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Abstract

Prompt damage detection is essential during natural disasters or humanitarian
crises. These evaluations provide rescue organizations with timely, accurate infor-
mation on the extent of damage across a vast area. Currently. most methods for
detecting damage rely on pre & post disaster high resolution satellite imagery from
the large-scale xBD [10] and LEVIR-CD [5] datasets, using the U-NET [31] architec-
ture that applies local attention to give more weight to local information. However,
the state-of-the-art DAHiTra [25] architecture is a new visual transformer-based
model that prioritizes global information but has significant drawbacks, such as
overfitting due to translation and rotation To address these limitations, we propose
a novel model that integrates global and local attention to overcome the complexity
of different classes. The Global-Local Attention (GLA) model combines global and
local attention, allowing for a more precise extraction of fine-grained details from
satellite imagery. These details can be used for various applications, including object
segmentation. object recognition, or land use classification.Our proposed architec-
ture achieved a 5.5% improvement in the fl-score over the previous state-of-the-art
results but had a drop in [OU by 3.9%. Our results introduced a new domain of
model architectures with a prediction accuracy and localization tradeoff. We also
proposed several strategies to mitigate the 10U loss to design models that are good
at both change detection and localization.

Keywords: Change Detection, Transformers, Global Local Attention, U-Net,
Convolutional Neural Network
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Chapter 1

Introduction

1.1 Overview

In addition to the loss of life, ruined livelihoods, and damaged property, a countryv’s
total cconomic stability is significantly impacted by natural disasters and humani-
tarian crises like war. Disasters destrov businesses” physical assets, such as buildings
and equipment. along with their human capital, making it harder for them to pro-
duce goods and services.

These detrimental impacts occasionally could be fatal to businesses, causing
them to shut down. In such dire circumstances, antomatic building seementation
and evaluation tasks are required to locate damaged buildings in a time-critical
period and estimate the extent of their damage. enabling humanitarian organizations
to save thousands of lives as well as assist local authorities in understanding the
magnitude of the damages by evaluating the degree of post-disaster damage to both

public and private propertyv.

Figure 1.1: A pair of post-disaster and pre-disaster images and their corresponding
outputs from the LEVIR-CD dataset [%] demonstrating the task of damaged building

detection from satellite images.



1.2 Task Overview

1.2.1 Change Detection

Automatic change detection 2| is a powerful tool for analyzing changes in land
cover over time using aerial or satellite imagery. These algorithms have become
increasingly accurate, allowing for more precise monitoring of land use changes in
varions contexts. Change detection is particularly usetul for applications such as
urban development, forest resource monitoring, and agricultural land nsage analysis.
In addition, the detection of damaged buildings has become an important subset of
change detection tasks due to the expansion of urban areas and the need for rapid
damage detection in the aftermath of disasters.

Detecting changes can be challenging in a specific category of land cover objects,
such as damaged building, where Field measurements and observations alone can be
expensive particularly if historical data is unavailable. However, aerial and satellite
imagery can serve as a valuable source of data from both the past and present,
allowing for the extraction ol essential information needed to monitor changes in
land cover over time. If we want to be more generic, we can say that automatic
change detection algorithms offer a powerful tool for monitoring land cover changes
in various contexts of course with applications ranging from urban development
to disaster response. As these algorithms continue to advance, they will become
important for understanding and managing our changing landscape.

The identification of significant variations across multi-temporal remote sensing
images is an essential process called change detection [2,21]. It has been made more
accurate due to the prevalence of high spatial resolution remote sensing imagery
that provides reliable information on land cover.

Through deep learning methodologies, we have seen impressive results in detect-
ing changes within distinct tvpes ol land covers such as forests, urban areas and
agricultural land - with a high degree of accuracy for even complex structures like
damaged buildings. This algorithimic approach extends bevond just remote sensing:
it can also be used in medical imaging or surveillance applications.

As access to remote-sensed data increases alongside improvements within deep
learning capabilities, we expect these algorithms’ utilization will continue expand-
ing. With the implementation of this method. there will be an enhancement in
the precision and effectiveness of monitoring land cover alterations. Such a devel-
opment will provide great ingights for varions purposes, including those related to

environmental concerns.



1.2.2 Image Classification

Image classification is an important task in computer vision that aimns to recognize
and label objects within an image [0, Tt can be performed using traditional machine
learning algorithms or deep learning techniques and has numerous applications in
various fields such as object classification, medical imaging, and surveillance. In
binary image classification, there are only two class labels, and the goal is to classily
an image into one of these two classes. Multi-class classification. on the other hand,
involves classifving an image into one of several pre-defined classes.

There are several techniques used for image classification. including traditional
machine learning algorithms such as Support Vector Machines (SVM) [12] and De-
cision Trees, as well as deep learning techniques such as Convolutional Neural Net-
works (CNN) [27]. Deep learning models have gained popularity in recent vears
due to their ability to automatically learn features from data, which has led to

state-of-the-art performance on various image classification tasks [, 12].

1.2.3 Object Detection

Object detection plavs a crucial role in computer vision, going bevond simple im-
age classification. It involves the identification and localization of objects within
an image, making it a more complex task [16]. A widely recognized and popular
framework for object detection is the You Only Look Once (YOLO) algorithm [23].
What sets YOLO apart is its utilization of a single neural network to simultaneously
predict object elass labels and bounding box coordinates for each detected object in

Al Image.

1.3 Problem Statement

Our primary challenge is to develop a network that can simultaneously perform
change detection and localization. Most existing networks are designed to performm
both tasks but have a drop in detection performance with translation and rotation
of input images [1%]. The LEVIR-CD Dataset (%], which we will be using for this
project. poses several challenges. The dataset is highly imbalanced, and the oceur-
rence of changes is much rarer compared to unchanged regions. This class imbalance
affects the performance of models trained on the dataset, as they become biased to-
wards predicting the majority class which is wnchanged regions, and struggle to

accurately detect and classify changes [20].



1.4 Research Objectives

The main objective of this research is to improve the accuracy of detecting change
in satellite images [5]. The eurrent models lack the ability to provide local attention
to image details in a small space [27]. Therefore, the research aims to design and
implement a new model architecture that can address these limitations and achieve
higher accuracy in building change detection. To address the class imbalance and
overfitting issue we talked about in the problem statement section, we will explore
varions techniques such as oversampling, undersampling, and class weighting [20].
We will also investigate the effectiveness of using different network architectures
such as ResNet [31], DenseNet [37], and EfficientNet [36].

1.5 Contributions

In our study, we addressed the limitations of existing approaches in change detection
tasks, such as difficulties in capturing smaller changes, by leveraging the power of
the attention mechanisms [25]. We proposed a new U-net-like model architecture
sitnilar to [25] using global and local attention [41] and significantly outperformed
the existing method by demonstrating a 5.5% improvement of the [l-score but a
3.9% decrease in I0U. We also explored strategies that can help us mitigate the

10U loss.

1.6 Organization of the Thesis

In Chapter 2. we go over the existing works on attention and change detection. In
Chapter 3. our proposed methodology is described in depth. Chapter 4 describes
the dataset and metries for evaluating localization and classification performance.
Numerous tests are conducted to assess the state-of-the-art approaches, and a per-
formance evaluation is given in this chapter along with strategies that discuss further
improvements to our performance. Finally, we conclude this thesis in Chapter 5

with a discussion about possible future works and closing remarks.



Chapter 2
Literature Review

In this chapter, we look through the various approaches to change detection from
U-Nets to Transformers. Then we look at the attention mechanism in transformers
and delve deeper into various transformers and change detection networks. We
complete the chapter with the network DaHiTra [27] that will be the foundation of

our proposed methodology.

2.1 Early Approaches to Change Detection

2.1.1 U-NET [31]

The U-NET architecture proposed by [41] quickly got into mainstream use in deep
learning due to the computational efficiency achieved by dropping the traditional
sliding window-based methods and exploiting an encoder-decoder-based architecture
with a bottleneck connecting the upsample and the downsample streams. It also uti-
lized the concept of skip-connections to create a bridge between the encoder-decoder
so that the low and high-level features can be learned in an end-to-end manner and
achieved a remarkable performance resulting in the rise to several variants in the
following vears [15].

[U-Net is the name of the semantic segmentation architecture. It consists of
a path that expands and contracts. The contracting path adheres to the rules
of convolurional network architecture. For downsampling, a rectified linear unit
(ReLLU) and a 2x2 max pooling operation with stride 2 are repeatedly nsed, and
then two 3x3 convolutions are performed (unpadded convolutions). We divide the
total number of feature channels by four for each downsampling step. The leature
map is upsampled before a 2x2 convolution is used. ("up-convolution™) that cuts
the number of feature channels in half, a concatenation with the correspondingly
two 3x3 convolutions, each followed by a ReLlU, and a cropped feature map from

the contracting path, at each stage of the expansive path.

