
ISLAMIC UNIVERSITY OF TECHNOLOGY

Exploring The Effect of Code Coverage And
Maintainability for Identifying Software

Testability

By

Md. Fahim Abrar (180042101)

Muntasir Bin Alam (180042132)

Supervisor

Lutfun Nahar Lota

Assistant Professor

Dept. of CSE, IUT

A thesis submitted in partial fulfilment of the requirements

for the degree of B.Sc. in Software Engineering

Academic Year: 2021-2022

Department of Computer Science and Engineering

Islamic University of Technology (IUT)

A Subsidiary Organ of the Organization of Islamic Cooperation.

Dhaka, Bangladesh.

May 2023

Declaration of Authorship

We, Md. Fahim Abrar, Muntasir Bin Alam, declare that this thesis titled, ‘Exploring

The Effect of Code Coverage And Maintainability for Identifying Software Testability’

and the work presented in it is our own. We confirm that:

■ This work was done wholly or mainly while in candidature for a research degree

at this University.

■ Any part of this thesis has not been submitted for any other degree or qualification

at this University or any other institution.

■ Where we have consulted the published work of others, this is always clearly at-

tributed.

Submitted By:

(Signature of the Candidate)

Md. Fahim Abrar

May 2023

(Signature of the Candidate)

Muntasir Bin Alam

May 2023

i

ii

Exploring The Effect of Code Coverage And

Maintainability for Identifying Software

Testability

Approved By:

Lutfun Nahar Lota

Thesis Supervisor,

Assistant Professor,

Department of Computer Science and Engineering,

Islamic University of Technology (IUT), Dhaka, Bangladesh.

Abstract

The ability of code to reveal its flaws, especially during automated testing, is

known as software testability. The program being tested must be able to with-

stand testing. The coverage of the test data provided by a specific test data

generation algorithm, on the other hand, is what determines whether a test will

be successful. To clarify whether and how software testability affects test coverage.

However little empirical evidence has been presented. In this article, we suggest a

technique to clarify this issue. The testability of programs is determined using a

variety of source code metrics, and our suggested framework builds machine learn-

ing models using the coverage of Software Under Test (SUT) provided by various

automatically generated test suites.The cost of additional testing is decreased be-

cause the resulting models can anticipate the code coverage offered by a particular

test data generation algorithm before the algorithm is even run.To measure the

testability of source code, a concrete proxy called predicted coverage is used. The

correlation between code coverage and maintainability is crucial in assessing the

testability of software, as high code coverage combined with well-maintained code

facilitates the creation of comprehensive test cases and ensures thorough testing

of critical paths and edge cases.

Acknowledgements

We would like to express our heartfelt thanks to Allah Subhanu Wata’ala for giving us

the strength to finish this study and being with us when no one else was.

We are grateful to our loved ones for supporting us from the beginning to the end of

our research work. We also extend our sincere gratitude to our thesis supervisor Lutfun

Nahar Lota for her constant encouragement and support throughout our study.

We would not have been able to complete this research without the guidance and assis-

tance of several individuals who contributed in various ways. We would like to acknowl-

edge and appreciate their valued help.

iv

Contents

Declaration of Authorship i

Approval ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 4

2 Dataset Comparison 6

3 Methodology 8
3.1 Proposed Method . 8

3.1.1 Related Work . 9
3.1.2 Literature Review . 13

4 Future Work 16

Bibliography

Chapter 1

Introduction

Software testability metrics primarily assess how well a software artifact—such

as a software com- ponent, system, or set of requirements—supports testing in a

test environment [1]. Finding sys- tem flaws (if any) through testing is more com-

fortable if the software artifact is highly testable. The process of creating faultfree

programs is time- consuming and expensive because software test- ing is an irra-

tional problem [2]. Before any testing is done, testability provides a prediction of

how much software testing will aid in identifying flaws. However, due to various

subjective definitions, measuring testability is difficult.A recent study found that

it is unclear how to measure testability and how to deal with relevant problems

like quan- tifying [3]. Regardless of the actual conditions and results of software

testing, numerous formu- lations and metrics for measuring testability have been

proposed [4]–[6]. The majority of them focus on evaluating the testability of imple-

mentation (source code) [5]. Despite numerous studies on software testability, we

found that the connection between testability and test adequacy standards when

automated software testing tools are being used has not been investigated. We can

better un- derstand the current challenges and issues with automated testing by

measuring and predicting testability. Because testability must be directly related

to how simple software testing is, we are compelled to suggest a useful method for

calcu- lating and predicting testability using the results of testing.Testing effort is

the first step in estab- lishing a connection between testability and soft- ware met-

rics (TE)In 1972, Edsger W. Dijkstra made the seminal quote: ”Program testing

can be used to show the presence of bugs, but never to show their absence!”[7]. In

order to assess the effective- ness of testing, test adequacy criteria like code cover-

age have emerged [2].A sufficient test suite satisfies a specified adequacy criterion

and offers sufficient test data to guarantee the accuracy of he software under test

