)t'..;“»)\N
)“J-) r"‘\'

Department of Computer Science and Engineering
Islamic University of Technology (IUT)

Seamless Service Migration in
Cloud Edge Networks with QUIC

By
Zibran Zarif Amio - 180041209
Fida Waseque Choudhury - 180041215
Mohammed Mohaimen - 180041217

Supervised by

Dr. Muhammad Mahbub Alam

Professor
Computer Science and Engineering
Islamic University of Technology

Co-supervised by
S.M. Sabit Bananee

Lecturer
Computer Science and Engineering
Islamic University of Technology

Declaration of Authorship

This is to certify that the rescarch presented in this thesis is the result of analysis
completed by Zibran Zarif Amio, Fida Waseque Choudhury and Mohammed
Mohaimen under the supervision of Muhammad Mahbub Alam, Professor, De-
partment of Computer Science and Engineering (CSE), Islamic University of Technol-
ogy (IUT), Dhaka, Bangladesh. Additionally, it is stated that neither this thesis nor
any portion of this thesis has ever been presented anywhere for a degree or diploma. A
list of references is provided, and the text includes acknowledgements for information
that was taken from published and unpublished works by others.

Authors:
Zibran Zarif Amio
Student ID - 180041209

5

Fida Waseque Choudhury
Student ID - 180041215

Lo hanwmad

Mohammed Mohaimen
Student ID - 180041217

Dr. Muhammad Mahbub Alam
Professor

Computer Science and Engineering
Islamic University of Technology

G /ﬁﬂwﬁ"

S.M. Sabit Banance

Lecturer

Computer Science and Engineering
Islamic University of Technology

https://v3.camscanner.com/user/download

Acknowledgement

We would like to convey our sincere thankfulness to Almighty Allah for His favors,
which have allowed us to complete this research. We would want to take this moment
to recognise and thank all of the people who have helped us along the way and whose
constant support, encouragement, and direction helped us produce this thesis.

We express our humble gratitude to our supervisor Muhammad Mahbub Alam,
Professor, Department of Computer Science and Engineering, Islamic University of
Technology (IUT). His supervision, guidance, depth of expertise, and unwavering sup-
port has been invaluable to us.

We are obliged to S. M. Sabit Bananee, Lecturer, Department of Computer Sci-
ence, Islamic University of Technology (IUT). This research work would not see the
light of success without his oversight, strategic ideas, and firm action. He has been a
constant source of enthusiasm and encouragement which has allowed us to turn this
endeavor into a success story.

11

Abstract

Cloud computing is hoped to replace traditional computing paradigms in the near future,
as the Internet becomes a more integral part of our lives, more and more computing
resources are being hosted in the cloud. One of the common techniques used by cloud
service providers is to migrate cloud-based applications from one server to another for
a variety of reasons. This thesis aims to add on the possible strategies of container
migration in the cloud using QUIC in an innovative way. The idea is to use a dual-path
extension of QUIC to ensure that the user’s Quality of Experience is not hampered by
the migration of the application hosted in the cloud server. This approach is coined as
Dual-path in our thesis.

Cloud services are provided via containers that are processes running inside of the
servers. Due to a number of conditions such as load balancing, resource balancing,
hardware failure or maintenance etc. the container has to be migrated from one server
to another. Traditional live migration techniques like Pre-Copy and Post-Copy con-
sists of three rudimentary phases: iterative push phase, pulling of faulted pages and
stop-and-copy (control transfer). During the control transfer phase the cloud service is
unavailable and suspended until the container state is fully replicated to another tar-
get server. This introduces a downtime, hampering the end user’s quality of experience.
Furthermore, pulling faulted pages involves performance degradation which is not desir-
able. To mitigate the limitations identified in the traditional live migration techniques,
we formulate the dual-path migration scheme.

Dual-path migration is an endeavor to redefine live migration techniques where an
end user can simultaneously be connected to two servers at any given time. In this
approach, once the migration is triggered the end user is dually connected to both the
servers capable of requesting and receiving service from any of them. Initially, service
is provided to the end user from the source server (traditional single path). Once the
migration is triggered the container in the source server does not get suspended like
the traditional schemes. Rather it will keep providing service to the end user and the
transfer of control will be executed in the background. During this control transfer the
end user can request data from any of the two servers. Since the end user is concurrently
connected to both servers, the server having the requested data can respond. Once
the background migration is completed it will simply terminate connection with the
initial server and switch to the target server (again single path). The key attainment
in this approach is its negligible downtime and performance upgrade. It also solves
synchronization issues between the servers. In this work, we compare and contrast
between traditional live migration techniques and our proposed dual-path migration by
mathematically analysing post-copy migration using QUIC and dual-path migration, we
show that under certain circumstances the dualpath migration scheme performs better
than post-copy migration scheme.

v

Table

[Declaration of Authorship]

[Acknowledgement)|

[Abstract]

[List of Figures|
[List_of Tables

[Chapter 1 Introduction|
L1 __Overviewl.
(1.2 Server Migration and QUIC]
(1.3 Challenges i server migration|
[1.4 Solution by Integrating QUIC]
THENe T Mo oo

[Chapter 2 Literature Review|
[2.1 Background|
[2.1.1 Overview of QUIC]
[2.1.2 New Features of QUIC]
[2.1.3 Betore QUIC]
[2.1.4 Comparison between QUIC and TCP|
[2.1.5 Overview of HI'TP 1, 1.1, 2 and 3|.
2.1.6 Overview of TLS 1.2 and 1.3l
[2.1.7 Overview ot TL5 1.3 Integrated into QUIC]
[2.1.8 Comparison between TCP-TLS and QUIC-TLS| .
[2.1.9 Multipath QUIC]
[2.1.10 Edge Computing

B [C - % [Madd

[Chapter 3 Proposed Method|
[3.1 Dual Path Server Migration with QUIC|.
[3.2 Implementation of Live Migration Phases with Docker| .

[3.2.1 Required Tools]
[3.2.2 Container Migration Environment|
[3.2.3 Environment Setup|
[3.2.4 Observation on Stop-and-Copy Phase|

A%

of Contents

ii

iii

[3.2.5 Observation on Push phase] 40

3.2.6 Collected Datal 42
................................. 42

[3.2.8 Proxygen| 42

[3.3 Mathematical Analysis| oo 42
(3.3.1 Model Definitionlo oo 42

[3.3.2 Calculating the probability that the requested data is found at |

the new serverl. 43

[3.3.3 Calculating the expected client response time conditioned upon |

timel e e e e 43

.34 DualPathl 44

[3.3.5 Postcopy|]. 44

[3.3.6 Inter-scheme Comparison|. 45

[3.3.7 Findings| 46
[Chapter 4 Conclusion and Future Works| 47
(Bibliography| 50

vi

List of Figures

2.1 A comparison of various HI'I'P versions and QUIC| 5
2.2 TCP 4 TL5 1.3 vs QUIC for first-time handshake 7
2.3 TCP 4 TLS5 1.3 vs QUIC for next-time handshakel 7
2.4 QUIC Network Stackl, 8
[2.5 Round-robin scheduling with 3 streams in QUIC|. 9
[2.6 Packaging ot QUIC frames into UDP Packets[. 10
2.7 Some Frames in QUIC| 11
2.8 QUIC stack vs TCP Stackl 13
[2.9 Handshake comparison of TLS 1.2 ans TLS 1.3 15
2.10 - 1- andshake|o 17
2.11 - 0- andshake| 00000 18
[2.12 Multipath Connections of a smartphone| 21
[2.13 Edge computing three level architecturel. 22
[2.14 Virtual Machine vs Container] 23
[2.15 The main 1dea behind migrationl 24
[2.16 Push phasel 26
[2.17 Stop-and-copy phase| 26
[2.18 Pull phasel 26
[2.19 Pre-copy migration| oL 27
[2.20 Post-copy migration| oL 28
[2.21 Dual-Path Migration|, 28
[3.1 Post-Copy Single Server-side Migration in QUIC 30
[3.2 Step-by-step Post-Copy Single Server-side Migration in QUIC, 31
[3.3 Problem of Single Path Server Migration| 32
[3.4 'T'he main 1dea behind multipath migration scheme] 33
[3.5 Proposed Multi-path Server Migration| 33
[3.6 Step-by-step Proposed Dual-path Server Migration| 34
[3.7 Container migration environment with two servers|. 36
B.8 Comparison between Fgyar and Fopostcopy| -+« + « + « o 0 0o e 45
.9 Comparison between Ey,q and E,psicop, With new parameters. 46

Vil

List of Tables

(1.1 Ideas borrowed into QUIC from protocols|. 2
2.1 TCPvs QUIC|. 13
2 TIST12vsTLST3l. 16
2.3 TLS 1.3 with TCP vs QUIC, 20
[3.1 Collected data for pushing data using rsyncf 42
[3.2 List of parameters considered in the model| 43
[3.3 Table showing CR1's in various scenarios| 44

viil

Chapter 1

Introduction

1.1 Overview

Many technologies come and go, many ideas evolve and change over time. However, not
all new things survive, some of them despite their ingenuity and beauty are not adopted
on a wide scale, whereas other technologies quickly become famous, outshining all other
contemporary rivals. This is true not only in computer science but also in many other
fields too. Here are some of our thoughts (largely adopted from a talk given by Herb
Sutter the ISO C++ Chair) on what makes a new successor technology gain widespread
acceptance and adoption.

1. Utility

All human inventions have flaws and holes which can be improved, all technologies
have limitations and commonly known issues which demand resolution. So, any
new replacement, if it aims to succeed, must not only provide the benefits of its
predecessor technology but it must also add new features so that the overall benefit
and power of the new technology outstrips all existing solutions. It must also aim
to solve (as many as possible of) the old problems associated with the current
technology so that deficiency of the old are supplanted by the new solution.

2. Availability
In order to be massively deployed across the globe, the new solution must be
able to adapt and not only shine in the previous domains where the old solution
reigned supreme by Allah’s will, but it must also be able to traverse new territory
and domains in order to be widely adopted. The new solution must not be only
applicable to a small subset of where the old solution was used, but rather it must
be universal and general to all applicable fields.

3. Adaptability
It must be remembered that the new solution is not the first solution in the world
(well at least most of the time , it isn’t), in order to replace the old solution, the new
solution must be easily integratable into the existing infrastructure without any
major changes. If the new solution requires restructuring of the existing prevalent
system then that solution is not viable and cannot be deployed at mass scale due to
the sudden paradigm shift it demands. The new solution must be able to co-exist
with the existing solution and also must allow gradual incremental deployment.
It is preferable that even partial application of the new solution yields benefits
even though the rest of the system is running on the old solution. Moreover, the
amount of effort required to implement the new solution should be minimal and

1

preferable proportional to the benefit it yields. Hence, people of all capacities and
calibre can benefit by using the new solution according to their needs to improve
and capacity to change.