[ ]
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Figure 2.1: The double branch U-net proposed in [12] is an implementation of U-Net

in damaged building assessment from satellite images

2.1.2 Birth of Transformers

The introduction of transformers |25 in computer vision with the proposal of Vi-
sion Transformers (ViT) [17] opened up a new stream of research opportunities by
rethinking images as a sequence of patches identified by their positional embeddings
and soon it was introduced in the domain of semantic segmentation [17]. Trans-
formers can naturally encode dependencies over a large receptive field, which is a
great utility when performing semantic segmentation since two very distant pixels
can affect each other. consequently affecting the overall prediction.

However, one inherent problem with transformer-based architectures was the
requirement for large volumes of data. Apart from that, these models are com-
putationally verv expensive, which limited their usability as general-purpose back-
bones until the introduction of the SWIN transformer architecture [20], which uses
a shifted window-based method to calenlate the relationship between patches of
an image efficiently. The Swin-U-NET [!] model combines the ideas of U-Net and

SWIN transformers for semantic segmentation,

2.2 Attention & Transformer Architecture

In the early attempts to tackle sequence-to-sequence problems, such as neural ma-
chine translation, researchers initially relied on using RNNs within an encoder-
decoder architecture—or so they thought. However, as new elements were added
to the sequence, these architectures struggled to retain information from the initial
elements, leading to a significant drawback when dealing with longer sequences. It
became evident that the ability of these architectures to preserve information from

the beginning was lost when confronted with extended sequences. This limitation
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tention as proposed in the Transtformer architecture

posed a substantial challenge.

Working with lengthy sequences carries a notable disadvantage. It's like each
step of the encoder’s hidden state is closely tied to a specific word in the input
sentence, often the most recent one, which carries considerable importance. Conse-
quently. when the decoder reaches its final hidden state, it fails to capture crucial
information about the sequence’s initial elements. Addressing this issue required an
innovative solution: the attention mechanism. Its introduction marked a ground-

breaking approach that made a significant impact on resolving this limitation.

Contribution

e Revolutionary architecture that parallelizes sequential input and hence, re-
duces training time.

2.2.1 Self-Attention and Multi-head Attention [35]

The self-attention mechanism really uses each input vector in three wayvs: a guery,
a kev, and a value in a basically major way. Once the weights really have been
determined, it definitely compared to the generally other vectors to mostly obtain
their pretty own output Yi (Query), the n-th output vj(Key), and to compute each
output vector (Value) in a subtle way. The following three linear transformations

must really be computed for each xi to for all intents and purposes produce this

role: Tvpically referred to as K. Q. and V. these three matrices essentially are three

=1



learnable weight layvers applied to the same encoded input, showing how once the
weights literally have been determined, it specifically is compared to the generally
other vectors to definitely obtain their fairlv own output Yi (Query), the n-th out-
put vi(Ixev), and to compute each output vector (Value), which actually is quite
significant. As a result, we can use the attention mechanism of the input vector
with itself, or a "self-attention.as each of these three matrices originates from the

sawe input in a subtle way.

2.2.2 Attention is all you need [35]

Qutput
Probabilities
Linear
- !
| Add & Norm |4-.
Feed
Forward
s 1 ™) | Add & Norm }:
(> Add 8 Norm ) Multi-Head
Feed Attention
Forward 7 ) Nx
—
Nx Add & Norm
~| Add & Norm | Y ——
Multi-Head Multi-Head
Attention Attention
At A ¥
\ — 7 e = .
Positional . & Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.3: The transformer architecture proposed in [3%]

Transformers, originally developed for natural language processing (NLP). have
emerged as a groundbreaking technology in the field of computer science. They
have revolutionized varions applications, inclnding machine translation, sentiment

analysis, question answering, and more. The concept of transformers in computer

ol



seience can be traced back to the seminal work of Vaswani et al., who introduced the
"Transformer” model in 2017 [35]. This model marked a significant departure from
traditional recurrent neural network (RNN) architectures and showcased the power
of sell-attention mechanisms in capturing dependencies in sequences, They leverage
the power of attention mechanisms to process sequential data. Unlike traditional
sequential models that process data sequentially, transformers enable parallel com-
putation, making them highly efficient. The core idea behind it i1s self-attention,
where each word or element in a sequence attends to all other words to compute a
contextual representation. This attention mechanism allows transformers to capture
long-range dependencies, making them particularly effective for NLI tasks.

The architecture of transformers consists of an encoder-decoder framework Fig-
ure 2.3. The encoder processes the input sequence, while the decoder generates
the output sequence. Both the encoder and decoder comprise multiple lavers of
self-attention and feed-forward nearal networks. Each layver emplovs residual con-
nections and laver normalization to facilitate eflective training and mitigate the
vanishing gradient problem. Transformers also incorporate positional encodings
to preserve the order of words in a sequence. Transformers have made remark-
able contributions to various areas of computer science, first in Natural Language
Processing they have revolutionized tasks such as machine translation, text sum-
marization, sentiment analysis, named entity recognition, and question answering.
Models like BERT (Bidirectional Encoder Representations from Transformers) have
achieved state-of-the-art performance on numerous benchmark datasets [35]. In Im-
age Processing, we have Vision Transformers (ViTs) that have shown promising
results in image classification, object detection, and semantic segmentation. Thev
achieve this by dividing images into patches and applving transformer-based archi-
tectures to process the patches [17]. Transformers have ushered in a new era in
computer science, particularly in the field of natural language processing. Their
ability to capture long-range dependencies. process sequential data elliciently, and
achieve state-ol-the-art performance on various tasks has transformed the way we

approach complex computational problems.

2.2.3 An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale [17]

Although the transformer architecture [35] became the de facto standard for general
natural language processing tasks, its applications in computer vision still need to.
for the most part, be improved in a major way. Convolutional networks [27] in vision
particularly are either combined with attention or some of their component portions
really are replaced while preserving the very general structure of the network in a

major way. This reliance on CNNs for the most part is unnecessary, and good im-

9
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Figure 2.4: Visnalization of visual attention by attention-based models like ViT [17]

age classification results may generally be achieved using pure transformers applied
direct]lv to sequences of picture patches, for all intent and purposes further showing
how although the Transtormer architecture for the most part has generally become
the de facto standard.

When pre-trained on enormous volumes of data and applied to several small or
medium-sized image recognition benchmarks (ImageNet [11], CIFAR-100 [20], etc.),
vision transformer (Vit) produces excellent results while utilizing substantially gen-
erally fewer CPU resources during training, demonstrating how all intents and pur-
poses convolutional networks in vision definitely are either combined with attention
or some of their component portions generally are replaced while preserving the
pretty general structure of the network. which mostly is quite significant.

In the field of natural language processing, the Transformer architecture has be-
come the de facto standard. However, in the field of computer vision, its application
still needs improvement. Convolutional networks are commonly used in vision tasks,
cither combined with attention or with some of their components replaced while pre-
serving the network’s structure, This reliance on CNNs may not be necessary as

excellent image classification results can be achieved using pure translorimers applied

10
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Figure 2.5: Architecture of the ViT model proposed in [17]

directly to sequences of image patches. This emphasizes the importance of advanc-
ing the application of the Transformer architecture in computer vision tasks, The
Vision Transformer (ViT) ollers a promising alternative to Convolutional Neural
Networks (CNNs) for image classification. ViT has demonstrated impressive per-
formance by leveraging large-scale pre-training on extensive datasets. It has shown
exceptional results in small to medium-sized image recognition benchmarks like Im-
ageNet and CIFAR-100. ViT utilizes fewer CPU resources during training. ViT's
attention-based approach to image classification allows it to focus on specific regions
of an image, similar to how humans perceive images. As research continues, ViT
may become a standard approach in computer vision tasks, further improving the

field’s performance.

2.2.4 ETC: Encoding Long and Structured Inputs in Trans-

formers [1]

Global-local attention is an innovative technique emploved in visual transformers
and convolutional neural networks (CNNs) for image processing. Its purpose is to
capture long-range connections within images while maintaining computational efli-
ciency. In visual transformers, global-local attention is divided into four components:
global-to-global (g2g), global-to-local (g21), local-to-global (12g), and local-to-local
(121). The 121 component is limited to a fixed radins to reduce computational and
memory demands for lengthy inputs. The global input represents the entire image,
whereas the local input consists of image patches. Unrestricted attention is ap-

plied to the tokens in the global input, enabling the transfer of information between

11



long-input tokens through global input tokens. Flexible attention matrices are also
utilized to process structured inputs. The outcome of global-local attention is a set

of attended features that captare both global and local details,
Global-Local Attention (ETC):
full g2g
attention '/m

Global Input

full g2/ and
12g attention

Long Input

12/ attention ' ik

Figure 2.6: Abstraction of the attention mechanism proposed in [1]

In CNNs, global-local attention is used to selectively attend to global and lo-
cal contexts to enhance the representation of feature maps. The global and local
features are obtained by applving global average pooling and convolutional kernels,
respectivelv.  Attention is then applied to the concatenated features to selectively
attend to global and local information. The global-local attention mechanism has
shown promising results in several image classilication tasks, outperforming standard
attention mechanisms.

