, allowing the higher layer to access both the
output and the input of the lower layer. This helps to preserve the gradient signal as
it flows through the network, making it easier for the model to learn.

3. ResNet uses a type of block called a bottleneck residual block to improve the per-
formance of the network. A bottleneck residual block is a design element that is
used to increase the capacity of the network while also reducing the number of pa-
rameters that the network needs to learn. This is done by using a smaller number
of filters in the block, which allows the network to learn more complex features
while also making it more computationally efficient. The use of bottleneck residual
blocks can help to improve the overall performance of the network.
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Figure 4.1: ResNet-50 architecture

4.2 SRGAN

SRGAN [16] is a technique that enables models to significantly increase the resolution of
most images by a factor of almost 4x. It is a challenging task to generate a high-resolution
image from a low-resolution image, and CNNs have been used to produce high-resolution
images that are quick to train and have high accuracy. However, they may struggle to
recover fine details and can produce blurry images. The SRGAN architecture is designed
to address these issues and produce high-quality, state-of-the-art images.

Many supervised algorithms for super-resolution use mean squared error loss to compare
the acquired high-resolution image to the ground truth image. This approach is convenient
because minimizing mean squared error automatically maximizes peak signal-to-noise ra-
tio (PSNR) [14], which is a commonly used evaluation metric for super-resolution images.
However, these metrics focus on individual pixel features rather than visually perceptible
attributes such as high texture detail in the image.

Any GAN [32] architecture consists of two main things-

1. Generator

2. Discriminator

4.2.1 Generator

This method uses a fully convolutional SRRESNET model as the generator architecture
to produce excellent super-resolution images. To improve the overall architecture and
guarantee high-quality photos, a discriminator model that functions as an image classifier
is also incorporated. The SRGAN architecture produces natural-looking, perceptually
high-quality images.

A low-resolution input is handled by a first convolutional layer with 9x9 kernels and
64 feature maps before being sent on to a parametric ReLU layer in the SRRESNET
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[16] generating network. Because parametric ReLU is a powerful non-linear activation
function for the job of converting low-resolution images to high-resolution images, it is
used across the entire generator design.

Figure 4.2: Improved generator

Although values less than zero can be simply mapped to zero when using an activation
function like ReLU, this can result in dead neurons. Leaky ReLU, which maps values less
than zero to a user-defined value, is an alternate choice. In this case, parametric ReLU is
a superior option because it enables the neural network to select the best value on its own.
This is due to parametric ReLU’s ability to allow the network to change the value used to
map negative inputs, which prevents the problem of dead neurons.

A number of residual blocks are included in the feed-forward, fully convolutional SR-
RESNET model’s design. Each residual block is made up of a batch normalization layer,
a parametric ReLU activation function, a convolutional layer with batch normalization, a
layer with 3x3 kernels and 64 feature mappings, and a final element wise sum method.
The feed-forward output and the skip connection output are combined to create the final
output using the element wise sum technique.

The remainder of the generator model is built as illustrated in the accompanying image
once the residual blocks are formed. In order to produce super-resolution images, the
generator model design incorporates a pixel shuffler after the convolutional layer has been
4x upsampled. The pixel shuffler shuffles the height and width dimensions with values
from the channel dimension. In this instance, the channel is half while the height and
width are both doubled.

4.2.2 Discriminator

The generator and discriminator compete with one another and improve at the same time
in the standard GAN process, which is supported by the discriminator architecture. While
the generator tries to create realistic images to evade detection by the discriminator, the
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discriminator network seeks to recognize fraudulent images. The differentiable discrim-
inator D, trained to discriminate between genuine images and super-resolved images, is
what the generative model G in SRGANs attempts to trick.

Figure 4.3: Discriminator

The discriminator architecture is uncomplicated and simple to comprehend. It is made
up of an initial convolutional layer, followed by a 0.2 alpha Leaky ReLU activation func-
tion. A batch normalization layer, a Leaky ReLU activation function, and a sequence of
repeated blocks of convolutional layers are also included in the architecture. After five of
these repeating blocks, there are thick layers and then a classification-focused sigmoid ac-
tivation function. The initial convolutional size is 64x64 and doubles every two full blocks
until it reaches the 512x512 8x upscaled size. The generator learns more effectively and
generates better outcomes thanks to this discriminator model.

• Generator Improvement

The first modification we will do is to switch from one 9*9 convolution layer to
two 5*5 convolution kernels. Although the execution time will be optimized, the
outcome will be about the same. The discriminator’s Batch Normalization layer
will then be removed in order to eliminate undesirable artifacts and stabilize the
training.

• Improvement of loss function

We will use content loss instead of MSE loss. The following image gives the same
MSE loss value though they are not similar.