4. Upgradability

The new solution is definitely not perfect (as any other human invention), hence
must be open to modifications and extensions. There will be flaws and deficiencies
in the new solution and also in the future circumstances are definitely going to be
different as to what they are today and hence will require modification if the new
solution wishes to survive in the long run. So, the new solution should keep the
future in mind in its design plan and be flexible and agile enough to withstand
the required updates smoothly by Allah’s grace.

So, in this thesis we would like to use QUIC to implement server migration and we will
show how QUIC encapsulates these features so we are hopeful that God Willing, our
solution will be practically beneficial in real scenarios.

1.2 Server Migration and QUIC

QUIC represents the best effort by network engineers in the field of designing protocols
above the network layer over the years. It aggregates many features of several previous
protocols e.g. TCP, DTLS, RTP, SCTP and tries to take the best from each. An
important feature about QUIC is that it is implemented in user-space hence is very
easy to customise to add new extensions. The following table shows the ideas borrowed
into QUIC from these protocols [1].

Table 1.1: Ideas borrowed into QUIC from protocols [1]

Feature Protocol
Streams SCTP
Apphcatlon Data RTP

Unit

Running over UDP DTLS, RTP
Multihoming SCTP
Frames SCTP
Security TLS, DTLS

These features give a high score to QUIC on the utility requirement and it is also
easily adoptable as it runs in user-space, meaning there is no need to upgrade OS to
benefit from QUIC. This also means that QUIC is easy to upgrade so extensions to the
protocol can be deployed easily simply through pushing software updates to deployed
machines around the world.

On the other hand, server migration is the act of migrating a running server program
from one machine to another machine. This is required for a number of reasons such as

[2:

e Mobile User: If the user is mobile e.g. on a car, then it might be in the best
interest of the user that the server he is connected to migrates to a closer location
in order to reduce latency.

e Administrative reasons : It might be the case that a certain machine is to be
replaced or requires maintenance, in which case programs running on that machine
needs to be migrated.

e Fault tolerance: Due to certain network failures a certain machine might be in a
position where it has a single point of failure, in such cases the programs on that
machine will have to be transferred to another machine which does not have a
single point of failure.

e Load balancing: A certain machine may have too many programs running on it,
so in order to conserve energy and reduce the load on the machine, some programs
might have to be migrated to another machine.

1.3 Challenges in server migration

There are two types of server migration, cold (in which the program is suspended) and
live (in which the program is running). Among the techniques of live migration three
strategies are used, pre-copy, post-copy and hybrid. All three of them have advantages
and disadvantages focusing on three parameters, namely total migration time, server
downtime and performance during migration. In this thesis we work on post-copy strat-
egy and contrast it with dual-path strategy as both are very similar in nature. Another
challenge is that during migration, the client needs to establish a new connection with
the new server by doing a new handshake. This adds extra time to the migration process
and can be avoided with QUIC.

1.4 Solution by Integrating QUIC

QUIC has a feature known as connection migration which allows two peers which are in
a session to change their IP address without breaking the connection. This is achieved
as QUIC uses connection IDs to identify the connection instead of a pair of IP addresses
and sockets. However, the QUIC specification [3], only specifies the client migration but
not the server migration. Research is underway on implementing server migration with

QUIC.

1.5 Contribution of the thesis

The main work presented in this thesis is to propose a new method of migration which
leverages on the idea that the client will be simultaneously connected to both the old and
new servers while the migration is ongoing (dual-path strategy). This idea is inspired by
the multi-path extension of QUIC [4] in which the client can make parallel connections
to the same server if the server holds multiple IP addresses to increase performance.
We then mathematically compare dual-path strategy with the traditional post-copy
strategy and prove that under certain circumstances dual-path outperforms post-copy.

1.6 Structure of the thesis

Introduction: Gives a brief overview of the subject matter along with the design points
considered when choosing the solution.

Literature Review: Discusses the background material upon which this thesis is based
and provides a detailed account of the related information already published in various
journals.

Proposed Method: Compares and contrasts between the existing method and the pro-
posed method after the improvements of the new method has been discussed. Also,
a mathematical model is developed which analyses the two methods using probability
theory.

Conclusion and Future Works: Wraps up the discussion and provides insights into the
further investigation that is to be carried out to validate the thesis findings in real life.

Chapter 2

Literature Review

2.1 Background

Although QUIC was initially developed by Google (by Allah’s permission), it has been
standardised by IETF (Internet Engineering Task Force)[3], associated with QUIC is
the new HTTP3 protocol which is the mapping of HTTP2 over QUIC.

HTTP semantics

Header compression Server push Header compression
(HPACK) P (QPACK)

HTTP/2 HTTP/3

Server push

Prioritization

Stream multiplexing

Authentication Key negotiation

TLS

Session resumption / ®-RTT

Encryption/decryption

Congestion TP gejiapiiity

control

Connection oriented

Port numbers

Prioritization

Stream multiplexing

Authentication Key negotiation

TLS

Session resumption / @-RTT

Encryption/decryption

Connection migration

Congestion (Y| JTC Rretiavitity

control

Connection oriented

UDP

Port humbers

IPv4 / IPv6

Figure 2.1: A comparison of various HTTP versions and QUIC (Source: Robin Marx
(Reproduced by permission)

2.1.1 Overview of QUIC

Is QUIC an acronym?: Although, a quick internet search might reveal that QUIC
stands for Quick UDP Internet Connections, I would not definitely assert it as an
acronym as other sources clearly state that QUIC is a name by itself and is not an
acronym. 5]

2.1.2 New Features of QUIC
The new features introduced by QUIC are:

1. Connection ID
Unlike TCP which uses a combination of port-number and IP address to uniquely
identify hosts, QUIC uses a combination of two numbers picked by client and server
in order to identify each other. This has the advantage of enabling Connection
Migration.

2. Connection Migration
During a connection a host’s underlying IP address may change due to multi-
homing, being behind a NAT, moving from one network to another etc. In such
scenarios the TCP connection is broken and a new connection needs to be estab-
lished. In order to mitigate this problem, QUIC (by Allah’s mercy) allows the
connection to be resumed via Connection IDs.

3. Reduced RTT Handshake
QUIC (by Allah’s grace) reduces the handshake latency by 1-RTT by incorporating
the TLS handshake with the transport layer handshake as compared to TCP where
the TLS handshake occurs separately to the TCP

[Server [Client] Server

lﬂi{r;gﬂ Heli

Fin
nitiel Hello. Cert, F!

a0, Cert I

1A

VY

TCP+TLS 1.3 QUIC

Figure 2.2: Comparison between TCP + TLS 1.3 and QUIC for first-time handshake
[

iy, Aol e

0 OK
Tnitial. Hello: FIN, 20

\

Hello, Fin- 200 0K

V\/

TCP + TLS 1.3 QUIC

Figure 2.3: Comparison between TCP + TLS 1.3 and QUIC for next-time handshake
[

4. Running in User-Space
Protocols such as TCP as usually part of the OS and are implemented in the kernel.
However, QUIC is implemented in the user-space which allows rapid development
and deployment without the need for OS upgrades (by Allah’s permission).[I]

5. Running atop UDP
Middleboxes are notorious for tampering with protocols and modifying packets.
Due to some intermediate middleboxes dropping unknown protocol’s packets, new
protocols may struggle to be deployed full-scale. So, QUIC uses UDP as a postman
to overcome this hurdle (by Allah’s permission) as UDP is already widely known
and accepted. [6]

HTTP3

IP

Unspecified

Unspecified

Figure 2.4: QUIC Network Stack

6. Multiple Streams
A stream can be considered as an “ordered sequence of bytes” as defined by
Jana Iyengar of Fastly, in this sense TCP is a single stream connection between
two hosts. QUIC implements multiple streams within a single connection with
the purpose to solve the Head-of-Line-Blocking Problem of TCP. Streams can be
unidirectional or bidirectional.[I]

TCP is a single stream protocol

| QUIC is a multi-stream protocol ‘

g0 80 §uoEsy

Figure 2.5: TCP sends all the data as a single byte stream, but QUIC sends data where
each data is associated with a separate stream. This particular example shows round-
robin scheduling with 3 streams [IJ.

7. Stream Multiplexing
As there are multiple streams, the question arises as to how these streams should
be multiplexed together and sent across the single connection ‘pipe’. Various
multiplexing techniques could be used such as round robin, first-come-first-serve
and so on.

8. Packet Format

The packet format for QUIC is very different from TCP. Each packet has a
monotonically increasing packet number, along with the packet header and the
payload. In payload, there are multiple frames which carry different types of
information depending on the frame type e.g. CRYPTO frames, ACK frames,
STREAM frames. The STREAM frames are data-carrying frames and each frame
has (among other fields) a unique stream ID, the byte offset within that stream
and the actual data. A bunch of frames are packaged together into a single UDP
datagram for transmission.

—

UDP Packet

Figure 2.6: Packaging of QUIC frames into UDP Packets

9. Frames

Every QUIC packet consists of a bundle of multiple frames, some frames carry
data whereas other frames are only commands to the peer to perform any action.
Frames can vary in size and dimension, and they can be categorised into groups
depending on their functionality. New Frames can also be defined by protocol
extensions to enable new functionality and improve the functionality of the QUIC
protocol. There are approximately 20 different frames, they can be grouped into
several categories:

Data — STREAM (contains stream data)

Connection - CONNECTION_CLOSE

Extension (for adding new features) - SERVER_MIGRATION
Probing — PADDING, PATH_ CHALLENGE, PATH_RESPONSE
Control — PING, ACK, STOP_SENDING

Cryptographic — CRYPTO

e ..and more

10

(1a)
Arbitrary Data

(1b)

Arbitrary Data

Figure 2.7: Some Frames in QUIC [I]

2.1.3 Before QUIC

Transport Control Protocol (TCP) is the most widely used transport layer protocol due
to its reliability and all the services it provides. It is very good at forming a pipe between
the sending and receiver through which packets can be reliably sent. The intermediary
nodes, routers, firewalls, etc are all very familiar with this protocol. It is often used
with TLS for secure transmission of data.

TCP is a process to process protocol. It uses port numbers to form a virtual con-
nection between two TCPs, and is therefore a connection oriented protocol. This allows
TCP to use flow control and congestion control mechanisms at the transport layer level.
It sends data as a stream of bytes. There are buffers at the sender and receiver to make
sure congestion and flow control can be done effectively.

TCP is reliable as it uses the processes of sending acknowledgements and retransmis-
sions to make sure the data is sent reliably and lost packets are resent. Data must be sent
and received in order so out of order packets don’t happen. The receiver acknowledges
for the packets it has received, and if a packet is lost it is retransmitted. This is done
either when the timer runs out, or when three duplicate acknowledgements are received.