Global-local attention has been successful in transformer-based models for both
natural language processing (NLP) and image processing. In NLP. global-local
attention has shown significant improvements in performance, especially in tasks
that involve long sequences. For instance, global-local attention was applied to
machine reading comprehension (MRC) tasks in a study by Ke et al. (2020), and it
outperformed several state-of-the-art models. In another study by [10], global-local
attention was used to improve the performance of BERT on several NLP tasks. In
image processing tasks, global-local attenfion has also shown promising results. For
example, in a study by [17], global-local attention was applied to image classification
tasks, and it outperformed several state-of-the-art models. The study showed that
global-local attention is particularly useful in handling large images that require

]Ull}.!" sequences.



2.2.5 All the attention you need: Global-local, spatial-channel

attention for image retrieval [31]

Wy

fusion

har x haw

: & 5 rlobal attention
channel atiention spatial attention L "

Figure 2.7: Global Local Attention module proposed in [31]

In the GLAM paper, [31] A global-local spatial-channel module is used as an
attachment at the end of a backbone network. This module captures both global
and local contextual information from a feature tensor F, which has dimensions c
x h % w, where ¢ represents the munber of channels. and h x w represents the
spatial resolution of the features. this module consists of two main components:
local attention and global attention. The local attention component focuses on
collecting context from the image by applving pooling operations. It produces a ¢
% 1 x 1 local channel attention map (A') and a 1 x h x w local spatial attention
map (Als). These attention maps highlight important channel-wise and spatial
information within the feature tensor. On the other hand, the global attention
component enables interaction between channels and spatial locations. It generates
a ¢ x ¢ global channel attention map (Age) and a hw x hw global spatial attention
map (Ags). These attention maps capture relationships and dependencies between
different channels and spatial locations across the entire feature tensor. The outputs
of the local and global attention streams are combined eventually with the original
feature tensor using a learned fusion mechanism. This fusion process results in a
global-local attention feature map (Fgl), which incorporates enhanced contextual
information from both local and global attention.

To conclude we can sav that the global-local attention feature map is spatially
pooled to obtain a global image description. The pooling operation aggregates the
information from the entire feature map into a condensed representation, which
can be used for tasks such as image classification, object detection, or semantic

segmentation.
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Figure 2.8: Visualization of the global-local attention module in [ 1]

2.3 Damaged Building Detection and Assessment

2.3.1 Remote Sensing Image Change Detection with Trans-

formers [7]

They have introduced a novel approach to change detection that incorporates the
power of convolution and transformer. [t uses a semantic tokenizer to group pixels
into high-level concepts and a transformer encoder to model the context between
these concepts. The resulting feature maps are fed to a prediction head to produce
pixel-level predictions. As we know that Change detection is an essential task in
many areas, including remote sensing, surveillance, and environmental monitoring
where traditional methods for change detection rely on the comparison of two images
taken at different times but these methods often fail to detect subtle changes or
changes cansed by complex phenomena such as shadows, illmmination changes, or
seasonal variations, In recent vears, deep learning-based approaches have shown
promise in overcoming these limitations.

The BIT-based model for change detection is an innovative approach that brings
together the advantages of convolutions and transformers, In this model, a semantic

tokenizer is emploved to group pixels into meaningful high-level concepts, while a
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Figure 2.9: The architecture of BiT as proposed in [7]

transformer encoder is used to understand the relationships and context between
these concepts. Numerous strengths come with adopting this approach over others.
Firstly, it has the ability to process both spatial and temporal information simulta-
neonsly: a erucial aspect when dealing with change detection tasks. Secondly, com-
plex phenomena like shadows and illumination variations do not pose any issues for
this method’s effectiveness in producing accurate resnlts, Lastly, unlike conventional
techniques that tend to miss minor adjustments, this strategy does not overlook even
the smallest alterations while detecting change situations. The BIT-based model is
its clever utilization of semantic tokens to group pixels into meaningful high-level
concepts . this technique has proven to be successful in various computer vision
tasks, like generating image captions and recognizing objects. By grouping pixels
into these higher-level concepts, the BIT-based model can effectively understand the
overall context of the image and establish connections between important semantic
elements. This capability is crucial for accurate change detection.

The BIT-based model utilizes transformers to understand the relationships be-
tween high-level concepts. By applyving transformers to change detection, the BIT-
based model can capture the overall semantic connections in the token-based space-
time, resulting in context-rich representations for each temporal instance. It's -
portant to acknowledge that the BIT-based model does have certain limitations.
Firstly, it requires a good amount of training data to achieve its optimal perfor-
mance, Secondly, the training process can be computationally demanding due to
the utilization of transformers. Lastly, in complex scenes with munerous changes
or subtle variations that are difficult to detect. the model’s performance may be
affected.

Considering these factors is crucial when using the BIT-based model for change

detection because by being aware of both its strengths and limitations, researchers



and practitioners can make well-informed decisions regarding its suitability for dif-
ferent scenarios.

In comparison to traditional approaches for change detection, the BIT-based
model exhibits promise in overcoming some of the limitations associated with con-
ventional methods for instance, traditional methods often struggle to detect subtle
changes or changes caused by complex factors like shadows then lighting variations
or seasonal fluctuations. in contrast, the BIT-based model excels at handling these
phenomena and can successfully detect subtle changes that may be overlooked by
traditional methods. However, it’s important to note that the BIT-based model is
still in its early stages. and further research is needed to evaluate its performance
in real-world applications. The model uses a semantic tokenizer to group pixels
into high-level concepts and a transformer encoder to model the context between
these concepts. The BIT-based model has several strengths, including the ability
to capture both spatial and temporal information, handle complex phenomena, and
detect subtle changes., However, the model also has some limitations, including the
recuirement for a large amount of training data and computational expense. Despite
these limitations, the BIT-based model shows promise in overcoming some ol the

limitations of traditional methods.

2.3.2 BDANet: Multiscale Convolutional Neural Network
with Cross-directional Attention for Building Damage

Assessment from Satellite Images [33]

In the paper, the authors posit that the BDANet system emplovs a U-Net archi-
tecture to extract building positions at the start of the process. They explain that
the network weights from the initial step of analyzing building damage are shared
in a refined manner during the second stage of the process. This second stage,
which assesses building damage, uses a two-branch multiscale U-Net as its back-
bone, indicating that the network weights from the first stage are crucially shared
in this stage. To investigate the relationships between pre & post disaster visuals,
the authors sugeest the creation of a eross-directional attention module. The Cut-
Mix information augmentation method is also utilized to deal with the problem of
adverse categories. In order to explore the correlations between pre & post-disaster
elements, the researchers introduce a cross-directional attention (CDA) module. Ad-
ditionally, they demonstrate the effectiveness of using CutMix data angmentation
to tackle challenging classes by recalibrating options based on channel and spatial
dimensions. This approach draws inspiration from the squeeze and excitation (SE)
block. The authors clarify that the CDA module integrates pre & post disaster

features” channel and geographic data, offering an alternative method to examine

16



(a) Stage 1

building segmentaticn
l [ . | '
Py
— [ — | | et — [ — —_—
)
i deony-3 deonit-£ Fa
I
_:‘ I
ﬁ 1n : - [
g g 4 T C— C—
|
k- ' [ : doonvz a3
o BB : mdtd e - LI semaia ey 18
| jmmatd Upre Upre
l—r | ool | | L
0.25x : | share weights CDA CDA CDA
1 I
5 ] | | 4 u,,.,f‘ e, | |
0.25 " : 4

=~

!
I:*b
!

i

post-
disaster

ﬂl“'i j

' =

| §
| sonvii-§

0.5 | | - Aeamed1 diaihd
| convi-T L oy deanvii-3
d I | comezzz doonvid4
1 ' {b) Stage 2
A4 MFF J' damage assessment
€ Concatenale MFF  Muli-scale feature fusion CDA Cress-directional Attention

Figure 2.10: Architecture of the BDANet model [33] that nses cross-directional
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the relationships between them.

The paper presents the BDANet system that utilizes a U-Net architecture to
extract building positions at the start of the process. The network weights from the
initial step of analyzing building damage are shared in a refined manner during the
second stage, which uses a two-branch multiscale U-Net as its backbone. The authors
also suggest a cross-directional attention module to investigate the relationships
between pre & post-disaster visuals, and CutMix information augmentation is used
to address the problem of adverse categories. A cross-directional attention (CDA)
module is also proposed to research the connections between pre & post disaster
aspects, and pre-and post-disaster features’ channel and geographic data are cross-
agegregated and integrated into the network. Contrary to common belief, the planned
CDA module shows that CutMix data augmentation can be used to address the issue

of challenging classes. Figure three provides more specific details about the system.