4.3 Underwater ResNet (U-ResNet)

We have already announced that we want to use Underwater ResNet to improve images
before sending them on to SRGAN to boost their resolution. We’ll talk about the Under-
water ResNet architecture right now.
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Figure 4.4: Complication of MSE loss

A residual learning model, UResnet is what we’ve suggested. ResBlocks, which are the
building blocks of this system, merge the output of one convolution layer with the input of
another. The data from the top layer can be fully transmitted to the layers below by using
ResBlocks. ResBlock stacking makes it possible to train deeper networks. The three
main components of the proposed UResnet model are the head, torso, and tail. Through
a long-distance skip connection, the outputs from the head and body sections are joined.
The body’s output layer receives feature information from the input layer via the long-
distance skip link, necessitating the use of ResBlock modules to discriminate between
input images and label images. In the head, there is only one convolution layer. The body
component stacks 16 ResBlocks in the following order to account for the time needed
for training: [Conv-BN-ReLU-Conv-BN]. The tail contains one convolution layer. There
are a total of 34 convolution layers. UResnet can accept inputs of any shape since the
network utilizes a 33 convolution with a 1 pixel stride and a 1 pixel zero-padding to retain
the geometry of feature maps.

In our underwater resnet, Edge Difference Loss (EDL) along with asynchronous training
mode has been included. These topics are discussed next.
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4.3.1 Edge Difference Loss (EDL)

The MSE or L1 loss function, which seeks to educate the model how the two images differ
at the pixel level, is used by the majority of image-to-image translation models. Because
MSE Loss averages differences at the pixel level and ignores higher-level information like
an overall structure, the resulting images do not have strong visual effects, but the model
can get a higher peak signal-to-noise ratio (PSNR) score using this approach. This means
that the MSE Loss function is not the best choice for boosting high-frequency information
because it tends to average the solution and smooth out visual features.

A punishment phrase called edge difference loss (EDL) is suggested due to the underwater
photos’ considerable feature loss, particularly with regard to edge information. The level
of the resulting image’s details is raised by punishing the models with EDL. A Laplacian

operator
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 is used as a sensitive edge detection operator to calculate the EDL.

The output of the final layer of the model are subjected to the convolution operation
using the Laplacian template as the convolution kernel. The label image is simultaneously
subjected to the convolution operation using the Laplacian template. The EDL is then
computed using the MSE Loss of these two feature maps.

Loss = MSE Loss+ k ∗ EDL (4.1)

The coefficient k is a hyperparameter that determines the balance between the two com-
ponents of the loss function. It adjusts the proportion of each part in the overall loss
calculation. The specific value of k in equation (4.1) is determined through a greedy
search method, which involves conducting numerous experiments to find the optimal
value. Finding of K value leads us to asynchronous training mode.

4.3.2 Asynchronous Training Mode

Finding the ideal value of ”k” in equation (4.1) to optimize the output can be difficult
in real-world situations. This problem arises because the Laplacian operator used in the
equation is susceptible to noise and sensitive to edge information. The output image’s
quality can be negatively impacted by noise amplification if the value of ”k” is improperly
selected. An asynchronous training strategy is suggested as a solution to this problem.
This method of training can be used with other deep learning models that use a multi-
term loss function. The following actions are included in the asynchronous training mode
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Figure 4.5: U-ResNet with EDL

steps:

Figure 4.6: Asynchronous Training Mode

The network undergoes a two-round training process for each batch. In the first round,
the gradients are calculated and back propagation is performed using the EDL (Edge-
Enhancing Loss), leading to updates in the network weights. In the second round, the
gradients are computed using MSE loss, and they are propagated back to update the net-
work weights once again. As a result, every batch undergoes two rounds of training, and
the network weights are updated twice for each batch.
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The asynchronous training mode is employed, where the first training round utilizes EDL
(Edge-Enhancing Loss). This approach leverages the capability of EDL to preserve edge
information and aid the network in recovering fine details and edges. However, the influ-
ence of EDL on the network is constrained by the second training round, which empha-
sizes the pixel-level differences between the output and label images. Consequently, this
limitation prevents the amplification effect of the Laplacian operator on noise, ensuring
that noise is suppressed during the training process.

Furthermore, if the two components of the loss function are trained with different weights,
as done in traditional multi-loss training models, determining the appropriate allocation
of these weights becomes a challenge that requires conducting numerous experiments.
Finding the optimal weights becomes crucial, as their determination is typically fixed and
can potentially compromise the robustness of the model.
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Results

We will compare our result from two perspective - from Quantitative perspective and
also from Qualitative view.

5.1 Quantitative Analysis

For Quantitative analysis, we have evaluated PSNR, UICM, UISM, UIConM and UIQM
metrics. We have compared out model with other benchmark model on EUVP [6] datasets
based on these metrics and also compared the performance of vanilla U-ResNet model on
the EUVP dataset. Before diving into the value comparison, we are discussing about the
evaulation metrics first.