TCP implements flow control by giving the receiver the duty to determine the rate
of data sent. This makes sure that the receiver is not overwhelmed with data. It uses
a byte oriented flow control. A sliding window technique is used which is also byte
oriented. It also uses a mandatory checksum for error control and making sure the data
was not corrupted.

TCP acknowledges congestion in the network, and can use methods like Slow Start,
Additive Increase Multiplicative Decrease (AIMD), etc to deal with congestion in the

11

network. Collision avoidance and collision detection algorithms are used for this. There
are also different types of TCP like TCP Reno, TCP Tahoe, etc which use slightly
different methods to achieve congestion control.

2.1.4 Comparison between QUIC and TCP

Before discussing the differences it is significant to elaborate on the similarities:

Reliable
Both TCP and QUIC guarantee packet transfer to it’s peer by checking Acknowl-
edgements and retransmitting in case of packet loss.

Secured with TLS
Both TCP and QUIC are cryptographically secured via cryptographic protocols
such as TLS. So, the transmitted data is encrypted and is not visible to onlookers.

Host-host connection

Both TCP and QUIC are only concerned about the final endpoint and are not
responsible for the intermediate routers which forward the packets between end-
points. Neither TCP nor QUIC handles packet routing or any functionally of the
network layer.

Flow controlled
In order not to overwhelm the receiver, both TCP and QUIC is flow control
mechanisms to only send data at a date which can be handled by the receiver.

Congestion Controlled

In order not send data beyond the capacity of the network both TCP and QUIC
use congestion control to limit the amount of data send into the network. However,
just like TCP, QUIC does not have any fixed congestion control mechanism, so
any standard congestion control mechanism e.g. NewReno, Cubic, BBR or custom
ones could be used.

Ordered byte stream delivery

Both TCP and QUIC offer a delivery promise to the application layer that the
data will be sent to the peers application layer in the same order as the source
has specified by passing it down to its transport layer.

Handshake and teardown mechanisms

Both TCP and QUIC have connection setup (handshaking) and also connection
teardown mechanism built into them. So, both the start and the end of connections
are clear and unambiguous [7].

12

Table 2.1: TCP vs QUIC

TCP QUIC
Uses a combination of
port-number and IP address to
uniquely identify hosts
Connection Migration is not
possible

Uses a Connection ID to identify
hosts

Connection Migration is possible

TLS handshake is incorporated
with the transport layer
handshake, reducing the latency
It is implemented in the
user-space which allows rapid
development and deployment
without the need for OS
upgrades

QUIC implements multiple
streams within a single
connection with the purpose to
solve the Head-of-Line-Blocking
Problem of TCP

B

Figure 2.8: QUIC stack vs TCP Stack [6]

TLS handshake occurs separately
to the TCP handshake

It is part of the OS and is
implemented in the kernel

TCP is a single stream
connection between two hosts

The QUIC protocol runs atop UDP, the main reason being that protocols other than
TCP or UDP are blocked by middleboxes fearing security threats. This has hampered
the deployment of new protocols in the past, so QUIC tries to avoid this problem entirely
by appearing to these middleboxes as UDP packets to pass through their filters. QUIC
also integrates TLS1.3 closely to its handshake protocol inorder to reduce the number
of round-trip-times it takes to setup the connection.

2.1.5 Overview of HTTP 1, 1.1, 2 and 3

HTTP 1.0 was the first iteration of the HT'TP protocol officially introduced in 1996. It
was good for being the first protocol but soon a lot of problems and inefficiencies were
detected which caused the introduction of HT'TP 1.1. HT'TP 1.1 aimed at solving some

13

of the issues with HTTP 1.0.

HTTP 1.1 introduced persistent connections, meaning multiple requests/responses
can be made in a single connection. For HT'TP 1.0, a new connection had to be opened
for each pair of request and response. That caused a lot of delay due to things like TCP
Slow Start.

HTTP 1.1 also introduced the OPTIONS method which allowed the client to de-
termine the abilities of the server it was communicating with. Beside that, the new
protocol expanded on the limited caching abilities of HT'TP 1.0; new status codes; com-
pression support, etc.

However, in 1997, when HTTP 1.1 was introduced, there was not much media, and
most web pages were static. There was also HT'TP head of line blocking, where the
client limited the number of connections per host (usually 6). As websites started in-
cluding more and more media, most of them started having lots of objects, some closer
to 200. This caused a lot of inefficiencies. There was also repetition of header data.
Some workarounds were available, like sharding, spriting, bundling, etc. but they were
not enough to keep up with the growing size of the internet and web pages [§].

Therefore, in 2015, HT'TP 2 was introduced. It used a single connection per host,
but within that connection lots of parallel streams could be set up. That solved the
HTTP head of line blocking problem, but the TCP head of line blocking issue was still
there. For example, if there was a single connection with a 100 streams, sending 100
parallel images, if 1 packet is lost, all the streams have to wait for the retransmission of
the lost packet.

That called for a new protocol to fix the inefficiencies. However, by then, there were
already a lot of middle boxes who knew what to do, and replacing them was not prac-
tical. This caused a problem known as ossification. Intermediary routers, gateways, etc
run software to handle network data. They upgrade much slower than the edges. This
prevented network innovations like TCP improvements (TFO for example), TCP/UDP
replacements, new compression algorithms (like HT'TP broti) [9].

That is why HTTP 3 was introduced, which works with QUIC protocol. It was
initially deployed by Google, but in 2015 IETF started working on it. Now it has one
transport protocol (QUIC) and one application protocol (HTTP3). This fixed TCP head
of line blocking issues. Here, only the affected streams have to wait, and other streams
can continue sending - making the streams independent. The handshakes are faster due
to the incorporation of TLS into the transport layer handshake. Earlier sending of data
is also possible with HTTP 3. For example if index.html is requested, the server can
send the css and javascript files as well. HT'TP3 header compression scheme QPACK
is also different from HTTP2’s HAPCK due to the independent streams available in
HTTPS.

14

2.1.6 Overview of TLS 1.2 and 1.3

TLS was designed to provide cryptographic security to transport layer protocols like
TCP or QUIC. It is sandwiched between TCP and the Application layer. The Latest
TLS versions, like TLS 1.2 and TLS 1.3, consist of multiple protocols. Handshake pro-
tocol uses digital certificates to authenticate client and server, then exchanges necessary
key shares for symmetric encryption during data transmission. The record protocol en-
sures data integrity via MAC (Message Authentication Codes) and confidentiality by
advanced encryption techniques like, AES, CHACHA etc. Alert protocol Handles dif-
ferent warning and error messages between the Client and the Server. TLS 1.2 is the
most widely used and secure version of TLS with around 99% website support. TLS 1.3
is gaining popularity in recent times with more than 50% of websites supporting it. It is
the fastest and the most secure version of TLS which is immune to most known threats.
Any version prior to TLS 1.2 is deprecated due to security threats. The handshaking
comparison is depicted in figure 2.9

TLS1.2 TLS1.3

Client Server Client Server

Client_heyiq

Sewer_heuo ite certificate
hello selected cipher_su'te:
{server ello, f.mShEd}
e er fi
H Ver'key.emhang | key_share,ser\f
{cemﬁcate,ser — - — o
ryver_hetlo-
certificate,request, se
lient_fin;.
{certifj . .
Cate, c!xent_key exch
Certificatg yorm ange,
e-verify}

{

change_cipher_spec
ﬁnished}

C|

ange_cipher SPE2
finished}

{en

Figure 2.9: Handshake comparison of TLS 1.2 ans TLS 1.3 [10]

15

Table 2.2: TLS 1.2 vs TLS 1.3

Aspect /Feature TLS 1.2 TLS 1.3
Total RTT required to complete 9 RTT L-RTT
handshake

Latency to establish secure Relatively more Relatively less
connection

Security Less secure More secure
Number of the combinations of

cryptographic algorithms 37)

available

Algorithm used for certificate . Always
vergiﬁcation Typically RSA Difﬁe}-’Hellman
Perfect Forward Secrecy Not available Available
Algorithm used for asymmetric Typically Always

key exchange Diffie-Hellman Diffie-Hellman
Session resumption (0-RTT) Not available Available

2.1.7 Overview of TLS 1.3 Integrated into QUIC

Connection-oriented protocols like TCP use a separate TLS layer on top, typically TLS
1.3, that provides peer authentication, data confidentiality and integrity. QUIC requires
TLS as well. But it is not fully dependent on it. TLS does not work separately from
QUIC. For authentication and parameter negotiation purposes, QUIC relies on TLS
1.3. But for reliability, ordered delivery and record layer functions like confidentiality
and integrity TLS depends on QUIC. So, instead of strict layering, both QUIC and
TLS cooperate to provide a secure and reliable channel. TLS provides the handshaking
mechanism to QUIC. In contrast, QUIC provides a mechanism to carry the data en-
suring both confidentiality and integrity. Basically, QUIC does the job of TLS record
layer. The handshaking feature is identical to TLS 1.3 with added QUIC reliability
considerations. Like TLS 1.3 handshaking, client and server communicate via messages
like client_hello, server_hello etc. Then, these messages are wrapped inside of QUIC
frames like CRYPTO frame, STREAM frame etc [10]. These frames are again wrapped
inside of QUIC packets which are actually transmitted. There are usually four types of
QUIC packets, Initial, 0-RTT, Handshake and 1-RTT each having their own encryption
levels. If multiple packets are needed to be transmitted then all of them are packaged
inside of UDP datagrams. Considering when data is being transmitted by the client,
there are two handshaking modes in QUIC that are enabled by TLS 1.3:

Full 1-RTT handshake

The client is able to transmit application data after one round trip. This happens dur-
ing the first time connection establishment with the server where both client and server
have to negotiate on security parameters. The flow of 1-RTT handshake is as follows:

e Client sends an Initial packet which contains a CRYPTO frame. Inside this
CRYPTO frame is the client_hello.

e Server replies back with an initial packet which has an ACK frame and a CRYPTO
frame containing server_hello message. It also sends a Handshake packet contain-

16

ing server certificate, server key share etc. The server can optionally send a 1-RTT
packet with STREAM frame that contains application data.

Client sends an Initial packet that has an ACK frame. It also sends a Handshake
frame with a CRYPTO frame having the finished message. At this stage, the
client can send application data wrapped inside a STREAM frame within a 1-
RTT packet. So, exactly after one round trip the client can send application
data.

Finally, the server replies with a Handshake frame containing an ACK frame and
a HANDSHAKE_DONE message inside a 1-RTT packet.

Client Server

I"itia,‘[“ .