1

Chapter 1. Introduction 2

(SUT).The effort (budget) necessary to locate and run a test suite that satis- fies

a particular adequacy criterion can be defined as testing effort when taking test

adequacy into consideration.Hence testability of a component, X, is approximately

equaled to the required testing effort, RTE(X): T(X) RTE(X) (1) The required

effort, including the test data generation and test execu- tion, is directly related to

the percentage of the adequacy criterion, C(X), satisfied by that effort, i.e.:RTE ()

C(X) (2)The required effort may be un- limited and unquantifiable because there

may not be a test suite to satisfy a given criterion on a spe- cific program. For

instance, the infinite number of paths or existing infeasible paths may prevent the

path coverage criterion from being fully sat- isfied with programs containing loop

constructs. Only the portion of the adequacy criterion will be satisfied in these

circumstances because the testing budget limits the testing effort in the case of

an unsatisfiable adequacy criterion.The transi- tive property forrelations (1) and

(2) results:T(X) C(X) (3)The degree to which a test adequacy crite- rion could be

satisfied following testing is known as software testability. A crucial component

of measuring testability is the relationship between runtime data, such as the per-

centage of tests that satisfy the test adequacy criterion, and the static properties

of the program, such as source code metrics. On a sizable dataset of experimental

data, a machine learning approach is used to achieve this goal. Our approach

involves two steps: First, automated testing is used to find the code cov- erage of

actual software projects. Second, using a machine learning approach, a set of met-

rics specific to each piece of software are mapped to the relevant coverage data.The

resulting model is then used to forecast the Software Under Test (SUTtestability

)’s prior to the application of tools for automatic test data generation and it aids

the developer in understanding accessible code cov- erage.

1.1 Motivation

Achieving high testability and maintainability in software development holds nu-

merous motiva- tional aspects that contribute to overall project success. These

aspects not only impact the qual- ity and reliability of the software but also lead

to increased efficiency and cost-effectiveness.

Testability serves as a powerful motivation by providing developers with the means

to thor- oughly assess and validate the functionality of their code. When software

is designed with testa- bility in mind, it becomes easier to identify and isolate

defects, thereby reducing the time and ef- fort required for debugging. Robust

Chapter 1. Introduction 3

test suites enable developers to quickly detect issues, stream- line the debugging

process, and ensure that the software meets the desired specifications. This mo-

tivation leads to enhanced confidence in the software’s behavior and empowers

developers to make changes without fear of unintended conse- quences.

Similarly, maintainability acts as a driving force throughout the software devel-

opment life- cycle. By focusing on maintainability, developers ensure that the

software remains adaptable and flexible to accommodate future changes and en-

hancements. When code is well-organized, mod- ular, and follows established

coding conventions, it becomes easier to understand, modify, and ex- tend. This

promotes efficiency in both bug fixes and feature additions, as developers can

quickly locate and address specific areas of the codebase without causing ripple

effects. Maintaining clean and maintainable code encourages collaboration among

development teams, as multiple develop- ers can work on different components

concur- rently, reducing bottlenecks and accelerating de- velopment cycles.

From a financial perspective, the motivational impact of testability and maintain-

ability is signifi- cant. A highly testable software system saves costs by minimizing

the risk of software failures and reducing the need for extensive manual testing.

Comprehensive test suites not only catch bugs early but also provide a safety net

during system upgrades and changes. With efficient maintain- ability practices

in place, businesses can respond promptly to market demands and introduce new

features or enhancements swiftly, giving them a competitive edge. Furthermore,

maintenance costs are reduced as developers spend less time deciphering convo-

luted code and more time on productive tasks.