2.3.3 SDAFormer [13]

SDAFormer [13] is a unique network architecture that combines a Siamese U-Net-
like network with a standard stratified electrical device to create a two-stage damage

assessment method. In the first stage, the pre-disaster image is fed info a segmen-
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Figure 2.11: Detailed view of CDA

tation network to produce localization. Then, in the second stage. a two-branch
damage classification network is created using weights shared from the primary
stage. This two-stage approach allows for accurate and efficient damage assessment
in remote sensing images. One key feature of SDAFormer is its use of a spatial fusion
module that creates pixel-level correlation and inserts spatial information in Swin
transformer blocks to strengthen feature representation. This module enhances the
network’s ability to capture spatial relationships between different image regions,
improving its overall performance.

Although SDAFormer offers several advantages, it does come with certain limita-
tions. One limitation is the substantial amount of training data required to achieve
optimal performance, which can be challenging to obtain in remote sensing appli-
cations we have the use of a Siamese network structure in the model can result in
increased computational complexity and longer training times, however, researchers
have made strides in addressing these limitations by emploving various techniques
during the training and testing of SDAFormer. These techniques include transfer
learning, data augmentation, and multi-task learning,in Transfer learning allows the
model to benefit from pre-training on large datasets, such as ImageNet, and fine-
tuning on the specific remote sensing data while in data augmentation technigues
we have as an example image rotation and flipping, are nsed to artificially expand
the training dataset, thereby improving the model’s ability to generalize, multi-task
learning enables simultaneous training of segmentation and classification networks
enhancing overall performance and reducing the need for additional training data
with the utilizing of these techniques researchers aim to mitigate the limitations of
SDAFormer and enhance its effectiveness in remote sensing applications.

To enhance the network’s performance, transfer learning has been applied by pre-
training the model on extensive datasets like ImageNet and fine-tuning it specifically
for remote sensing data. Data augmentation methods, such as rotating and flipping

images, have been emploved to artificially expand the training dataset and improve
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Figure 2.12: the SDAFormer Architecture [13]. Stage 1: Building Detection, Stage

2: Damage Assessment.

the network’s ability to generalize. Additionally, multi-task learning has been nsed
to simultancously train the segmentation and classification networks, resulting in
improved overall performance and reducing the need for additional training data.
SDAFormer presents a promising network architecture for remote sensing dain-
age assessment. Its distinctive combination of a siamese U-Net-like network, strat-
ified electrical device, and spatial fusion module holds great potential. However,
further research is required to optimize the network’s performance and enhance its

scalability for large-scale applications.

2.3.4 PPM-SSNet [3]

The Pyramid Pooling Module-Based Semi-Siamese Network (PPM-SSNet) [] is a
highly accurate model that incorporates residual blocks with enlarged convolution
and squeeze-and-excitation blocks to achieve precise injury analysis results. The use
of a semi-Siamese network with synchronous learned attention mechanisms allows
for a fully antomated approach to satellite imagery input and injury analvsis output.
The incorporation of dilated convolution and squeeze-and-excitation blocks into the
network allows for highly accurate featnre representation, resulting in F1 scores
of 0.90, 0.41, 0.65, and 0.70 for the building categories of intact, minor-damaged,
major-damaged, and demolished buildings.

PPM-5S5Net [3] demonstrates the importance of carefully incorporating good

residual information to achieve accuracy in injury analvsis. The use of the Pyramid
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Figure 2.13: Overview of PPM-SSNet architecture [3]

Pooling Module in the network also aids in multi-scale feature representation, which
is important in remote sensing applications. PPM-S5SNet is a highly effective method
for damage assessment and classification in satellite imagery, and the incorporation
of residual blocks and attention mechanisms is a promising area of research in the

field of computer vision and remote sensing.

Contributions

e It's a novel model called the Pyramid Pooling Module-Based Semi-Siamese
Network (PPM-5SNet) [1] for injury analysis in satellite imagery. This model
incorporates residnal blocks with enlarged convolution and squeeze-and-excitation

blocks [22] to achieve precise injury analysis results.

e PPM-55Net utilizes a semi-Siamese network architecture, which employs syn-
chronous learned attention mechanisms. This approach allows for a fully au-

tomated method for satellite imagery input and injury analysis output.

¢ Dilated Convolution and Squeeze-and-Excitation Blocks |22]: The incorpora-
tion of dilated convolution and squeeze-and-excitation blocks into PPN-SSNet
enables highly accurate feature representation. This contributes to achieving
high F1 scores for different building categories, indicating effective damage

assessment and classification.

Limitations

e The research is based on optical images, which may have difficulty accurately

assessing flood damage that is not visible on the surface under an intact roof.
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To overcome this limitation, the anthors suggest considering the nse of svn-
thetic aperture radar (SAR) images, which can help detect bottom or sidewall

damage,

¢ The proposed approach may not effectively measure wall ruptures caused by
earthquakes. To address this limitation, the anthors propose the use of higher-
resolution drone images, which ean provide more detailed information for de-

tecting this tvpe of damage.

2.3.5 DamFormer [(]

Figure 2.14: Overview of DamFormer architecture [0)]

When using DamFormer, the input consists of pairs of multi-temporal images.
These image pairings are initially encoded using a Siamese transtormer encoder.
This encoding process aims to extract deep features that are non-local and repre-
sentative. This step is crucial in capturing important information from the images.
A nmmlti-temporal fusion module is emploved to combine the encoded data for addi-
tional tasks. This module enhances the integration of data from different temporal
instances, allowing for more comprehensive analyvsis and utilization in subsequent
tasks. A lightweight dual-tasks decoder is utilized to aggregate multi-level features
and make the final predictions. This decoder effectively combines the encoded in-

formation from various levels to produce accurate and meaningful results,

Contributions

e The paper introduces the use of a Siamese transformer encoder to encode mul-
titemporal image pairings. This encoder is designed to extract deep features
that are non-local and representative, which is a significant contribution.

.-"-1



e The paper presents a multitemporal fusion module that combines data from
the encoded image pairings for further tasks. This module is designed to
integrate and utilize the multitemporal information effectively, contributing

to the overall performance of the model.

¢ The paper proposes a lightweight dual-tasks decoder that aggregates multi-
level features for final prediction. This decoder plavs a crucial role in syn-
thesizing the encoded featares and generating predictions, demonstrating an

important contribution to the model’s overall performance.

¢ The contributions mentioned above, including the Siamese transformer en-
coder, multitemporal fusion module. and lightweight dual-tasks decoder. col-
lectively contribute to enhancing the performance of the DamFormer model.
The model is designed to handle multitemporal image pairings cffectively and

generate accurate predictions.

Limitations

¢ The proposed methodology exhibits a variance in accuracy across the four
classes of no damage, major damage, minor damage, and destroved. While the
model demonstrates high accuracy in detecting no damage and major damage
categories, there is a notable drop in accuracy when it comes to identifying
minor damage comparing to xView2 Baseline [16] This discrepancy suggests
that the methodology may face challenges in accurately distingnishing and

classifving cases of minor damage in comparison to the other classes.
2.3.6 DAHiTra [27]
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In the initial step of BDANet, a U-Net reallv is emploved to extract building
locations mostlv. The second stage of assessing building damage shares the network
weights from the first stage in a subtle way, Pre-disaster and post-disaster photos
are mostly sent into the network separately in the fairly second stage, which for all
intents and purposes, uses a two-branch multiscale U-Net as its backbone, demon-
strating how pre-disaster and post-disaster photos are sent into the network in the
second stage, which uses a two-branch multiscale U-Net as its backbone. It is sug-
gested to kind of investigate the relationships between pre & post-disaster visuals
using a cross-directional attention module. demonstrating that it is suggested to for
the most part investigate the relationships between pre & post-disaster visuals using
a reallv cross-directional attention module in a subtle way.

Additionally, CutMix data augmentation actually is used to address the issue of
challenging classes. demonstrating that the second stage of assessing bnilding dam-
age shares the network weights from the first stage. U-NET-like for developing the
segmentation task utilizing pre-disaster images on the xBD dataset and providing
post-disaster images, for all intents and purposes contrary to popular belief. The
initial encoding features are then provided using this information as a foundation,
demonstrating that U-NET-like for developing the segmentation task utilizing pre-
disaster images on the xBD dataset and providing post-disaster images. or so they
thought. Thev encrypt these features using transformers, then for the most part
take the difference in the feature domain and send it to the transformer decoders to
remap the features in the spatial domain, which is significant. To kind of prevent
any artifacts caused by up-sampling, they hierarchically literally generate the ontput
mask during the decoding step by up-sampling and concatenating the features from
lower to higher dimension layvers, followed by convolutional layers, demonstrating
how U-NET-like for developing the segmentation task utilizing pre-disaster-images-
on the xBD dataset and providing post-disaster images. This results in the damage
output mask developing, enhancing its classilication and segmentation task perfor-
mance, so it is mostly suggested to investigate the relationships between pre & post
disaster visuals using a pretty cross-directional attention module, demonstrating
that it is suggested to investigate the relationships between pre & post disaster vi-
suals using a for all intents and purposes cross-directional attention module in a

particular major way.