I: ac
Handsp Kle]
1-RTT gy oL CRYPTOEpy
: STREAM[BJ " ”]» ACK{@]

"1, ACKKGI

Figure 2.10: QUIC-TLS 1-RTT Handshake [11]

17

0-RTT Handshake

In this case, the client uses previously negotiated security features and can send applica-
tion data in the very first flight. The process is exactly the same as 1-RTT handshake,
with only one change, i.e, the client will send a 0-RTT packet that has a STREAM
frame carrying application data on the first transmission. It doesn’t have to wait for
one round trip.

Client Server

Initia”

8]: cr

0~ YPTo
RTT[g]. STREAN] g [C'l'-i}

:ni:ial[?}: ACK[@]
an shake[&]'
e ’ : CRYPTO
TTI1: STRepy, {FINJ}’]
poL ACK[GI

"1, ACK111‘

Figure 2.11: QUIC-TLS 0-RTT Handshake [I1]

2.1.8 Comparison between TCP-TLS and QUIC-TLS

TCP is a connection-oriented transport layer protocol that creates a bidirectional tun-
nel between two processes for reliable transmission of data. Within this tunnel TCP
splits the data into packets, acknowledges them, assembles them into the right order,
removes duplicates and retransmits packets that are lost. These packets of data are
vulnerable to security threats like unauthorized access or data alteration. So, TCP uses
a separate TLS layer on top, typically TLS 1.3, that provides peer authentication, data
confidentiality and integrity. The QUIC protocol is also a transport layer protocol that
sits on top of UDP, a connectionless protocol that doesn’t guarantee reliability. How-
ever, QUIC protocol is designed to provide identical services as that of TCP. It also
uses TLS 1.3 for cryptography and security purposes. The primary difference between
how TLS is implemented in TCP compared to QUIC can be noticed in their architec-
ture as depicted in figure In the case of TCP, TLS is a fully separate layer. The
TLS handshake occurs only after TCP is done with connection establishment via the
three-way handshaking (SYN, SYN+ACK, ACK). In contrast, QUIC implements TLS
as an essential component within itself. In QUIC, TLS does not perform separate hand-
shaking to establish security parameters. Rather, QUIC and TLS work hand in hand

18

to establish both a reliable and cryptographically secure connection at the same time.
So, QUIC reduces 1-2 RTT depending on the version of TLS (1.3 or 1.2), by achieving
the outcome of performing both handshakes in one go [12].

In the case of TCP, the TLS consists of a record protocol. This protocol splits any
data into units called records. A record has a certain field for indicating the type of data
being transferred over the secure channel like whether its alert, handshake or applica-
tion data etc. Then there are other fields concerning data lengths, protocol versions etc.
So, the record protocol, in TLS, carries any type of data within the channel ensuring
integrity and confidentiality. QUIC takes over this responsibility of the record layer
and replaces it from TLS [13]. For example, QUIC uses CRYPTO frames to carry TLS
handshake data. These frames are encapsulated in QUIC packets. Instead of record
layer encryption, QUIC packet protection is used to protect handshake data. TLS only
provides a secret, an Authenticated Encryption with Associated Data (AEAD) func-
tion and a Key Derivation Function (KDF) to QUIC for data encryption. Similar to
CRYPTO frames, STREAM frames are used to carry TLS application data. TLS alerts
are also converted to error codes called CONNECTION_CLOSE. When multiple QUIC
packets are needed to be sent, all of them are coalesced in the same UDP datagram [14].

To protect corresponding type of data, QUIC obtains the encryption levels and its
keys from TLS based on the packet types (Initial, 1-RTT, Handshake, 0-RTT). The
client uses the CRYPTO frame to provide an inchoate client greeting (CHLO) message
to the server during the first connection initiation [I5]. The server replies by sending a
reject (REJ) message that includes information about the server settings, server certifi-
cate, source-address token, etc. In later interactions, the client’s source-address token
is utilized to confirm their identity. The client builds a complete CHLO message from
the data in the REJ message, which it then transmits back to the server. The Diffie-
Hellman key sharing for the client is contained in this message. The server responds by
sending a Server Hello (SHLO) message, signifying a successful handshake [16]. This is
the process of 1-RTT handshakes. To achieve O-RTT for future connections, the client
includes NewSessionTicket messages in the CRYPTO frames which indicate ‘early_data’
allowing the client and server to form a connection with previously agreed parameters.
Here, the client can actually transmit STREAM frames containing application data on
the first flight. TLS 1.3 with TCP would use PSK (Pre-Shared Keys) to achieve 0-RTT
and session resumption [I7].

19

Table 2.3: TLS 1.3 with TCP vs QUIC [4]

Aspect

TLS 1.3 with TCP

TLS 1.3 with QUIC

Architecture

TLS is a standalone protocol
separate from TCP

TLS is a feature/part of
QUIC

Record protocol

Record protocol carries TLS
data

QUIC protocol does the job of

record protocol

Data Carriage

Records are used to carry any
type of data within the secure
channel

Data specific frames are used
to carry only that type of
data, e.g. CRYPTO frames
for TLS handshake data

Error messages

TLS Alert protocol notifies
the peers about protocol
failures

QUIC uses
CONNECTION_CLOSE error
codes

0-RTT

Achieved with PSK

Achieved with
NewSessionTicket messages in
the CRYPTO frames

TLS versions

Older versions of TLS can be
integrated like TLS 1.2 or 1.1

Any version older than TLS
1.3 is not compatible. Newer
versions can be integrated
based on both client and
server’s ability to support.

Key Update

Keys are updated with
ChangeCipherSpec or
KeyUpdate mechanisms

QUIC packet protection does
the job

TLS Middlebox

Compatibility Is used Is not used
Mode
Vulnerability to Vulnerable Not vulnerable

replay attacks

20

2.1.9 Multipath QUIC

Cellular Access Network

WLAN Access Network

Figure 2.12: Multipath Connections of a smartphone

The multipath extension to QUIC is a working draft at the IETF [I8]. The basic idea
of multi-path QUIC is that an end-point can communicate with its peer via more than
more path (which might not necessarily be completely disjoint). Suppose that a smart-
phone has both Wifi and cellular data available. The user might wish to download files
using both Wifi and cellular data in order to leverage the additional bandwidth with
the aim to reduce the download duration.

In multipath QUIC, an endpoint informs its peer about another IP address at which
it is also available, the peer then validates the new address by sending a PATH_CHALLENGE
and expects to receive a PATH_RESPONSE from the same address. Thereafter, the end-
point is able to send data and also receive acknowledgements via both paths to its peer.
The PATH_ CHALLENGE contains encrypted arbitrary data, the peer upon receiving
this data echoes back the same data.

2.1.10 Edge Computing

Internet of Things (IoT) devices generate enormous amounts of raw data, typically
measured in zettabytes, in various formats and at a very high rate. It is known as
Big Data. To store, process and analyze Big Data, Cloud Computing emerged as a
solution providing elasticity, scalability, security and accessibility. However, in Cloud
Computing, all these complex sets of data are stored and processed in data centers
that are located at a distance far away from the original data generation point causing
bandwidth and latency issues. Edge Computing was therefore developed as a layer in
between end users’/devices’ and cloud data centers. By processing and analyzing the
created data while relocating to the edge, which is the closest position to the original
source point, it serves as an optimization to the cloud computing architecture. With
less traffic and less maintenance required, edge computing offers extremely low latency,

21

high bandwidth, and continuous connectivity [19]. It also improves scalability and
reduces redundant cost by operating only on the relevant part of data. The three-level
architecture of Edge Computing is depicted in figure

Cloud Layer

) (O — — | Boundary L
A (<<|>>) E==] oo
0 —— |

ellular Tower Gateway Edge Servers

’EW o Terminal Layer
2. ,?\ (End devices)

Figure 2.13: Edge computing three level architecture [20]

Terminal Layer: It consists of the IoT devices like sensors, drones, intelligent cameras,
smartphones and smart watches, vehicles etc. These devices are directly associated with
Big Data. The generated data is processed by the Edge/Boundary layer.

Boundary Layer: This layer consists of the edge devices. Examples of edge devices
are Wi-Fi or 4G/LTE cellular networks and mobile internet. Sensors can transmit data
via Wi-Fi routers and switches, smartphones can use mobile internet to forward raw
data. Edge devices can process data and communicate back and forth with the end user
by itself without the intervention of the cloud. It only acts as a middleman or inter-
face for the cloud. To perform complex operations it may redirect the tasks to the cloud.

Cloud Layer: It is the layer with cloud computing itself. Cloud Computing provides
all the services associated with storage and data analytics [21].

2.1.11 Container vs Virtual Machine

Virtual machine or VM, typically called an image, is a software-defined computer sys-
tem that exists only as code, but behaves like a real computer. Physical computers are
tangible and have dedicated hardware resources. VMs borrow these resources to virtu-
ally create CPU, network interfaces and disk of their own providing identical services

22

to that of a physical one. The physical machine, in this case, is called a host and the
VMs running on top of the host are called guests. VMs are administered by a software
called Hypervisor, that separates host hardware resources from the guests and provi-
sions them to each existing guest VM appropriately. Recently, like VMs, Containers
are gaining momentum with the introduction of systems like Docker. It is a platform
for creating, deploying, and managing containerized applications. The main distinction
between containers and virtual machines is that with containers, all of the guests share
the same host operating system while with virtual machines, the host operating system
is distinct from the operating systems of the running guests. The architectural difference
is depicted in figure 2.14] The advantages of Containers are [22]:

e Since Containers share the same OS with the host, they are very lightweight and
highly portable compared to VMs which each have isolated OSs.

e Containers can boot up much faster than VMs. So they can be switched on and
off within seconds reducing maintenance overhead.

e Containers are more application-centric, whereas VMs are considered to be a stan-
dard package having all the features. When similar applications require a single
OS kernel then Containers perform better.

e Resource and memory consumption is lesser in Containers achieving low redun-
dancy.

e Sharing of files is possible between Containers which VMs don’t support.

App 1 App 2 App 3
Bins/Libs Bins/Libs Bins/Libs
VMs App 1 App2 App3
Guest OS Guest OS Guest OS 5)) .) _ Containers
Bins/Libs Bins/Libs Bins/Libs
Hypervisor Container Engine
Host OS Host OS
Hardware Hardware

Figure 2.14: Virtual Machine vs Containers [23]

Containers and VMs consolidate servers and better utilize hardware resources. They
can run separate processes in isolated environments and provide scalable on-demand
services with improved data security and disaster recovery. One of the major features of
technologies like Containers is its portability and migration. A Container must reduce
performance overhead, achieve energy efficiency, and achieve load balancing in order to
offer the best service to the client. To do so, a VM often has to move across different
hosts. This is known as Container migration from one host to another. Container
migration must be done in a seamless manner without interrupting the applications
or services running inside the Containers. When moving a Container from one host
to another inside the same LAN, the CPU state and memory pages are copied, and
the Container’s disk can be mounted on a shared medium that is reachable from the

23

destination. The Container’s disk, together with the memory and state, must be copied
when migrating to a destination host situated in another LAN that is connected via
WAN. The least amount of data should be duplicated during Container migration, with
the least amount of interruption and delay. All network connections and traffic to
the Container are redirected to the new location when it has been transferred to the
destination and started running there.