In conclusion, the motivational aspects of testability and maintainability in soft-

ware devel- opment are far-reaching. They promote software quality, increase

efficiency, and lead to cost sav- ings. By prioritizing testability, developers can en-

sure rigorous testing and confident code changes, while maintainability empowers

them to adapt and evolve the software with ease. Embracing these aspects fosters

a culture of excellence, where teams take pride in delivering high-quality, robust,

and adaptable software solutions.

Chapter 1. Introduction 4

1.2 Problem Statement

Testability and maintainability are critical aspects of software development, yet

they often pose significant challenges that hinder the efficient and effective delivery

of high-quality software solutions.

Testability Problem: One of the major challenges in software develop- ment

is achieving adequate testability. Many software systems are complex and tightly

coupled, making it difficult to isolate individual components for testing. Lack of

proper design considerations and poor code structure can lead to code that is hard

to test, result ing in inadequate test coverage and potentially undetected defects.

Insufficient testability leads to increased debugging time, decreased confidence in

the software’s correctness, and a higher likelihood of releasing faulty software to

production.

Maintainability Problem: Maintaining software over its lifecycle is crucial for

adapting to changing requirements, fixing bugs, and adding new features. How-

ever, maintaining software can be challenging, especially when it lacks proper

maintainability practices. Soft ware systems with tangled code, lack of documen-

tation, and a lack of adherence to coding standards become in creasingly difficult

to modify, leading to increased effort, time, and costs for maintenance tasks. More-

over, when software is not designed with maintainability in mind, it becomes prone

to technical debt, making it harder to evolve and hindering agility in response to

market demands.

Existing QA datasets are designed to answer questions over a single paragraph

or document as the context, thus failing to test a system’s ability to answer com-

plex questions spanning multiple contexts.

Interdependency and Impact: Testability and maintainability are interdepen-

dent. Poor testability often goes hand in hand with low maintainability, as code

that is hard to test is usually challenging to maintain as well. The lack of clear sep-

aration of concerns, excessive coupling, and inadequate documentation hampers

the ability to isolate and modify specific functionalities without unintended con-

sequences. The interdependency between testability and maintainability creates a

vicious cycle, where difficulties in maintaining the software also impede efforts to

improve its testability.

Chapter 1. Introduction 5

Impact on Software Quality and Cost: The deficiencies in testability and

maintainability have a direct impact on software quality and cost. Inadequate

testability results in lower test coverage, leaving critical parts of the software

untested and increasing the probability of defects in production. Similarly, poor

maintainability slows down bug fixes, feature enhancements, and software updates,

leading to longer time-to-market and increased development costs. Technical debt

accumulated due to poor maintainability further exacerbates the situation, as the

effort required to address the debt increases over time.

Chapter 2

Dataset Comparison

Variability in results obtained from different datasets, highlighting the impact of

factors such as the size of the software system, its complexity, test coverage, types

of tests conducted, and the outcomes of those tests. In this analysis, we have

explored available datasets, focusing on parameters like lines of code, number of

classes and methods, object-oriented metrics such as inheritance depth and poly-

morphism, test coverage percentage, and the various types of tests performed,

including unit tests, integration tests, and acceptance tests. Additionally, we have

considered the results of these tests, encompassing the number of failures and the

severity associated with each failure.

However, the issue arises from the observed discrepancies and inconsistencies when

comparing results across different datasets. Despite the efforts to collect and an-

alyze various datasets, we face challenges in reconciling the differing outcomes.

These variations in results suggest that the testability and maintainability of soft-

ware systems are influenced by multiple factors, which can have a significant im-

pact on the overall performance and reliability of the software.

One significant factor contributing to divergent outcomes is the size of the soft-

ware system. The size, measured in terms of lines of code, number of classes,

and methods, can vary significantly from one system to another. The complexity

of the software system also plays a crucial role. Object- oriented metrics such

as inheritance depth and polymorphism provide insights into the intricacy of the

codebase. Complex systems may exhibit different behaviors and require specific

testing approaches to ensure adequate coverage. Test coverage, another vital fac-

tor, represents the percentage of code exercised by the tests. It is essential to have

6

Chapter 2. Dataset Comparison 7

comprehensive test coverage to identify potential issues and ensure the reliability

of the software. However, different datasets may exhibit varying levels of cover-

age, leading to disparate results. A dataset with higher test coverage may yield

more accurate and reliable outcomes compared to datasets with lower coverage.