Contributions

e the two-stage approach for building damage assessment, the incorporation of
a cross-directional attention module, the utilization of CutMix data anugmen-
tation, and the hierarchical output mask generation technique are all contri-

butions that collectively enhance the accuracy, robustness, and performance
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of the model in assessing building damage.

Limitations

e DahiTra exhibits a slight decrease in Fl-score and 10U metrics when trained
on images with translations up to lm or angular deviations up to 0.1 degrees.
This decrease can be attributed to the model’s focus on learning global features
rather than local context, as it utilizes transformers. However, larger distor-
tions beyvond 2 meters of translation or 1 degree of angular deviation lead to
a more significant decrement in F1 score (0.03) and TOU metrics (0.05). This
highlights the model’s sensitivity to greater distortions and emphasizes the

need for improved robustness to handle such variations.



Chapter 3
Proposed Methodology

In this chapter, we have an in-depth look at our methodology that can be seen as a
successor to [25]. We shall delve into the architecture of our U-net-like Neural net-
work with transformer-based [15] difference blocks and global-local attention module
(GLAM) [31]. We shall dissect each part of the network in detail along with the
rationale behind the design choices. We skip data pre-processing in this chapter as
our dataset LEVIR-CD [3] can be directly used withont any sort of pre-processing.
However, some image augmentation can be used as a form of pre-processing to

improve the model’s performance which will be discussed in the subsequent chapter.

3.1 Proposed Architecture

Unlike standard transformers that apply only multi-head attention, our approach
combines global and local attention [31] to extract more detailed features from satel-
lite images. Transformers’ attention is equivalent to global attention and the stan-
dard architectures lack any form of local attention which might be lacking as [27]
showed that a slight translation and rotation effects resulted in a steady drop in
10U and a sharp drop in Fl-score. The combination of global and local attention
enables change detection in satellite imagery with greater precision.

The architecture appends a GLAM from [25] after each downsampling block of
U-Net architecture which takes pre and post-change images as the input following
citekaur2022dahitra. The output from the downsampling block is simply passed to
the GLAM module and returns an output of the same dimensions. The output of
the GLAM is later passed onto the concatenation or difference block and the next
downsampling block. The ontput from concatenation and difference blocks is passed
onto the npsampling blocks. The top-most upsampling block produces the output
mask.

The architecture of our network with all the blocks is illnstrated in figure-3.1.

We have four kinds of blocks - downsampling. upsampling, difference, and global-
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Figure 3.1: Our proposed architecture

local attention. The U-net comprises the upsampling and downsampling blocks
which we shall explore in detail in the next section. The difference block is basically
a transformer that tries to capture the difference between two input embeddings
from the downsampling blocks. Removing the difference blocks gives ns the base
U-net architecture which has been the fundamental architecture for semantic seg-
mentation. However, appending difference blocks allows the network to capture the
difference in embeddings that ultimately leads to better change-detection results.
Our modification is the GLAM which would simply add the benefit of attention
during convolutional downsampling. As we are tryving the reduce the input fea-
ture space, the attention can help the model understand where to focus during the

reduction.

3.2 U-NET-Like Architecture

The program learns to identify different parts of buildings and understand what they
look like when thev are not damaged. But we also want the program to nunderstand
what the buildings look like after the disaster, so we also give it some pictures taken
after the disaster, which are called post-disaster images.

The U-NET program has two main parts: the encoder and the decoder. The
encoder is like the first half of the program that learns to recognize different parts
of the buildings by making the picture smaller and simpler. The decoder is like the

second half that takes the simplified information and reconstructs the final output.
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3.2.1 Downsampling Block

To make the program understand the difference between the pre-disaster and post-
disaster images, we split the encoder part into two copies. One copy looks at the
pre-disaster images, and the other copyv looks at the post-disaster images. Each copy

learns to recognize the differences in the buildings based on the images it sees.
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Figure 3.2: The Downsampling Block

3.2.2 Difference Block

Then, we take the information from each level of the encoder and pass it through a
special block called the difference block. This block compares the information from
the pre-disaster and post-disaster images and gives us the joint difference features,

which are basically the important details that show us the changes in the buildings.

3.2.3 Upsampling Block

After that, we use the decoder part to reconstruct the final output. The difference
features are passed to different levels of the decoder, and the decoder uses this
information to create a mask that shows which parts of the buildings are damaged.
The mask is built layer by laver, starting from lower-resolution details and gradually

adding more details to create the final output.
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Figure 3.3: The Upsampling Block



3.3 Global Local Attention Block

The overview of the architecture of global-local attention has been visualized in

figure-2.7.

3.3.1 Global Spatial Attention
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Figure 3.4: Global spatial attention

The ordinary convolution operation is limited in its ability to capture global
contextual information as it only considers a local neighborhood at a time. To
overcome this limitation, a technique called non-local filtering or self-attention is
applied in the spatial dimensions.

In this approach, we start with a feature tensor I, which has dimensions ¢ xh
* w, representing channels, height, and width respectively. To perform non-local
filtering, we emplov three 1x1 convolutions to reduce the munber of channels to c0
and flatten the spatial dimensions to hw, This gives us query Qs, key Ks, and value
Vs tensors, where each column represents a feature vector corresponding to a specific
spatial location. To capture the pairwise similarities between these feature vectors,
we perform a matrix multiplication between Ks and QQs. The resulting matrix is
then passed through a softmax function over the locations, producing a global spatial
attention map with dimensions hw x hw. This attention map represents the weights
assigned to different spatial locations, indicating the importance of each location in
relation to others.

By incorporating non-local filtering or self-attention, the model is able to capture
lomg-range dependencies and contextunal information bevond the local neighborhood,
cnabling it to have a more comprehensive mnderstanding of the input data. This

approach is depicted in Figure 3.4
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3.3.2 Global Channel Attention

Figure 3.5: Global channel attention

Global channel attention capture interactions between channels on a global scale.
This mechanism is inspired by the non-local neural network and incorporates the
idea of 1D convolution from ECANet.,

In Figure3.5, we start with a leature tensor F, which has dimensions ¢ x h x w,
representing channels, height, and width respectively. To implement the global chan-
nel attention mechanism, we first apply Global Average Pooling (GAP) to squeeze
the spatial dimensions, resulting in a tensor of size 1 x ¢. We then use a 1D con-
volution operation with a kernel size of k and apply a sigmoid function to obtain
query Qc and key Ke tensors, both having dimensions of 1 x c.

The value tensor Ve is obtained by simply reshaping F' to hw x ¢, without using
GAP. Next, we compute the outer product of Ke and Qe and apply softmax over
the channels, resulting in a ¢ x ¢ global channel attention map represented as Age.

To obtain the final global channel attention feature map Ge, we mmltiply this
attention map with Ve, The matrix product VeAge has then reshaped back to ¢ x
h ¢ w, restoring the original spatial dimensions,

Compared to other approaches such as GSoP? and A2-Net, which involve matrix
multiplication of hw x ¢ matrices, our method (eq 3.1) is more efficient as it only
requires an outer product of 1 x ¢ vectors. This enables us to capture global channel

interactions effectively while maintaining computational efficiency.

A9 = softmax(K! 7) (3.1)
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3.3.3 Local Spatial Attention

Our attention map aims to capture local spatial information at multiple scales. In
Figure 3.6, we start with a feature tensor F of size ¢ x h x w obtained from our
backbone network, Our goal 15 to obtain a new tensor FO with reduced channels

(c0) and extract local spatial contextual information.

e

Figure 3.6: Local Spatial attention

To achieve this, we use a 1 x 1 convolution to reduce the mumber of channels
in F to c0. We then apply convolutional filters of kernel sizes 33, 5x5, and 7TxT7,
implemented efficiently through 3x3 dilated convolutions with dilation parameters
of 1, 2, and 3 respectively. These convolutions capture contextual information at
different scales then .we perform a 1 x 1 convolution on F0 to obtain another set of
features.

The resulting feature maps, including the ones obtained by the dilated convolu-
tions and the 1 x 1 convolution on F0, are concatenated into a tensor of size 4¢0) x h
»x w. This tensor represents the combination of local spatial contextual information
at various scales.