• PSNR: A popular metric for rating the quality of improved underwater photos is the
Peak Signal-to-Noise Ratio (PSNR). It gives a numerical evaluation of the degree
of distortion or noise present in the improved image by comparing the differences
between the original and enhanced images’ pixel values. An improved image’s
quality and fidelity are suggested by a greater PSNR value, which shows a stronger
similarity between the enhanced and original image. PSNR is frequently used as
one of the quantitative measurements to evaluate the efficacy of different algorithms
and strategies in raising the quality of underwater images. However, it is important
to note that while PSNR provides a numerical assessment, it may not capture the
perceptual quality or visual appeal of the enhanced underwater images. Therefore,
it is usually complemented with qualitative analysis and other metrics to obtain a
comprehensive evaluation.

• Underwater Image Contrast Measure (UICM): The improvement in foreground
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and background contrast in underwater photographs is evaluated by UICM. It mea-
sures the improvement in visual details as well as the decrease in haze or color
cast.

• Underwater Image Sharpness Measure (UISM): The improvement in image
sharpness or clarity is measured by UISM. It assesses how well tiny features are
preserved and how much blur is reduced as a result of underwater lighting.

• Underwater Image Content Measure (UIConM): UIConM evaluates the preser-
vation of important image content, such as the visibility of underwater objects, ma-
rine life, or underwater structures. It quantifies the improvement in image content
visibility and detail.

• Underwater Image Quality Measure (UIQM): UIQM provides an overall assess-
ment of the quality of underwater images by considering multiple factors, including
color reproduction, contrast, sharpness, and content visibility. It combines various
image attributes to generate a comprehensive quality score.

To add on these metrics, by quantifying particular elements relating to contrast, sharp-
ness, content visibility, and overall image quality, UICM, UISM, UIConM and UIQM
metrics aid in the objective evaluation of the performance of underwater image enhancing
systems. Researchers can examine the performance of various enhancement algorithms
and gain a deeper knowledge of their usefulness by combining these measurements.

Now, let’s see the table. Table 5.1 gives us a comparison between our model with the
existing architectures:

• PSNR: ”LAFFNet” has the greatest PSNR score (28.42), followed in third by our
model (25.46). With a 26.78, ”FUnIE-GAN” also performs admirably. The PSNR
ratings for the ”DCP” and ”ILBA” approaches are the lowest.

• UICM: With a UICM score of 10.606, our model tops the list, followed by ”ILBA”
(7.892) and ”FUnIE-GAN” (7.040). The score of ”DCP” has the lowest UICM.

• UISM: The two programs with the highest UISM scores are ”LAFFNet” (6.724)
and ”FUnIE-GAN” (5.606). In terms of UISM, alternative techniques range from
4.005 to 5.292. Our model falls behind on this metric but is still not the lowest-
valued model for this.

• UIConM: With the lowest UIConM score (0.258), ”LAFFNet” exhibits superior
content preservation. The UIConM values for our model beats the score of all other
models with a score of 0.262
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• UIQM: The highest value is achieved by the ”LAFFNet” model(3.092) while fol-
lowed by the ”Deep SESR”(2.638) with the second position. Our model achieves a
comparatively lower score here.

In conclusion, ”LAFFNet” routinely outperforms the competition in terms of a variety
of measures, earning excellent marks in the PSNR, UISM, and UIQM. Our model also
performs well in terms of UICM, UIConM and has a PSNR score that is quite high. The
performance of ”FUnIE-GAN” is competitive in terms of PSNR, UICM, and UISM. The
scores for ”DCP” and ”U-GAN” are generally lower across all criteria.

Method PSNR UICM UISM UIConM UIQM
DCP 17.55 6.781 4.005 0.056 1.575
ILBA 18.83 7.892 4.389 0.123 1.958
U-GAN 23.67 6.052 5.120 0.224 2.483
WaterNet 20.14 6.736 5.292 0.212 2.511
FUnIE-GAN 26.78 7.040 5.606 0.185 2.514
Deep SESR 25.25 5.975 5.211 0.260 2.638
LAFFNet 28.42 6.502 6.724 0.258 3.092
Ours 25.46 10.606 4.431 0.262 2.544

Table 5.1: Quantitative comparison on the EUVP dataset [6]. The best results are Red-
Faced and the second best ones are BlueFaced

Now the following table in Table 5.2 gives us the comparison ont the superior EUVP
dataset trained and tested on both our model and UResNet model:

Method PSNR UICM UISM UIConM UIQM
UResNet 24.87 8.54 5.896 0.203 2.707
Ours 25.45 10.606 4.431 0.262 2.544

Table 5.2: Quantitative comparison on the EUVP dataset [6] between vanilla UresNet [7]
and our Model. The best results are RedFaced.