Moreover, the types of tests conducted influence the results obtained. Unit tests,

integration tests, and acceptance tests each serve distinct purposes in assessing

the functionality and reliability of the software. The choice of test types can im-

pact the testability and maintainability assessment, as different types of tests may

reveal differ- ent aspects of the software’s behavior. Furthermore, the results of

the tests, including the number of failures and their severity, con- tribute to the

overall understanding of the software’s testability and maintainability. Datasets

with a higher number of failures or severe failures indicate potential weaknesses in

the software system, requiring closer attention and further analysis. Conversely,

datasets with fewer failures may indicate better testability and maintainability.

To address these challenges, it is crucial to establish a well-designed and com-

prehensive dataset that captures a diverse range of software systems, covering

different sizes, complexities, test coverage levels, test types, and outcomes. Such a

dataset would provide a more accurate representation of real-world scenarios and

enable the development of more reliable and effective machine learning models.

Additionally, by obtaining useful insights from the data, we can improve our un-

derstanding of the factors influencing testability and maintainability, paving the

way for enhanced software development practices and more robust systems. In

conclusion, the problem statement emphasizes the variability in results obtained

from different datasets, highlighting the importance of factors such as the size and

complexity of he software system, test coverage, types of tests conducted, and the

outcomes of those tests. Overcoming these challenges requires the establishment of

a well-designed and comprehensive dataset to develop accurate machine learning

models and gain valuable insights into testability and maintainability in software

systems.

Chapter 3

Methodology

3.1 Proposed Method

Our proposed framework for measuring testability encompasses a systematic five-

step approach. Figure 1 visually illustrates these steps, which involve gathering

software repositories, computing code coverage, calculating software metrics, train-

ing a machine learning model, and testing the accuracy of the model. To conduct

our research, we utilized the SF110 corpus [15], a comprehensive collection of more

than 23,000 classes derived from 110 different Java open-source projects hosted on

SourceForge, as the primary source of software repositories.

To measure the code coverage of various code segments within the repositories, we

employed two well-established tools: EvoSuite [15] and JDART [16]. These tools

were utilized to generate and execute test data, thereby enabling us to obtain pre-

cise measurements of code coverage. By encompassing both automated generation

and execution of test cases, we ensured thorough code coverage analysis.

Additionally, we performed a static analysis of the source code for each project

within the repository to compute relevant software metrics. These metrics were

carefully selected to capture essential aspects that influence the testability of soft-

ware systems. By assessing various factors such as the size of the software system in

terms of lines of code or number of classes and methods, as well as the complexity

measured through object-oriented metrics like inheritance depth or polymorphism,

we gained insights into the impact of these metrics on testability.

The computed metrics, alongside the runtime information obtained from code

8

Chapter 3. Methodology 9

coverage analysis, were combined to form a comprehensive dataset. This dataset

served as the foundation for training a machine learning model, enabling us to es-

tablish a meaningful relationship between the identified software metrics as static

properties and the code coverage as a measure of testability. By leveraging ma-

chine learning techniques, we aimed to uncover patterns and correlations within

the data, enabling us to predict the testability of software based on its inherent

characteristics.

To validate the effectiveness and accuracy of the trained machine learning model,

we conducted rigorous testing on a set of previously unseen data. This testing

phase allowed us to assess the model’s performance when exposed to new and

unfamiliar software instances, ensuring its reliability in real-world scenarios. By

comparing the predicted code coverage against the actual coverage achieved, we

could ascertain the model’s ability to accurately classify testability levels, ranging

from very low to very high.

In conclusion, our framework for measuring testability involved a comprehensive

and systematic approach, combining the utilization of software repositories, code

coverage analysis, software metric computation, machine learning mod- eling, and

rigorous testing. By employing these steps, we aimed to develop an effective

method- ology for assessing the testability of software systems, ultimately con-

tributing to the creation of robust and reliable software solutions.

3.1.1 Related Work

The use of source code metrics as a means to measure testability has become

a common practice in software development[1]. These metrics provide valuable

insights into the structural characteristics of the codebase that may impact its

testability. However, determining which metrics are most relevant to testability

often involves the application of static knowledge and established conventions.

Among the various metrics used to quantify testability, several complexity met-

rics have gained prominence. Cyclomatic complexity (CC), weighted method per

class (WMC), lack of cohesion of a method (LCOM), tight class cohesion (TCC),

and loose class cohesion (LCC) are some examples. These metrics aim to capture

different di- mensions of complexity within the codebase, and researchers have

Chapter 3. Methodology 10

explored their relationship with testability. However, despite their widespread us-

age, the precise connection between these complexity metrics and testability in

real-world software remains unclear.