To generate the local spatial attention map we apply a 1 x 1 convolution that
reduces the channel dimension to 1. This attention map highlights the importance
of different spatial locations in relation to the local context.

Next, we use the local channel attention map Al to weigh the original feature
tensor F in the channel dimension. This is achieved by element-wise multiplication
between AL and weight, denoted as F.

Fl=F-AL+F. (3.2)

L& [

This step enhances channel-specific information based on its relevance.
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Finally, we utilize the local spatial attention map A! to weigh the local attention
feature map, This is accomplished by element-wise multiplication between AL and
F

F!'=F AL+ F. (3.3)

The resulting tensor represents the local attention feature map with dimensions c
X h x w.

[t’s worth noting that our approach incorporates residual connections in both
equations (1) and (2), allowing the model to retain important information. This
differs from the convolutional block attention module (CBAM), which includes a
single residual connection across both steps. Furthermore, our attention maps are

derived directly from the original tensor F. rather than sequentially computing them.

3.3.4 Local Channel Attention

To capture local channel information, we have introduced a technique called Local
Channel Attention, inspired by ECA-Net [39].

Figure 3.7: Local channel attention

In Figure 3.7, we start with a feature tensor F, which has dimensions ¢ x h x
w, representing channels, height, and width respectively. To capture local channel
attention, we first reduce the tensor to a ¢ x 1 x 1 tensor by applving global
average pooling (GAP). This pooling operation aggregates information across spatial
dimensions, resulting in a tensor with a single value per channel.

Next, we employ a 1D convolution operation with a kernel size of k along the
channel dimension. The kernel size, controlled by the parameter k, determines the
extent of cross-channel interaction. This convolutional operation allows the model to
analyze relationships between different channels within a local context. The output
ol the convolutional operation is then passed through a sigmoid function, resulting

in the ¢ x 1x1 local channel attention map represented as AL
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By applving Local Channel Attention. our model can effectively capture and em-
phasize channel-specific information within a local region of the input tensor. This
mechanism helps in enhancing the representation and utilization of local channel

details in subsequent stages of the network.

3.4 Loss Function

Following [27], a weighted average of focal loss and dice loss is taken. The given loss
functions are for damage assessment and change detection. As we are not dealing
with the problem of damage assessment which is analogous to multi-class change
detection, we will simply use the loss Iunction that deals with change detection i.e.

2 classes analogous to binary classification. We define the loss function as:
-"C — ‘cfm'-ul'[.l'l | (.Er}fl"r'[.ll {3—1]

where ¢ € {0,1} and «a is the weight assigned to dice loss which is a tuneable

Lyperparameter.
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Chapter 4
Result Analysis and Discussion

We begin the chapter by exploring the dataset. how we prepare for the experiments,
and the metrics used for evaluation. We perform a comparative analysis between
state-of-the-art methodoloeies followed by a section on ablation studies of our net-
work. The work is followed by the results of hvperparameter tuning and criticism of
the output generated by our model. We end the chapter by discussing the limitations

of our approach and suggest ideas to improve them.

4.1 Dataset

The LEVIR-CD [] dataset is used in our paper which is a popular remote sensing
dataset used for object detection and instance segmentation tasks. It stands for
"Large-scale Environmental Vision for Instance Recognition - Change Detection,”
and it focuses on change detection in high-resolution satellite images. It provides
pairs of pre- and post-change satellite images, along with pixel-level annotations
for the changes that ocenrred between the two images, including various types of
changes, such as urban expansion. deforestation, and construction, which are widely
used for developing and evaluating algorithms and models for change detection in
satellite imagery, It has been used in numerous research papers and competitions in
the field of remote sensing and computer vision. It has contributed to advancements
in change detection technigues and has facilitated the development of algorithins
that can antomatically detect and classify changes in satellite images.

LEVIR-CD comprises 637 image patch pairs extracted from Google Earth, char-
acterized by very high-resolution (VHR) with a pixel size of 0.5m. Each image patch
measures 1024 x 1024 pixels. These image pairs exhibit significant land-use changes
over a time span ranging from 5 to 14 vears, primarily focusing on the growth of con-
struction activities. The dataset encompasses diverse tyvpes of buildings, including
villa residences, tall apartments, small garages, and large warchouses.

The primary emphasis of the LEVIR-CD dataset revolves around changes related
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Figure 4.1: Sample 256x256 images from the LevirCD dataset [~]

to buildings. These changes include building growth, which encompasses transitions
from soil, grass, or hardened ground, as well as structures under construction, to
newly developed regions. Additionally, the dataset accounts for building decline. Re-
mote sensing image interpretation experts meticulonsly annotated the bi-temporal
images using binary labels, assigning a value of 1 to denote change and 0 to indicate
unchanged regions. To ensure the accuracy of annotations, each sample underwent
annotation by one expert annotator, followed by verification by another expert,
resulting in high-quality annotations. The fully annotated LEVIR-CD dataset com-

prises 31,333 individual instances of changed buildings.

4.2 Performance Evaluation

4.2.1 Experimental Setup

The model was trained and evaluated following the GitHub repository of [' ] which
is the official implementation of [25]. To run onr experiments, we used a single Nvidia
RTX3090 GPU which took from 1-1.5 hours to run different implementations of the
model for 200 epochs. The PyvTorch programming framework has been used which
has been a standard to train and evaluate deep learning models. To implement the
global local attention module, we followed [25] which is an unofficial implementation
of [41]. The channel, spatial, global, local, and global-local attention modules used
in [25] has been tested and verified by running in various test suites.

For our dataset [5], we followed the official link [5] to download the dataset.
The train, evaluation, and test splits are 7:1:2 i.e. 70% data has been used for
training, 10% for evaluation, and 20% for testing. Most standard methodologies use
this train-val-test split. 20% test split is necessary for model testing and shouldn’t
be reduced as it is a standard to evaluate real-life performance. However. other
implementations can change the train-val split to improve the accuracy of the test
split,
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It should be noted that the dataset is relatively small and contains 637 images
only. For such a relatively small dataset, training data is precions and hence, the
train-val ratio has been maximized to 7:1. As the only dynamic hyperparameter
in our model is the learning rate, we can try to take a 10:1 train-val by reducing
the validation split even further. Another approach is to completely remove the
validation split and train the model by using the hyperparameters that worked well
in the best model on a 7:1 train-val split. For benchmarking purposes, the user
should stick with the 7:1:2 split defined in the official link [7] of our dataset [3].

4.2.2 Evaluation Metric

It has been previously established that our dataset is a bit skewed ie. there is
more region where no change has oceurred compared to the changed region. By
calculating the total number of changed pixels. we found that only 0.1% of the
pixels change in our dataset — implying one out of every 1000 pixels is a changed
pixel. For this skewness, using accuracy to evaluate the performance of our model
will not be a good metric. Instead, we use the 1 score to evaluate the change
detection capabilities of onr model. For localizing the changed region 10U is nsed

which is a standard metric.

10U
loU — I-Ilt{‘l":i{-‘{‘tif)ll Area (11)
Union Area
F1 Score
Pl 2 52 pn_wijsiun x recall (42)
precision + recall
Precision
- True Positives _
TR = True Positives + False Positives (4.8)
Recall

True Positives
Recall = - — - T (4.4)
I'ue Positives + False Negatives
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Figure 4.2: Visualization of 10U for 3 cases

4.2.3 Comparative Analysis

The performance evaluation of four different models has been tested by calculating
the accuracy, fl score, and 10U, The accuracy has been left for completeness but
the user can disregard these values as overall accuracy doesn’t provide any valuable
information about the model’'s performance in such scenarios. The reader can also
notice that the overall model accuracy is extremely high for all the implemented
models. The 10U and F1-Scores are means of the Class-0 and Class-1 10U and

[F1-scores respectively.

Table 4.1: Comparison of Accuracy, IOU and F1-Score for various Damage Building
Detection Models

Model Name  Accuracy | IOU Fl-Score Comments
Siam-U-NET [11] 0.978 0.301 (.827 Our Experimental Results
BiT [7] 0.981 0.822  0.831 Ohwr Experimental Results
Dahitra [25] - 0.812 | (.839 Claimed Resules
Dahitra (default) 0.971 0.701 | 0.794 Our Experimental Resulis
Dahitra (tuned) 0.982 (.828 | (1.838 After hyperparameter tuning
Ours 0.951 0.809  0.884 Our Experimental Results

From the table, we can infer that our model has outperformed the Fl-score of
other models by a significant margin (5.5%). On the other hand, we can also notice
a significant drop in IOU (3.9%). Hence. our model was able to generalize better
in predicting the class of the damage i.e. detecting the damage. The global-local
allocation allowed the model to focus more on the relevant parts of the image while
squeezing the dimensions of the image in the convolution laver. Due to this, the
model can understand better which part of the sets of pixels in the post-change
image differs compared to the pre-change image. A significant change will result in
the model predicting frue in those areas.