• PSNR: Our model outperforms UResNet, which only receives a score of 24.87,
with a PSNR score of 25.45.

• UICM: Compared to UResNet’s score of 8.54, our model’s UICM score of 10.606
is noticeably higher.

• UISM: Our model receives a UISM score of 4.431, while UResNet receives a better
score of 5.896.

• UIConM: In comparison to UResNet’s value of 0.203, our model obtains a slightly
higher UIConM score of 0.262.



5.2. QUALITATIVE ANALYSIS 40

• UIQM: Our model receives a UIQM score of 2.544, but UResNet scores 2.707,
which is a little higher.

In conclusion, when compared to UResNet, our model performs better in terms of PSNR,
UIConM and UICM. In terms of UISM, UResNet performs better than our model. Our
model performs somewhat better in UIConM and UResNet performs slightly better in
UIQM, according to the values for UIConM and UIQM.

When compared to UResNet on the EUVP dataset, our model generally shows promise in
terms of enhancing image quality, notably in terms of PSNR and UICM. To reach more
thorough conclusions, additional research and comparisons on more datasets would be
helpful.

5.2 Qualitative Analysis

In order to evaluate the quality, clarity, and overall appearance of underwater photos,
numerous visual aspects must be subjectively evaluated. It requires looking at elements
including subject recognition, image visibility, color reproduction, contrast and dynamic
range, image sharpness, noise, and artifacts. To evaluate the efficacy of underwater image
enhancing techniques and algorithms, experts or observers carefully examine these ele-
ments. The analysis aids in understanding how underwater images are viewed differently
by different people and serves as a roadmap for future developments in underwater imag-
ing technologies. We should also keep these information in mind for qualitative analysis-

• Image Visibility: Analyzing the clarity of objects, amount of detail, and overall
visibility of underwater scenes under various lighting situations.

• Color Reproduction: Assessing the accuracy and richness of colors in underwater
photos, with a focus on preserving natural tones and removing any color casts or
distortions brought on by the water.

• Contrast and Dynamic Range: Analyzing the distribution of tonal values and
contrast in underwater photographs to make sure there is a fair mix of dark and
light areas and to capture a variety of features in both shadows and highlights.

• Image Sharpness: Evaluating the degree of clarity and sharpness in underwater
photos, including the retention of minute details and the avoidance of blurring or
softening brought on by water turbulence or photo editing.



5.2. QUALITATIVE ANALYSIS 41

• Noise and Artifacts: Locating and assessing any visual noise, distortions, or un-
desired abnormalities, such as graininess, chromatic aberrations, or compression
artifacts, that may be present in the underwater photos.

• Overall Aesthetics: Taking into account composition, lighting, and the ability to
capture the beauty and distinctiveness of underwater surroundings, as well as the
overall visual appeal and aesthetic aspects of underwater photos.

After achieving notable quantitative improvements in some metrics in enhancing under-
water images through our research, we will now present a set of images for qualitative
analysis.

Figure 5.1: Comparison between the raw underwater image and enhanced image by our
model



Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this study, we investigated convolutional neural networks, generative adversarial net-
works, and residual networks as potential deep learning methods for improving the quality
of underwater photographs. Residual networks have been the most cutting-edge method
among these.

To increase the resolution of underwater photos, we have nonetheless suggested a tech-
nique that blends residual networks with generative adversarial networks. Our proposed
model has proven to perform better through thorough quantitative study and comparison
with UResNet, a standard residual network.

Our model demonstrates its potential to improve the quality of underwater photos by
attaining the greatest PSNR and UICM scores. Our model’s competitive performance in
UIConM and UIQM further proves its efficacy, even though UResNet exceeds it in terms
of UISM.

We admit that the evaluation is based on the EUVP dataset, and that other varied and
large datasets should be used to train our model to increase its generalizability. This will
increase the model’s accuracy and provide it the opportunity to learn a wider variety of
underwater image features.

Overall, our suggested approach has shown its ability to considerably improve the reso-
lution of underwater photographs by fusing residual networks with generative adversarial
networks. To improve the model’s performance and confirm its efficacy in real-world
circumstances, future research should concentrate on extending the dataset utilized for
training and testing the model.

42
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6.2 Future Works

By doing more training iterations, we want to improve our current model’s performance
by boosting accuracy and streamlining the output. We also intend to investigate more
architectures than the first ResNet implementation. We anticipate improving the overall
performance of our system by training the model utilizing various architectures. Addi-
tionally, we’ll look into using different Generative Adversarial Networks (GANs) instead
of the SRGAN used in the final stages of our suggested model. This investigation of sev-
eral GANs has the potential to improve our outcomes even further. We also understand
how crucial it is to use stronger and more effective computing resources for training. In
order to speed up the training process and ultimately produce better results, we plan to
switch to a machine that is more capable. We will be able to get more specialized and
superior results because to this improvement in computational power.
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