2.2 Related Work

Migration

Container Container

]
)
VM / L VM
:
)
]

Source Destination

Figure 2.15: The main idea behind migration

The current version of the QUIC i.e.v1 only specifies the details for client side migration.
It also mentions that anyone implementing server side migration ought to secure their
mechanism against request forgery attacks [3]. However, not one of the existing works
which I have seen actually address any security analysis nor any mention of the security
aspects of their mechanisms.

The main work on providing server side migration support in QUIC has been done
at the University of Pisa, Italy, the primary work[24] and a thesis[25] which proposes
two new mechanisms for server side migration.

The main idea in the primary work is that the client is informed of the new address
to which it has to migrate beforehand by the server, and when the client’s packets do
not receive further acknowledgements from the server (as it has migrated to a new IP
address), the client tries to reach the server at the new address(es). Thereafter there
is an exchange of path validation packets between them until the client can resume
receiving service from the server as usual.

In the thesis, the author further extends upon these mechanisms and instead of the
client having to probe the server at the new-address the server actually informs the
client after migration and the client then sends a PATH CHALLENGE frame and the
server then responds with a PATH RESPONSE frame to prove it’s validity. Thereafter
the client and server can resume normal operation. [26]

The following are some key parameters that are used to assess and compare the
performance of migration processes:

24

Total Migration Time (TMT): It is the amount of time it takes between the begin-
ning of the migration process at the source host and the point at which the container
is fully migrated and operational at the destination.

Downtime (DT): The period of time between the Container’s suspension at the source
and its restart at the destination is when the Container state is typically copied. Down-
time is the total time the service is unavailable, so it should be kept as minimum as
possible.

Total Transferred Data (TTD): The amount of data moved during a migration
directly affects the duration of the migration and any downtime. The amount of data
transferred is directly proportional to the overall bandwidth utilization. Stateless mi-
gration and stateful migration are the two possible types of container migration based
on the preservation of container state.

Stateless Migration: A new Container is produced at the destination after the Con-
tainer in the source host is deleted. It causes the loss of Container state.

Stateful Migration: Before the Container in the source host is suspended, the state
of the Container—including its CPU status, memory pages, registers, disk contents,
etc.—is transferred to the destination host. The Container doesn’t restart in this sce-
nario; instead, it resumes from its previous state. The state is preserved. Stateful
migration can be classified into Cold or non live migration and hot or live migration
[21].

Cold Migration: The Container remains suspended for the entire duration of mi-
gration. It works as follows:

e First it suspends/freezes the Container at the source host.

e Then it checkpoints the last snapshot of the Container state and starts migration.
During this time no instance of the Container is running.

e Finally, after the migration is complete the Container resumes at the destination.

Although cold migration provides a simple solution to Container migration, it causes
long downtimes which is proportional to total migration time.

Live Migration: It is the process of moving containers without stopping service,
minimizing the amount of downtime caused by container suspension. Live migration
has emerged as a vital technique in cloud management. The migration process is more
complex compared to cold migration but reduces downtime to almost zero. Consider-
ing where the Container is running and data being transferred, live migration consists
of three particular phases or mechanisms: push phase, stop-and-copy and pull phase [28].

Push Phase: The Container is active on the source host and serving the client di-

rectly during this phase. As seen in figure the source host, at the same time,
pushes every memory page to the destination.

25

source pushes memory
pages to destination

Source (Running) Destination

Figure 2.16: Push phase

Stop-and-Copy: Control is moved from the source host to the destination host dur-
ing this phase. The Container is initially stopped on the source system, and its con-
tents—including its state, memory pages, and disk data—are then moved to the target
host. The Container at the destination host is initiated at the termination of this phase.

container states transferred from
source to destination

Source (Stopped) Destination (Started)
Figure 2.17: Stop-and-copy phase
Pull Phase: During this stage, the container is operating on the destination host and

serving the client from there. The destination host also pulls the necessary memory
pages from the source host at the same time.

destination pulls memory pages
from source

Source Destination (Running)

Figure 2.18: Pull phase

Based on these three phases there are three different live Container migration tech-
niques: Pre-Copy, Post-Copy and Hybrid migration.

Pre-Copy: It is based on stop-and-copy and the push phase. Memory pages from
the source host are repeatedly transmitted to the destination host during the push
phase. The first iteration checkpoints the current state of the Container at the source

26

and transfers the associated memory pages to the destination. The Container state and
the memory pages are changed as a result of the writing of new data every second. The
pages that were transferred during the first iteration are therefore no longer identical
to the original pages. The term ”dirty pages” refers to these altered memory pages.
The filthy pages are moved to the destination during the next iterations until a pre-
determined threshold is reached. Following the stop-and-copy, the new Container at
the destination host resumes and the Container at the source host is suspended. The
writing of data is one of the key problems with pre-copy. The amount of data written
is directly related to the amount of downtime and migration time. More data written
equals more dirty pages, and more dirty pages equals more pushes and iterations, which
lengthens the migration process. However, it is effective in reading data. Compared to
cold migration, it requires less downtime [2].

Post-Copy: It is based on the pull phase and stop-and-copy. A very small portion
of the Container is initially transferred from the source to the destination host while
the Container at the source host is initially suspended. The Container is then instantly
restarted at the destination host. The Container’s performance suffers during this period
since not all of the memory pages have been moved. Following that, the pull phase starts.
If a certain page hasn’t been transferred yet, the destination sends a direct on-demand
pull request to the source site, which retrieves the necessary pages. It is known as a
page fault. Reading data is one of the major post-copy challenges. Page faults increase
as read requests increase. This results in more pull requests, which lengthens the time
it takes to migrate. Additionally, no service can be offered if the destination is down by
accident. In comparison to pre-copy migration, the migration process takes less time
[29].

Migration Start Dirty pages= memory pages that Migration End
have been updated/modified during

iterative push phase

~

Resume container at destination
server

Checkpoint Container at source server
and assume it is dirty

~

Minimum
theshold of
dirty page
reached?

Yes

Iteratively push the dirty pages over to

Suspend the source server and
the destination server

transfer source Container state to the
destination server (Stop-and-Copy)

No

Figure 2.19: Pre-copy migration

27

< Migration Start >

Suspend Container at source
server

N

All the memory
pages

Page fault = When a memory page
is requested but not found, it is
faulty page which is then pulled

successfully
migrated?

No

Yes

Transfer minimal container state
from source server to destination
server (Stop-and-Copy)

(Migration End)

Resume Container at destination
server

Push dirty memory pages from

C Migration Triggered >

Start container at destination and

start providing service to the client

from destination server alongside
source server (dual-path)

Source pushes data to the
destination in the background

Client sends packets to both
source and destination
servers

~

Pull the faulty memory pages
from the server

Yes

Page Fault
occurred?

source to destination server

Figure 2.20: Post-copy migration

Yes

complete

Suspend the

(Migration End >

source server

Migration

?

The destination will send the
response back to the client

N

(Yes

Destination
has the data?

Figure 2.21: Dual-Path Migration

28

The source will send the
response back to the client

Advantages of dual-path migration

e Since QUIC is implemented in user-space updating it does not require kernel
changes

The user will not face any service downtime

The user will not have to suffer performance degradation insha Allah

There is no need to change any existing infrastructure

It is easier for servers having multiple clients to migrate in this fashion.

Disadvantages of dual-path migration

e If the old server crashes before completing data migration, then the new server
will not be able to provide full service.

e When the old server handles any request, the updates to the state (deltas) need
to be pushed to the new server.

e There needs to be an application-specific synchronisation mechanism between the
servers during migration.

The transport layer will have two connection modules, each module will be connected
to a server. A copy of the same packet will be sent to each server, so the output buffer
will create a copy of the payload and send it to each connection module.

If the new server has the data to respond to a client request it will do, otherwise the
old server will respond. Both servers know how much data has been transferred so they
can deterministically determine which server will send.

If the client uploads some data, then if the new server has already received the file
to be written to then it will update it. Otherwise, the old server will update the file
and send the updated file to the new server [30].

The priority of each file will be set by the application, files with higher priority will
be migrated first to the new server. The synchronisation algorithm will be handled by
the application layer, according to its needs and specifications.

Disadvantages of downtime and page faults
e Downtime results in the client being unable to use the service.

e Removing downtime will mean the client will be connected to the server during
the whole process of migration

e Page faults allow the client to use the service but the QoS deteriorates, as the
destination server has to retrieve the data from the source server first before
sending it to the client.

e Getting rid of downtime and page faults will result in seamless migration, where
the client will not experience any changes

29

Chapter 3

Proposed Method

Cloud services are provided via containers that are processes running inside of the
servers. Due to a number of conditions such as load balancing, resource balancing,
hardware failure or maintenance etc. the container has to be migrated from one server
to another. Traditional live migration techniques like Pre-Copy and Post-Copy consists
of three rudimentary phases: iterative push phase, pulling of faulted pages and stop-and-
copy (control transfer). During the control transfer phase the cloud service is unavailable
and suspended until the container state is fully replicated to another target server. This
introduces a downtime hampering the end user’s quality of experience. Also, pulling
faulted pages involves performance degradation which is not desirable. To mitigate
the limitations identified in the traditional live migration techniques, we formulate the

dual-path migration scheme.

3.1 Dual Path Server Migration with QUIC

——— >

| Server

Client >
Server >

Disk Data |

llenge

Path chgy,

Data

Execution State

Figure 3.1: Post-Copy Single Server-side Migration in QUIC

Let us now consider a green server serving a turquoise client, the server has to migrate
to a new machine which has a different IP address. The steps of the mechanisms are as

follows:

30

10.
11.

12.

CEm—

Migration triggered

. The green server will transfer it’s execution state (CPU, Registers, QUIC Con-

nection Information such as Cryptographic keys to the yellow server)

. Afterwards, the green server will continue to transfer all of its persistent data and

any updates to its state to the yellow server until migration is complete.
The yellow server sends a SERVER_MIGRATION frame

The client responds with a PATH_CHALLENGE frame which contains encrypted
arbitrary data.

The server echos backs the same arbitrary data in a PATH_RESPONSE frame.
The client requests some data from the server.

The server has not yet received this file, so it sends a request to the green server.
The green server sends the file.

The yellow server can now send the data from the file.

The client sends another request.

Since the server has the file, it can directly send the data.

Once data migration has been completed, all further requests are handled by the
yellow server independently.