However, the base model of [27] was also able to detect changes at a high degree.
But, we found that the effects of rotation and translation resulted in a significant
drop in the f1 score and thus, implving that the model struggles with smaller changes.
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Comparison of various Damage Building Detection Models
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Figure 4.3: Comparison of varions Damage Building Detection Models

This can mean the model fails to deteet smaller changes and a form of local atten-
tion should help the model detect them. Transformers are used in the difference
block which uses multi-head self~attention that is applied globally on the image.
However, no form of local information is captured. Our GLAM module can capture
both global and local details when the information is extracted from the images
in the convolution layer. As a result, we found a significant increase in prediction
performance or the {1 score when evaluating the model.

The decrease in 10U is an unwanted outcome of our model which also brings
us to the issue of IOU and fl-score tradeoff for our model. Due to attention while
downsampling, the model tends to focus more on changed parts which also results
in a decreased intersecting area compared to the ground truth given in the dataset.
A decrease in intersection means a decrease in 10U, Later in this chapter, we hy-

pothesize a few wayvs to reduce this nnwanted effect of attention.

4.3 Ablation Studies

4.3.1 Attention Mechanism

We test the performance of our model by first changing the attention mechanism.

Most of the attention mechanism used in the paper follows [11]. An extension of the
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Table 4.2: Change of TOU and Accuracy with varying attention mechanism

Attention Mechanism Accuracy 10U F1-Score
| No Attention 0082 | 0.828 | 0.838
| Local Spatial Attention 098  0.801 | 0.835
| Local Channel Attention - 0.972 - (0.796 | 0.823
Global Spatial Attention 0.979 0.819 0.842
Global Channel Attention 0.975 0.806 0.835
Local Attention 0983 0814 0863
Global Attention 0.978 ().818 (0.839
Parameter Free Spatial Attention 0.981 0.819 0.847
| Parameter Free Channel Attention . 0.981 L 0.823 | 0.839
| Global Context Attention - 0.952 - (0.813 | 0.833
Global-Local Attention ©0.981  0.809  0.884

implementation of the [25] has been found where other forms of attention are also
present. Keeping every other parameter of onr model fixed, we change the attention
mechanism in order to evaluate the role of attention in 10U and fl-score.

From the table-4.2, we found that varyving the attention significantly changes
accuracy, IOU, and fl-score but the global-local attention outperforms every other
form of attention by a significant margin in f[l-score. However, the highest TOU
is achieved by the base model without any form of attention. Furthermore, we
can spatial attention being outperformed by channel attention in everv metric and
local attention outperforming global attention in every metric. Two other forms of
attention - parameter-free and global context have also been evaluated, both severely
underperforming compared to global-local attention.

The rationale behind spatial attention outperforming channel attention is sim-
plv due to the fact that an changes the 2D space and can be treated as a spatial
set of values instead of a sequence. However, combining spatial and channel atten-
tion improved the scores significantly — possibly due to skip-connection inside the
local attention module which allowed the module to capture both sequential and
spatial relationships. Similarly, the better performance of local attention implied
that our hypothesis of [27] lacking local attention is correct, and using local atten-
tion will improve the fl-score. However, using only local attention was worse than
its combination with global attention as now both details have been captured and
skip-connections reduced the possibility of a single form of attention overtaking the
module.

Finally, let’s look at the two other forms of attention that underperformed.

Firstly, parameter-free attentions are simpler forms of attention that take no pa-
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Figure 4.4: 10U vs Fl-score for varying attention mechanism

rameter and hence, have no hyvperparameters to tune. This implies siimplicity at the
cost of a slight drop in performance. We achieved a far better accuracy setting a
fixed kernel size and the number of reduced channels. The global-context is a form
of global attention similar to the transformer’s multi-head self-attention and seem-
ingly, it doesn’t change the performance by a significant margin as the difference

block does most of its job.

4.3.2 Number of Layers

Increasing the number of GLANM attention layvers from 1 to 2 after each downsam-
pling block severely decreases the performance of our model by a 3.4% drop in 10U
and a 2.7% drop in the fl-score. Hence, we didn’t attempt to add more GLAM
lavers. A possible remedy to this drop in performance is using a skip connection
with the GLAM modules. However, this has not been experimented.

Another possible variation is not using the same number of layers for each block
Le. for the first downsampling block, we use a higher number ol attention blocks

but as we go down, we decrease the number of attention blocks. This might improve
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performance along if implemented along with skip connections but the methodology
has not yet been tested.

Finally, no form ol attention has been added to the upsampling blocks. The
difference blocks are also lelt unmodified, Some experimentation can be carried out
to add a form ol local attention to the different blocks as transformers capture more
of the global context. Upsampling blocks should not theoretically need a form of
attention as information squeezed from the previous blocks is just upsampled back
and shown in the original dimensions. The nunber of upsampling and downsampling
blocks can also be modified but such architectural changes have been tackled in

change detection works [, %, 27].

4.4 Hyperparameter Tuning

4.4.1 Batch-Size

Batch size is the number of images from the dataset taken train and update the
model. It can be thought of as a small step and with many such small steps we can
take a big step which is analogous to training the model for a single epoch. The
code repository that we followed [20] had a batch size set to 2 by default. However,
we found the batch size of 4 to give the best results across various implementations
of the models. We also changed the batch size to 8 and 16 but none of them showed
promising results. Traditionally, a multiple of 2 has been taken as batch size. We

]

will also mention that the batch size has not been specified in [275].

4.4.2 Number of Attention Heads

The number of attention heads varied across the transformer blocks. But in the
repository [30], the number of attention heads was quite random. For instance, in
the encoder block the attention head munber followed a high-low-high pattern like
& heads, 4 heads, and 16 heads. Instead, we found that more attention heads in the
first blocks and the munber of heads decreasing by half in the subsequent blocks
produced significantly better results. For instance - in our first block the number of
attention heads is set to 32, and for the next 3 subsequent blocks, they will be 16,8,
and 4 respectively. But it is better to avoid the block size of 1 as it means a single

attention head onlv.

4.4.3 Kernel Size

For our global local attention module we perform convolution and thus, results in

tuning another parameter which is the size of the kernel used to convolve, In some



of the layers, 1x1 convolution is specified i.e. there the kernel should not be changed
in those particular lavers, However, for the layers where the kernel size has not been
mentioned, a variable & has been specilied. In our global local attention module,
the kernel size is taken as a parameter for the lavers, We used a kernel size of 5 in
our experiments but this parameter can be tuned. Discussion on the effect of kernel
size 18 explained later in this chapter as to how it can help mitigate the problem of

a decrease in 101,

4.4.4 Number of Epochs

The number of epochs has been set to 200 and it has been seen that the best
accuracy is found from 120 to 190 epochs. Experimental results showed that a
better accuracy was not reached at higher epoch numbers up to 500. Again, since
our model dynamically tunes the learning rate, the relationship with increasing the
number of epochs to improve the performance of the model isn’t as straightforward
as other architectures. However, we can hvpothesize for larger models ie. if the
number of parameters is increased by some multiple, we might need to significantly

inerease the munber of epochs.

4.4.5 Learning rate, o

The learning rate is dynamically tuned as implemented in [25]. We do not change the
learning rate and tryv to manually tune it. We can also attempt to train the model
at the specific learning rate on the evalnation dataset after the initial fraining in
order to improve the training performance of the model by using the data used to
evaluate the model and tune its hyvperparameters. In the implementation, the best
model weights are set as the checkpoints, and from the best weight the model tries
to update the weight to find a better weight value using a specific learning rate that
depends on the deviation from the best result. For instance, if our model had a high
deviation after using a certain weight value with a high learning rate, the model
will load its previous best weights and use a lower learning rate. In this way, the

learning rate can dynamically find a better weight value.

4.5 Qualitative Analysis

In this section, we try to understand the quality of the output produced by our
model by trving to visualize and come up with valid reasoning behind the outcomes

of the model.
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Figure 4.5: The attention map visualized from the LEVIR-CD dataset [¥]

[n figure 4.5, the four rows of pre-change and post-change image pairs are given.
In the first two columns, Image-1 and Image-2 are given which are pre-change and
post-change images respectively. There are two points in the two images the subse-
quent 4 images are the attention maps where each pair corresponds to the attention
of point-1 and point-2 respectively. Finally, the last column represents the ground
truth. As we can see, using only attention, soft-weights are given based on the input
and the attention maps closely resemble the ground truth.

The attention used in our module will try to put weights or certain values corre-
sponding to every pixel of the image. Attention is also referred to as soft weight and
is hence, input-dependent. Visunalizing the attention will give us a deeper under-
standing of the mechanism of attention itself and how it provides nseful information
to our model in making better predictions of changed pixels. In figure 4.5, the red
regions correspond to higher attention while the blue regions correspond to lower
attention. When the point is a background pixel, then that point will have a high
value with the other background pixels and a low value with the building pixels.
Similarly, if the point taken is on a building then we will have a high value with
other building pixels and a low value with background pixels.