In an attempt to shed light on this relationship, researchers proposed a metrics-

based model for object-oriented design testability (MTMOOD) [6]. They con-

ducted a study involving three medium sized projects and manually analyzed

the relation- ship between specific design metrics and testability. Linear regres-

sion analysis was employed to establish a connection between the metrics and

testability[2]. While this manual approach provided some insights, it is prone to

errors and its generalization to other projects can be questioned.

To overcome the limitations of manual computation, alternative approaches have

been explored. Controllability and observability concepts have emerged as key fac-

tors in assessing software testability. The COTT framework [3] offers developers

a structured framework for instrumenting object-oriented software to achieve de-

sired levels of controllability and observability. By instrumenting the system under

test (SUT) and monitoring its behavior during execution, developers can gather

valuable information about its controllability and observability. However, applying

this framework to large-scale source code can be challenging and resource-intensive.

Another aspect worth considering is the role of runtime testing in assessing testa-

bility. While static metrics provide insights into the structural characteristics of

the code, runtime testing allows for the evaluation of how the code behaves in

different scenarios. Runtime testing involves executing the SUT and observing its

behavior during various test cases. By analyzing the SUT’s response to different

inputs and stimuli, developers can gain insights into its testability.

In conclusion, the measurement of testability using source code metrics is a well-

established practice in software development. Complexity metrics, such as cyclo-

matic complexity and cohesion metrics, have been widely used to quantify testa-

bility. However, the precise relationship between these metrics and testability in

real-world software is not yet fully understood. The MT- MOOD model attempted

to establish a connection between design metrics and testability, but its manual

approach may introduce errors and limit its generalizability. Controllability and

observability concepts have also been explored, but applying them to large code-

bases can be challenging. Additionally, runtime testing provides valuable insights

into testability by evaluating the behavior of the code during execution. Further

Chapter 3. Methodology 11

research and exploration are needed to gain a deeper understanding of the rela-

tionship between metrics and testability, and to develop more comprehensive and

automated approaches for assessing testability in software systems.

To test their approach, the authors conducted a study in which they collected

data on a set of software systems and their corresponding tests, and used this

data to build a model for predicting testability. The model was trained using a

number of object-oriented measures as features, as well as information about the

coverage and quality of the tests. The authors found that their model was able to

accurately predict testability and that the combination of measures they used was

more effective than any individual measure alone[4]. The authors conclude that

incorporating information about test quality into measures of software testability

can provide a more accurate and complete picture of the testability of a software

system. They suggest that this approach could be useful for developers looking

to identify testing challenges and improve the testability of their software Calla-

han et al., 2000”Automated Software Testing Using ModelChecking” is a paper

that discusses the use of model-checking, a technique for automatically verifying

the correctness of software systems, for the purpose of testing. The authors ar-

gue that model-checking can be an effective approach to automated testing, as

it can provide comprehensive coverage of the behavior of a software system and

can identify defects that might be missed by traditional testing techniques[5].The

authors describe the use of model checking for testing as follows: First, a model

of the software system is created, which represents the behavior of the system and

the conditions under which it is expected to operate. The model is then checked

against a set of properties or requirements that the system is expected to satisfy.

If the model-checker is able to find a counterexample to one of the properties, it

means that the system does not behave as expected and a defect has been identi-

fied. The authors present several case studies in which model-checking was used

to test software systems, including a real-time control system and a network pro-

tocol. They report that modelchecking was able to identify defects that had not

been detected by other testing methods, and that it was able to provide compre-

hensive coverage of the behavior of the systems. Overall, the authors conclude

that model checking is a useful technique for automated testing and can be an

effective complement to traditional testing methods. They suggest that it can be

particularly useful for testing safety critical or mission-critical systems, where the

consequences of defects can be severe.

Chapter 3. Methodology 12

Dataset Analysis. To conduct a data analysis on maintainability and code cover-

age, you would need a dataset that includes relevant metrics for both maintainabil-

ity and code coverage for a set of software projects[6]. Let’s assume we have such

a dataset containing information on various soft- ware projects. We can proceed

with the following steps for the data analysis:

Data Preparation: Collect the necessary dataset that includes metrics for main-

tainability (e.g., cyclomatic com- plexity, code duplication, coupling) and code

cov- erage (e.g., line coverage, branch coverage). En- sure the dataset is clean

and organized, removing any irrelevant or missing data points. Exploratory Data

Analysis (EDA):

Perform descriptive statistics on the maintainability metrics (mean, median, stan-

dard deviation) to gain insights into the overall maintainability of the projects.