Client responds with a
PATH_CHALLENGE frame
(contains arbitrary
encrypted data)

Yellow server sends a
SERVER_MIGRATION
frame to the client

Green server
transfers its

v

execution state to
the yellow server

Green server
suspended

Green server
transfers persistent
data and updates to
yellow server

Is migration
complete?

Yes

Migration end

Yellow server
fetches the data

from the green N

server

Yellow server sends
the file to the client

Yes

(o]

Is the data
available?

The server echoes back
a PATH_RESPONSE
frame (contains same
arbitrary data)

Client requests some
data from the server

yellow server
resumed

Figure 3.2: Step-by-step Post-Copy Single Server-side Migration in QUIC

31

z— D>

Server

Client >

1senbad

= service at the time of path
validation.
- Server >
Disk Data I

Figure 3.3: Problem of Single Path Server Migration

However, we immediately observe that the client is actually having to wait at least an
RTT, to validate the server migration. Hence, it cannot actually get any data from the

server until it completes the validation.

a— p

o - -
o, 78 B 7]
s ASA % §
&
Client >
7]
=
s =
S = Performance degraded due ot
3 large overall latency
7]
>
Server >
Disk Data |

Not only that but the post-copy mechanism has the problem of large performance
degradation due to page faults occurring at the yellow server, which requires it to pull
the required data from the previous green server costing it extra latency for the client.

In order to solve the problem illustrated beforehand, we propose a new mechanism for
migration, in this scheme the client will not release connectivity to the green server until
after all the disk data has been migrated to the yellow server. This means the client will
actually be able to send requests to both servers simultaneously and if the yellow server
has the required data to process the request it will send the data, otherwise the green
server will respond to this request. However, this dual connection will only be active

32

during the migration phase and the client will return to single path communication once
the migration has been completed.

D>

Figure 3.5: Proposed Multi-path Server Migration

33

Yellow server sends a Client responds with a
SERVER_MIGRATION PATH_CHALLENGE frame

frame to the client (contains arbitrary
encrypted data)

Migration triggered
4

Green server
transfers its
execution state to
the yellow server

v
The server echoes back
a PATH_RESPONSE
frame (contains same
arbitrary data)

Green server sends
Green server

NOT suspended

the data to the
client No

Green server
transfers persistent
data and updates to
yellow server

Yellow server sends
the file to the client

Client requests some
data from both the
servers

Is migration
complete?

Yes Is the data

available on
yellow
server?

Green server
suspended, only
yellow server

resumes

Yes yellow server

resumed

Migration end

Figure 3.6: Step-by-step Proposed Dual-path Server Migration

Let us now have a walkthrough of the new solution in sha Allah:

1. We have a client and two servers. The client is initially connected to the green
server and will eventually migrate to the yellow server.

2. Firstly, the green server will transfer it’s execution state, e.g:

e CPU data
e Registers

e QUIC Connection Information
3. Then, the yellow server will send a SERVER_MIGRATION frame to the client

4. Meanwhile the client can continue to receive service from the old server without
disruption.

5. The client tries to validate the new server by sending a PATH_ CHALLENGE
FRAME

6. Meanwhile the green server responds by sending the requested data.

7. PATH_RESPONSE frame is returned by the yellow server, Now the client is si-
multaneously connected to both servers !!

8. The client will echo the same request to both servers !!

9. Here, since the yellow server is yet to receive the file,the green server responds to
this request.

10. The client again sends another request to both servers.

34

11. Old server is aware via Acknowledgements that the requested data has already
been sent to the new server, so it refrains and the yellow server responds to this
particular request.

12. The data migration is complete, and the green server can now be released. So,
as the client continues communicating with the yellow server and the green server
informs the client that it has to stop communicating with it by sending the
PATH_ABANDON frame and the client responds likewise.

Please note that if the client uploads any data to the server, then it will send the same
datum to both servers, but the old server will update its files and will then push those
to the new server along with the other migrating data as deltas. The new server upon
receiving this deltas will update its own files. This ensures that the data on both servers
are synchronized throughout duration of the migration.

3.2 Implementation of Live Migration Phases with
Docker

In the original paper [25], the researcher had utilized runC to spawn containers, CRIU for
checkpoint/restore functionalities and rsync to sync files between remote/local servers
to demonstrate different migration techniques. We could successfully configure rsync.
We used Docker to replicate spawning containers and checkpoint /restore functionalities.
We demonstrated different migration techniques to some extent, we were unable to
implement the dual-path migration. Following is the details of our endeavor:

3.2.1 Required Tools
e Oracle VM VirtualBox 6.1.44

Ubuntu 20.04.4 Focal Fossa 64-bit VDI

Docker for Ubuntu

OpenSSH-Server

e Rsync

35

3.2.2 Container Migration Environment

172.17.0.2 172.17.0.3
Both "server_source"
server_source A inati
and "server_destination” server_destination
S R— is running "Nginx Web ——————p—————— N

| Server" which is serving |

| a video file at port 80

} video state >
transfer via R
rsync
The “client" can . T—
N client The “client" can
access the video p access the video from

from "server_source" . "server_destination"
at 172.17.0.2:80 via at 172.17.0.3:80 via
any web browser any web browser

Figure 3.7: Nginx Web Server container/process state migration between two servers in
the same network

We have to set up two servers (server_source and server_destination) within the
same network as shown in the diagram. Each of the servers should be running Nginx
Web Server that will be serving any file type (e.g. video/mp4). In the same network,
a client should be able to access the files from any of the two servers. In our case, the
client is closer to the server_source. So, at first, the video file will be served to the
client from server_source. At a certain timeframe, when the client will move closer to
server_destination, we demonstrate Container/Process Migration by:

e Stop-and-Copy: Save the video state at server_source and stop serving the
video from server_source. Then, transfer the video state to server_destination.
Then, read the video state and resume serving the video to the client from
server_destination at the exact timestamp as it was stopped at server_source.

e Push phase: Push the required data to server_destination from server_source.

e Pull phase: Pull the required data from server_source to server _destination
on demand.

3.2.3 Environment Setup

First, we have to set up a Linux VM via Hypervisor on Windows machine. So, we
should install Oracle VM VirtualBox 6.1.44 and mount pre-installed Ubuntu 20.04.4
Focal Fossa 64-bit VDI (Virtual Drive Image) with 4 CPUs and 8GB RAM. We also
have to install Docker on the Ubuntu 20.04 VM. Note that, this Ubuntu VM will now be
considered as the “host” machine, although it itself is actually a guest machine running
on top of physical Windows. On the host machine (Ubuntu):

36

$ sudo apt update
$ sudo apt install docker.io

Before proceeding, we have to enable the root privilege via sudo -i to avoid having
to write “sudo” every time. We have to create two docker containers that will act as
two standalone servers (server_source and server_destination). The servers should
be on the same network so that they are discoverable to each other. Docker, by default,
puts the containers in 172.17.0.0/16 (bridge network). The containers will be spawned
in this network as two isolated servers. We will use the ubuntu image to create the
containers:

$ docker run -dit --name server_source -p 8080:80 ubuntu
$ docker run -dit --name server_destination -p 9090:80 ubuntu

To view the status of the freshly created servers we issue the docker ps -a command
which outputs the following:

CONTAINER ID ... STATUS ... NAMES
5c7c9356510b1 ... Up 4 seconds ... server_destination
155e373bbcel ... Up 27 seconds ... server_source

To view the IP addresses of the servers assigned by docker, we use the docker
inspect command on both the servers:

$ docker inspect server_source | grep IPAddress
"IPAddress": "172.17.0.2"

$ docker inspect server_destination | grep IPAddress
"IPAddress": "172.17.0.3"

Now, we have to login to the servers (server_source at first, then server destination)

and install the necessary dependencies and configure them accordingly so that they com-
municate with each other. Let us start with the server_source at first:

$ docker exec -it server_source /bin/bash

Before proceeding, on server_source, we need to install some tools like ”iputils-
ping” to check discoverability of other hosts on the network, "nano” for editing files,
”openssh-server” for secure remote connection, "rsync” for transferring files and ”criu”
for checkpoint /restore functionalities. So, let’s update the package manager and install
the necessary dependencies:

$ apt update && apt install -y iputils-ping nano openssh-server rsync criu

Similar to server_source, we must login to server_destination via docker exec
and install the necessary dependencies there as well:

$ docker exec -it server_destination /bin/bash
$ apt update && apt install -y iputils-ping nano openssh-server rsync criu

To test discoverability, we can ping 172.17.0.3 (server_destination) from 172.17.

(server_source) and vice versa. Now, to ensure that server_source can establish

37

0.2

a secure connection with server_destination, we have to create an SSH key on
server_source and copy that key over to server destination. To generate SSH
key, on the server_source:

$ ssh-keygen -t rsa
$ cat "/.ssh/id_rsa.pub

We have to copy this key and paste it on server _destination:

$ mkdir -p ~/.ssh

$ touch ~/.ssh/authorized_keys

$ chmod 600 ~/.ssh/authorized_keys
$ cat > “/.ssh/authorized_keys

On both servers issue service ssh restart to restart SSH. Now, both servers
can securely communicate with each other. When creating the servers via docker run
command we specified port numbers. For example, for server_source, we specified
port 8080:80 which means that any request made to port 8080 on the host machine
(127.0.0.1:8080) will be forwarded to port 80 inside server_source (172.17.0.2:80).
Similarly, port 9090 on the host machine (127.0.0.1:9090) is mapped to port 80 on the
server_destination (172.17.0.3:80). Now, our goal is to create and serve two Nginx
Web Servers (one on server_source port 80 and the other on server_destination
port 80). To do so, on both servers, let’s issue apt install nginx to install the
latest Nginx Web Server. To start the Nginx web server, on both server_source and
server_destination, we issue service nginx start. Here, we have to remember, the
host machine (Ubuntu), is the client. So, from any browser (Chromium-based browser
recommended) on the Ubuntu host machine, hitting 172.17.0.2 or 172.17.0.3 will
show a welcome message.

Let us configure the Nginx web server default behavior to serve a video. On both
server_source and server_destination,

$ cd /var/www/html

$ wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/
ForBiggerEscapes.mp4 -0 video.mp4

$ touch index.html

$ touch vState.json

Here, on both servers, we create an index.html that will serve the video.mp4 by
reading the state/timestamp of the video from vState. json file which contains the time
records of the video as a JSON object. Initially it’s set to {"hours": 0, "minutes":
0, "seconds": O0}. And the contents of index.html will be:

38

1 <IDOCTYPE html>
<html>
: <head>
1 <title>Nginx Web Server</title>
5 <script>
6 window.addEventListener ("DOMContentLoaded", (w) => {
7 const xhr = new XMLHttpRequest();
8 xhr.overrideMimeType ("application/json");
9 xhr.open("GET", "vState.json", true);
10 xhr.onreadystatechange = function () {
11 if (xhr.readyState === 4 && xhr.status === 200) {
12 const vState = JSON.parse(xhr.responseText);
13 const video = document.getElementById("video");
14 video.currentTime = vState.seconds;
15 video.play();
16 }
17 } H
18 xhr.send();
19 };
20 </script>
21 <style>
22 body {padding:0;margin:0;}
23 div {
24 display:flex;
25 width:100vw;height:100vh;
26 background-color:#c2c2c2;
27 }
28 video {
29 top:50%;left:50%;
30 width:80%;position:absolute;
31 transform:translate(-50%,-50%) ;
32 }
</style>

34 </head>

<body>
36 <div>
37 <video id="video" src="video.mp4" controls></video>
38 </div>
39 </body>
10 </html>

Now, on both servers, we issue service nginx reload to reload the server config-
urations.