From the discussion, we can infer that attention differentiates the building and
background pixels and is essentially performing image segmentation. The informa-
tion from image segmentation will be useful in both change detection and change
localization. However, a decrease in IOU is not a direct result of attention and will

be discussed in the next subsection.



4.5.2 Decrease of I0U

Figure 4.6: Difference between ground truth and predicted images after applying

the attention map

Comparing the predictions of our model with the ground truth, we observe that
the predicting region decreases due to applving attention. This is logical as attention
focnses on relevant regions and will hence create some sharper boundaries across the
related regions. In figure - 4.6, the changed region is seen in the second image but
has sharp edges at the top right part of the structure. The red box highlights the
part of the image that has the shark region. However, there is a little bit ol the
background at the top-right corner of the image as well. As attention tries to make
a spread-out focus on that portion - especially, due to combining both global and
local attention, our model performs significantly worse in predicting the changed
region in that portion.

In the rightmost image. we can observe our model’s prediction being more skep-
tical i.e. the model wants to predict a lower region of change and this is due to
the attention output mixing the building and background portion at sharp edges.
As our attention uses convolution kernels, the effect can be analogous to getting
the mask of a blurred version of the image. However, the kev point here is that the
intersecting region will end up decreasing. Hence, the IOU score will also decrease.

The reader might have noticed another possible scenario where the IOU can be
decreased i.e.if the region of union increases. We verified that is not the case for our
model and it rarely predicts unchanged regions as changed. This information might
be useful to mitigate the problem and later in this chapter. we will discuss some
possible scenarios to mitigate the decrease of [OU and also possibilities to improve
it. With the improvement of localization architectures every vear. the fl-score can
be thought of as a more important metric than the IOU and thus, making a decrease
in IOU, not a significant Haw. That is also the reason why using the scoring metric
of a weighted average of the fl1 score and IOU results in a 2.68% increase over the

other forms of implementation. The scoring metric used in [27] is:

score = 0.3 TOU 4+ 0.7 = f1 (4.5)
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4.6 Discussion

4.6.1 Data Augmentation

Data augmentation has become a popular pre-processing approach in computer vi-
sion problems, particularly in deep learning-based remote sensing image processing.
Its purpose is to artificially expand the dataset size by applyving various modifica-
tions to the images, such as rotation, Hipping. and cropping, in order to enhance
the model’s generalization performance. The scarcity of tagged remote sensing data
makes it challenging and time-consuming to annotate images manually. Therefore,
data augmentation is essential to facilitate the training of deep neural networks,
which can lead to better model accuracy and robustness.

Several data angmentation strategies have been developed in recent years and
have proven to be effective in improving the performance of deep learning models.
Some of these strategies include Cutout, which randomly masks out square sections
of the input to force the network to focus on various image regions and increase the
capacity of convolutional neural networks for feature representation |15, Another
strategv is Mixup, which randomly mixes pairs of images and their corresponding
labels to create new images, thereby increasing the diversity of the training set [11].
Similarly, CutMix combines portions of two images to generate new training samples
[43].

Data augmentation has been shown to significantly improve the accuracy and
robustness of deep learning models in remote sensing image processing tasks. In a
study that utilized data angmentation techniques for crop classification using satel-
lite imagery, the performance of the model was greatly improved, achieving an overall
accuracy of 90.7% compared to 78.6% without data augmentation [11]. In another
study that used data angmentation for the classification of coastal land cover types,
the model’s accuracy was improved from 84.7% to 88.6% [5]. These results demon-
strate the eflectiveness of data augmentation in improving the performance ol deep
learning models for remote sensing image processing tasks. even though there are
some drawbacks and limitations to data angmentation. One issue is that some data
angmentation strategies may introduce noise or artifacts that can negatively impact
model performance. data angmentation can increase the computational cost and
training time of the model, which can be a limitation in resource-constrained envi-
ronments. Therefore, it is important to carefully select and evaluate data angmen-
tation strategies to ensure that thev do not negatively impact model performance

while still providing significant improvements in accuracy and robustness.
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Figure 4.7: The cutmix framework used in BDANet [31]

4.6.2 Skip Connections for GLAM

The use of skip connections popularized in [21] is used to prevent the overfitting of
deep neural networks. In our case, the decrease if [OU is similar to the overfitting
problem as the 10U was significantly higher without using the GLAM module, and
training the GLAM module decreases the 10U, To prevent this we can use skip
connections that connect the downsampling block to the subsequent block and thus,
bypassing the GLAM module. This will result in the model being able to use the
information before and after training the GLAM module and adjust the weights
accordingly. We can also observe skip connections in other parts of the U-net and
also inside the GLAM module itself.

To implement skips connections, we simply add the output from the previous
layer i.e. the downsampling block with the output after the GLAM layer. The
output is passed to the next block which is the difference block in our case, and
is hence an input to the transformer. If our model knows that part of the GLAM
module will help in increasing the fl-score, it will use the skip connections to update
those weights of the GLAM module accordingly. However, the model will not forget
information from the laver before the GLAM and can hence, retain the increase of
[OU as well. Theoretically, this should give us the 10U close to base DalliTra |25
and the [l-score close to our own implementation. However, experimental results

haven't proved this vet.

4.6.3 Effect of Kernel Size

It has been mentioned before that the kernel size is a tuneable hyperparameter. We

are hyvpothesizing that a larger value of the kernel size will result in blurred-out or
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defocused attention. This meght improve our model’s 10U and can be used as a
way to mitigate the decrease of the IOU problem that we faced earlier. However,
increasing the kernel size to higher can also result in unwanted results,

[f we look at the architecture of the GLANM module, the kernel is used to trans-
form the input to a reduced channel space. The number of reduced channel spaces is
also a hyperparameter that can be tuned by we set it to a default value of two-thirds
of the munber of input channels. This is a simple vet efficient heuristic. Now, if the
kernel size is larger, more padding is done to keep the convolution output size equal.
This will result in a loss of information and the effect will be the same as the model
being trained on a blurred image. Hence, the kernel size should be reasonably small
and not go bevond a single-digit value. We suggest experimenting with sizes 3,5.7.
and 9. Due to lack of time, experiments with varving kernel sizes have not been

carried.

4.6.4 Robustness of the Model

As seen with, DaHiTra [27]. small changes to the image by simply translating the
image by a pixel value of 1 or 2, or by rotating the image by a degree of 1 or 2
will result in a sharp decrease of the fl-score. Again, combining 10U and f1 scores
should result in worse performance. The effect of image translation and rotation
has not been tested in our own models and hence, we cannot verify our model’s
robustness. Theoretically, our model should be better than the base DaHiTra as
global-local attention should prevent overfitting problems such as these.

[t should also be noted that there exists no framework to test the robustness of
these models. As we assume that our model will always use high-resolution images
and will have minimal noise, we are not particularly concerned with the noise of
the image. However, a model’s robustness does not alwavs indicate the presence of
noise but can also include the effects of translation and rotation. Other operations
can be performed by shifting the building while keeping the background the same,
flipping the image, appending multiple images, removing objects, ete.. These should
be included in a robustness framework that can be designed to test the performance

of different models used to detect building changes.



Chapter 5

Conclusions & Future Work

5.1 Future Work

The global local attention module didn’t necessarily improve upon [25] in every
aspect. In the futnre, we plan to implement the methods to mitigate the decrease
in I0U; some of them being - data angmentation. nsing GLAM skip connections,
incorporating ensemble learning. ete. Data aungmentation can not only improve the
10U but also the [l-score as our dataset [3] is relatively small. Finally, we plan to
extend our work to damage building assessment and also plan to perform question
answering on change detection. We are hoping to see future architectures on change
detection being trained on larger datasets [19] and then being fine-tuned on smaller

datasets like LEVIR-CD [3].

5.2 Conclusions

Natural or humanitarian catastrophes put vulnerable communities at risk, possibly
compromising their access to clean water, food, and shelter. Humanitarian organi-
zations are essential in saving and helping those in need, which calls for a high level
of readiness and special procedures. Humanitarian organizations use building dam-
age assessment to pinpoint places that want special attention. It strongly influences
how decisions about how to allocate resources in these urgent situations are made.

This paper presents a global-local attention network that is end-to-end for as-
sessing damaged buildings nsing satellite imagery. Both global and local information
produces an efficient collaborative representation. The cross-entropy loss is used.
Overall, our new approach can explore complementary global and local features,
gives a thorough description ol satellite images ol post-damaged buildings, and sig-

nificantly enhances the discriminatoryv ability of collaborative feature extraction.
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