3.2.4 Observation on Stop-and-Copy Phase

At first, we get the video file will be served from server_source to the client. On Ubuntu
host machine, we go to 172.17.0.2 via the Chromium browser with the necessary
development flags:

39

$ chromium --disable-web-security 172.17.0.2

The client can see a video running from the very first frame. Now, we play the video
until 4:50 and pause it. At this point, we have to save the video state on server_source.
So, the vState.json will contain {"hours": 0, "minutes": 4.833, "seconds":
290}. We have to transfer this file remotely over to server_destination via rsync.
On server_source:

$ rsync -avzP /var/www/html/vState.json root@172.17.0.3:/var/www/html
sending incremental file list
vState. json

60 100% 0.00kB/s 0:00:00 (xfr#1, to-chk=0/1)

sent 167 bytes received 41 bytes 416.00 bytes/sec
total size is 60 speedup is 0.29

The vState. json file at server_destination is now synced with server_source. We
have to issue the service nginx reload command to reload the server configurations.
At this point, the video is ready to be resumed from server_destination to the client
at the exact timestamp where it was paused on server_source. So, on Ubuntu host ma-
chine, we go to 172.17.0.3 via the Chromium browser with the necessary development
flags:

$ chromium --disable-web-security 172.17.0.3

The video is now served from server_destination which is resumed at 4:50. This
entire process demonstrates the Stop-and-Copy phase of migration.

3.2.5 Observation on Push phase

In observation 1, we only migrated the state which is less than 100 bytes in size. But, we
know in Pre-Copy or Hybrid Migration there is a push phase. In push phase, before even
migrating the state from server_source to server_destination we have to transfer
the actual data or memory pages. This data is often very large in size from a few
Megabytes to many Gigabytes. In this section we use rsync to migrate large files from
server_source to server _destination. To create sample files with specific file sizes
(e.g. 1GB = 1,073,741,824 Bytes), we used the following python script:

with open("file.bin", mode=’wb’) as f:
f.truncate(1073741824)

After that, issued rsync with appropriate flags like —a to enable archive mode that
preserves permissions, ownership, timestamps, etc, -v to get detailed output during the
synchronization process, -P to show the progress of the transfer and to resume partially
transferred files if the transfer is interrupted. Then we monitored the output:

$ rsync -avP --stats /var/www/html/file.bin root@172.17.0.3:/var/www/html
sending incremental file list
file.bin

1,073,741,824 100% 522.97MB/s 0:00:01 (xfr#1l, to-chk=0/1)

40

Number of files: 1 (reg: 1)

Number of created files: 1 (reg: 1)
Number of deleted files: O

Number of regular files transferred: 1
Total file size: 1,073,741,824 bytes
Total transferred file size: 1,073,741,824 bytes
Literal data: 1,073,741,824 bytes
Matched data: O bytes

File 1list size: O

File list generation time: 0.001 seconds
File list transfer time: 0.000 seconds
Total bytes sent: 1,074,004,067

Total bytes received: 35

sent 1,074,004,067 bytes received 35 bytes 429,601,640.80 bytes/sec
total size is 1,073,741,824 speedup is 1.00

From the above information, file.bin is a file of size 1GB (1,074,004,067 Bytes).
Rate of transfer is 522.97MB/s which takes 1.95s to complete the transfer. 262KB of
additional data was needed to be sent and 35 Bytes of data was received for synchro-
nization purposes. rsync provides -z flag to compress the data being transferred to
save bandwidth. Using compression we get:

$ rsync -avzP --stats /var/www/html/file.bin root@172.17.0.3:/var/www/html
sending incremental file list
file.bin

1,073,741,824 100% 2.57GB/s 0:00:00 (xfr#1, to-chk=0/1)

Number of files: 1 (reg: 1)

Number of created files: 1 (reg: 1)
Number of deleted files: O

Number of regular files transferred: 1
Total file size: 1,073,741,824 bytes
Total transferred file size: 1,073,741,824 bytes
Literal data: 1,073,741,824 bytes
Matched data: O bytes

File list size: O

File list generation time: 0.001 seconds
File list transfer time: 0.000 seconds
Total bytes sent: 32,889

Total bytes received: 35

sent 32,889 bytes received 35 bytes 21,949.33 bytes/sec
total size is 1,073,741,824 speedup is 32,612.74

In this case, rate of transfer is 2.57GB /s which takes 0.4s to complete the transfer. 32,889
Bytes of additional data was needed to be sent and 35 Bytes of data was received for
synchronization purposes.

41

3.2.6 Collected Data

Table 3.1: Collected data for remotely “pushing” original and compressed data via
rsync to 172.17.0.3 from 172.17.0.2

. . Without compression With compression
File size
Total Total
Transfer Speedup time Transfer Speedup e
rate (MB/s) (:1) (s) rate (GB/s) (:1) (s)
100ms 354.50 1.00 0.28 2.57 31,291.44 | 0.038
500ms 542.27 1.00 0.9 3.70 32,463.65 | 0.132
la 522.97 1.00 1.95 2.57 32,612.74 0.4
Yel 387.82 1.00 13.2 1.96 32,731.44 2.55
10cs 448.22 1.00 22.4 1.85 32,746.41 5.4
3.2.7 Myvfst

Mvfst is an open source implementation of QUIC developed by Meta. It is written in
C++17 and was planned to be used to implement dualpath extension by modifying the
source code. However, it was not possible to realise this plan and the new frames were
added but all other progress could not be made. The main was the lack of detailed
documentation on the structure and inner workings of the codebase.

3.2.8 Proxygen

Proxygen contains the core C++ HTTP abstractions. It is developed by Meta. It is
used as the basis for building many HTTP servers, proxies, and clients. It also supports
HTTP/3 and Quic, making it suitable for the project. The goal was to use proxygen
to build two servers and one client. It was however not possible due to errors during
building. The main error that persisted was an internal compiler error. No amount of
troubleshooting could solve this problem.

3.3 Mathematical Analysis

3.3.1 Model Definition

In this section we develop two models post-copy and dual-path and mathematically
analyse them using probability theory to determine which model is expected to perform
better and under what circumstances. We make some assumptions to simplify our model
to make it mathematically comprehensible, namely:

1. The data is being migrated from the old server to the new server at a constant
uniform rate.

2. The round trip times (RTT) between the three entities (2 servers and 1 client)
remain unchanged during migration.

3. If there is a need for synchronization between two servers then it is done instantly
so it has negligible effect.

42

4. The amount of data requested by the client is constant.

5. The data requested by the client is independent of the previous requests it has
made.

6. The data requested by the client is random i.e. it is equally likely that any data
on the server can be requested by the client

7. There are no packet losses and there is no packet fragmentation at the IP layer.

8. The time it takes for processing the packet is negligible compared to the RTT

Table 3.2: List of parameters considered in the model

Variable Restriction Description

Time elapsed since server
migration frame received

The round-trip time from new

t 0<t<t

¥ server to old server
, , The time duration to complete
t t' >t . .
the migration
. The round-trip time between
new new server and client
, The round-trip time between old
old

server and client

The time it takes for a client to
receive the response of a request
to a server

Client Response Time
(CRT)

3.3.2 Calculating the probability that the requested data is
found at the new server

Since, data is being migrated to the new server at a constant rate, the probability of
a certain piece of data being present in the new server should increase uniformly with
time.

Let us define two events R and ~ R (because they are complementary events). R
is the case when the client requests a certain piece of data and it is found in the new
server ~ R is the case when the client requests a certain piece of data and it is not
found in the new server

P(R) =t/

Hence, P(~ R) =1— P(R)=1— (t/t')

3.3.3 Calculating the expected client response time conditioned
upon time

E' is the expected value, our objective here is to find conditional expected CRT given
the conditional probabilities and their outcomes in terms of the RTT. The expected
outcome is the weighted sum of costs where each cost is weighted by the likelihood of

43

that cost. In our case the cost of each event is the CRT in case of that particular event.
E[Client Response Time| = P(R) x CRT[R] + P(~ R) *x CRT[~ R|

In the case of dual-path, in the case of event R, the new server will respond with
the data so the CRT will be r,.,, but if it does not occur then, the data will be fetched
from the old server so CRT will be r,4. In the case of the post-copy scheme, if R occurs
then similarly to dual-path the new server will respond. But if the event ~ R occurs
then, the news server will have a page fault and will have to obtain the data from the
old server (requiring s time) and then send it to the client, so the CRT will be s + 7,040

Table 3.3: Table showing CRTSs in various scenarios

Client Response

Time (CRT) Event
Scheme R ~ R
Dual path T new Told
Post copy T new Thew + S

We have to split our migration timeline into two parts, the first part is during
path validation, i.e. when PATH_CHALLENGE and PATH_RESPONSE frames are
being exchanged. In both migration schemes, it requires 7,¢, time. However, in the
background during this time data is being migrated from the old server to the new
server. So, we consider two time periods , 0 < ¢ < rpep and e <t <t

3.3.4 Dual Path

For dualpath in the time period 0 < t < 7,04, the client is prohibited to exchange
data with the new server until the PATH RESPONSE frame is received. So, the
client will only send requests to the old server and it will take 7,4 time in sha Al-
lah. Eguaipatn|Client Response Time] = ryq

For dual path in the time period 1, <t < t/,

Eauatpatn|Client Response Time| = P(R) «x CRT|R] + P(~ R) x CRT[~ R]
= P(R)pew + P(~ R)To14
=t/t" % Tpew + (L= t/t)r o
= t/t'(Thew — Totd) + Told

3.3.5 Postcopy

For postcopy in the time period 0 <= t < 7., the client is prohibited to exchange
data with the new server until the PATH RESPONSE frame is received. So, the client
cannot send requests to the old server as it has completely disconnected with that server
and the CRT in this time period is infinite, (basically no messages are sent)

44

For post copy in the time period rpe, <t < t/,

E

p

ostcopy [Client Response Time] = P(R) «x CRT[R| 4+ P(~ R) «x CRT [~ R]
= P(R) * Tpew + P(~ R) * (Mnew +)
=t/t' % Tpew + (1 — /) (Tpew + 9)
=(1—=t/t")s + Tnew

3.3.6 Inter-scheme Comparison

Let us now compare and find the scenario when dual path will be superior to post-copy
i.e. the response time of post-copy will be higher than that of dual path. In the time
period, 0 < t < rpey, dual path already has a lower CRT as its CRT is finite but that
of post-copy is infinite. Now, let us mathematically compare in the other time period,

Eduaipatn|Client Response Time] < Eposteopy|Client Response Time]

or, P(R)rpew + P(~ R)roq < P(R) * Tpew + P(~ R) * (Thew +)

or, P(~ R)roq < P(~ R) * (Thew + $) [subtracting P(R)7e, from both sides]

or, Toiq < Tnew +$ [Dividing both sides by P(~ R), it is assumed that P(~ R) will never
be equal to zero in this time frame]

So, when 7,4 < Tpew + s then dual path will have a lower client response time in sha
Allah. Below are two graphs, demonstrating this fact

N

E [Client Response Time]

Time 3

Figure 3.8: Comparison between Eg,q (red) and Eposcopy (black), the parameters are
t = 2'97rnew = 0-577’0ld = 157 §=2.2

We see in the graph above that since ., + s = 2.7 which is greater than r,; = 1.5

SO, Tod < Tnew + S is satisfied and dualpath has an overall lower Expected CRT than
postcopy.

45

N

E [Client Response Time]

0 1 2 Time 3

Figure 3.9: Comparison between Eg,q (red) and Epsicopy(black), the parameters are
=29 Frow = 0.5 7g = 1.5, 5 = 0.7

We see in the graph above that since 7., + s = 1.2 which is lesser than r,q = 1.5
SO, Tog < Thew + S is not satisfied and dualpath has an overall higher Expected CRT
than postcopy.

3.3.7 Findings

We can therefore conclude that dualpath is better in the time period 0 < t < Tpeu,
but in the other time period until the end of the migration the superiority of dualpath
depends on the on condition 7,4 < hew + S being true.

46

Chapter 4

Conclusion and Future Works

The goal of our thesis was to work on top of the paper “EXTENDING MVFST TO
SUPPORT ENHANCED SERVER-SIDE MIGRATION IN QUIC” [25] via implement-
ing various live container migration techniques like Pre-Copy and Post-Copy. and pro-
viding a comparative analysis with dual-path migration using Mvfst and Proxygen. The
live container migration techniques depend on three phases Stop-and-Copy, Push phase
and Pull phase. In our work, we setup and configured the servers using Docker and
Nginx. We demostrated the migration phases and collected the data via migration
tools like rsync. However, due to technical difficulties and lack of expertise in this
domain (coupled with lack of resources) we as novice students couldn’t integrate Mvfst
or Proxygen for dual-path migration for that the future goal of our thesis is to provide
a detailed analysis of the comparison between dual-path and live migration schemes in
QUIC server side migration.

In the future we aim to implement the dual path protocol detailed in the thesis.
MVEFST will be used as it contains a vast C++ library of QUIC implementation. Prox-
ygen will be used to set up the servers. Both are made and used by Meta, formerly
known as Facebook. CRIU will be used to facilitate the migration process. We will
simulate an environment where live migration will take place while the client will re-
ceive service from the servers. We aim to compare the performace of the dual path
protocol with the other existing protocols using experimental data. We will also see
whether there is any measureable performace degradation, or downtime - things that
affect quality of service during the migration process. That will help establish the dual
path migration method as a viable technique of live migration.

47

1]

[10]

[11]

[12]

[13]

Bibliography

JohnDellaverson, Tianxiangli, YanrongWang, Janalyengar, A. Afanasyev, and
LixiaZhang, “A Quick Look at QUIC.” 2018.

P. Kumar, J. Chen, and B. Dezfouli, “Quicsdn: Transitioning from tcp to quic for
southbound communication in sdns,” 07 2021.

J. Iyengar, E. Fastly, M. Thomson, and E. Mozilla, “RFC 9000 QUIC: A UDP-
Based Multiplexed and Secure Transport,” 2021.

E. M. M. Thomson and E. s. S. Turner, “RFC 9001 Using TLS to Secure QUIC,”
2021.

D. Stenberg, “Why QUIC [https://http3-explained.haxx.se/en/why-quic|,” 2018.

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C. Dorfman, J. Roskind,
J. Kulik, P. G. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, and W.-
T. Chang, “The quic transport protocol: Design and internet-scale deployment,”
2017.

M. Engelbart and J. Ott, “Congestion control for real-time media over quic,” in
Proceedings of the 2021 Workshop on Evolution, Performance and Interoperability
of QUIC, EPIQ 21, (New York, NY, USA), p. 1-7, Association for Computing
Machinery, 2021.

P. Kharat, A. Rege, A. Goel, and M. Kulkarni, “Quic protocol performance in
wireless networks,” pp. 0472-0476, 04 2018.

M. Palmer, T. Kriiger, B. Chandrasekaran, and A. Feldmann, “The quic fix for
optimal video streaming,” 09 2018.

V. Vu and B. Walker, “On the latency of multipath-quic in real-time applications,”
pp. 1-7, 10 2020.

J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Trans-
port.” RFC 9000, May 2021.

T. Volker, E. Volodina, M. Tiixen, and E. Rathgeb, “A quic simulation model for
inet and its application to the acknowledgment ratio issue,” pp. 737-742, 07 2020.

M. Seufert, R. Schatz, N. Wehner, B. Gardlo, and P. Casas, “Is quic becoming the
new tcp? on the potential impact of a new protocol on networked multimedia qoe,”
pp. 1-6, 06 2019.

48

http://web.cs.ucla.edu/~lixia/papers/UnderstandQUIC.pdf
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9001.html
https://http3-explained.haxx.se/en/why-quic

[14]

[15]

[16]
[17]

[18]

[19]

[25]

[26]

[27]

28]

Q. Coninck and O. Bonaventure, “Multipathtester: Comparing mptcp and mpquic
in mobile environments,” pp. 221-226, 06 2019.

M. Quadrini, M. Luglio, F. Zampognaro, C. Roseti, and A. Abdelsalam, “Quic-
proxy based architecture for satellite communication to enhance a 5g scenario,” 06
2019.

R. J. Saleh Alawaji, “IETF QUIC v1 Design,” 2021.

J. Zhang, L. Yang, X. Gao, G. Tang, J. Zhang, and Q. Wang, “Formal analysis
of quic handshake protocol using symbolic model checking,” IEEE Access, vol. 9,
pp. 14836-14848, 01 2021.

Y. Liu, Y. Ma, Q. D. Coninck, O. Bonaventure, C. Huitema, and M. Kiihlewind,
“Multipath Extension for QUIC,” Internet-Draft draft-ietf-quic-multipath-03, In-
ternet Engineering Task Force, Oct. 2022. Work in Progress.

J.-M. Chen, S. Chen, X. Wang, L. Lin, L. Wang, and J. Cui, “A virtual machine
migration strategy based on the relevance of services against side-channel attacks,”
Sec. and Commun. Netw., vol. 2021, jan 2021.

B. Bajic, I. Cosic, B. Katalinic, S. Moraca, M. Lazarevic, and A. Rikalovic, “Edge
computing vs. cloud computing: Challenges and opportunities in industry 4.0,” 10
2019.

A. Verma and V. Verma, “Comparative study of cloud computing and edge com-
puting: Three level architecture models and security challenges,” vol. 9, 08 2021.

S. Chithra, D. Maheswari, and C. Sethurathinam, “A comparative study on cloud
computing and edge computing with its applications,” vol. 12, 02 2022.

A. Yadav, L. Garg, and R. Mehra, Docker Containers Versus Virtual Machine-
Based Virtualization: Proceedings of IEMIS 2018, Volume 3, pp. 141-150. 01
2019.

L. Conforti, A. Virdis, C. Puliafito, and E. Mingozzi, “Extending the quic protocol
to support live container migration at the edge,” in 2021 IEEE 22nd International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
pp. 61-70, 2021.

D. CASU, “Extending mvfst to support enhanced server-side migration in QUIC:
protocol design and performance evaluation,” 2022.

M. Kanagarathinam, S. Singh, S. Jayaseelan, M. Maheshwari, G. Choudhary, and
G. Sinha, “Qsocks: O-rtt proxification design of socks protocol for quic,” IEEE
Access, vol. 8, pp. 1-1, 01 2020.

M. Hall-Andersen, D. Wong, N. Sullivan, and A. Chator, “nquic: Noise-based quic
packet protection,” pp. 22-28, 12 2018.

M. A. Altahat, A. Agarwal, N. Goel, and J. Kozlowski, “Dynamic hybrid-copy live
virtual machine migration: Analysis and comparison,” Procedia Computer Science,
vol. 171, pp. 1459-1468, 2020. Third International Conference on Computing and
Network Communications (CoCoNet’19).

49

https://www.cse.wustl.edu/~jain/cse570-21/ftp/quic/index.html
https://etd.adm.unipi.it/t/etd-09062022-144126/
https://etd.adm.unipi.it/t/etd-09062022-144126/

[29] L. Basyoni, A. Erbad, M. AlSabah, N. Fetais, A. Mohamed, and M. Guizani,
“Quictor: Enhancing tor for real-time communication using quic transport proto-
col,” IEEE Access, vol. PP, pp. 1-1, 02 2021.

[30] A. Kyratzis and P. Cottis, “Quic vs tep: A performance evaluation over lte with
ns-3,” Communications and Network, vol. 14, pp. 12-22, 01 2022.

20

	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview
	Server Migration and QUIC
	Challenges in server migration
	Solution by Integrating QUIC
	Contribution of the thesis
	Structure of the thesis

	Literature Review
	Background
	Overview of QUIC
	New Features of QUIC
	Before QUIC
	Comparison between QUIC and TCP
	Overview of HTTP 1, 1.1, 2 and 3
	Overview of TLS 1.2 and 1.3
	Overview of TLS 1.3 Integrated into QUIC
	Comparison between TCP-TLS and QUIC-TLS
	Multipath QUIC
	Edge Computing
	Container vs Virtual Machine

	Related Work

	Proposed Method
	Dual Path Server Migration with QUIC
	Implementation of Live Migration Phases with Docker
	Required Tools
	Container Migration Environment
	Environment Setup
	Observation on Stop-and-Copy Phase
	Observation on Push phase
	Collected Data
	Mvfst
	Proxygen

	Mathematical Analysis
	Model Definition
	Calculating the probability that the requested data is found at the new server
	Calculating the expected client response time conditioned upon time
	Dual Path
	Postcopy
	Inter-scheme Comparison
	Findings

	Conclusion and Future Works
	Bibliography