Calculate summary statistics for code coverage metrics, such as the average code

coverage percentage and the distribution of coverage across different components.

Visualize the distributions and relationships between maintainability metrics and

code coverage metrics using histograms, scatter plots, or box plots. Correlation

Analysis: Calculate correlation coefficients (e.g., Pearson correlation) between

maintainability metrics and code coverage metrics to measure the strength and

direction of the relationship. Identify which maintainability metrics have a sig-

nificant correlation with code coverage and vice versa. Visualize the correlations

using a correlation matrix or heat map to identify strong positive or negative as-

sociations between the metrics[7]. Statistical Analysis:

Perform statistical tests, such as t-tests or ANOVA, to determine if there are

significant differences in code coverage between projects with different levels of

maintainability (e.g., high maintainability vs. low maintainability). Conduct re-

gression analysis to explore the relationship between maintainability metrics and

code coverage, considering other potential confounding factors.[1] Machine Learn-

ing Modeling (Optional):

Build a predictive model using machine learning algorithms to predict code cover-

age based on maintainability metrics. Split the dataset into training and testing

sets, train the model on the training set, and evaluate its performance on the

testing set using appropriate evaluation metrics (e.g., accuracy, precision, recall).

Interpretation and Conclusion:

Chapter 3. Methodology 13

Summarize the findings from the data analysis, highlighting any significant rela-

tionships or patterns observed between maintainability and code coverage. Discuss

the implications of these findings for software development practices, emphasizing

the importance of maintaining code quality and the impact it has on test cover-

age. Provide recommendations for improving maintainability and code coverage

based on the insights gained from the analysis. By following these steps, you can

conduct a comprehensive data analysis on maintainability and code coverage, re-

vealing insights into the relationship between these two factors and their impact

on software quality.

3.1.2 Literature Review

Zakeri-Nasrabadi and Parsa, 2021Predicting software testability involves using ma-

chine learning techniques to build a model that canaccurately predict the testabil-

ity of a software system based on certain characteristics or features of the system.

This can be useful for developers, as it can help them identify potential test-

ing challenges early in the development process and take steps to address them.

To build a model for predicting testability, developers will typically first gather

a dataset of software systems and their corresponding testability scores. These

scores can be determined using object-oriented measures or other techniques for

evaluating testability. The developers will then use this dataset to train a machine

learning model to predict testability based on the features of the software systems

in the dataset. Once trained, the model can be used to predict the testability of

new software systems by inputting the relevant features of the system into the

model.

Predicting software testability can be a complex task, as it involves understand-

ing the relationships between various characteristics of a software system and its

testability. However, with sufficient data and the right machine learning tech-

niques, it is possible to build accurate models that can help developers identify

testing challenges and improve the testability of their software. Terragni et al.,

2020a”Measuring Software Testability Modulo Test Quality” is a paper that dis-

cusses the use of object-oriented measures to evaluate the testability of software

systems. The authors argue that traditional measures of software testability, which

Chapter 3. Methodology 14

focus on the characteristics of the software itself, are insufficient for accurately pre-

dicting testability. Instead, they propose using a combination of measures that

take into account both the characteristics of the software and the quality of the

tests that have been designed for it. The paper describes a study in which the au-

thors collected data on a set of software systems and their corresponding tests, and

used this data to build a model for predicting testability. The model was trained

using a number of object-oriented measures as features, as well as information

about the coverage and quality of the tests. The authors found that their model

was able to accurately predict testability and that the combination of measures

they used was more effective than any individual measure alone. The authors con-

clude that incorporating information about test quality into measures of software

testability can provide a more accurate and complete picture of the testability of

a software system. They suggest that this approach could be useful for developers

looking to identify testing challenges and improve the testability of their software.

Oluwatosin et al., 2020”Object-Oriented Measures as Testability Indicators: An

Empirical Study” is a paper that investigates the use of object-oriented measures

as indicators of software testability. The authors conducted a study in which they

collected data on a set of software systems and their corresponding test results, and

used this data to build a model for predicting testability. The model was trained

using a number of objectoriented measures as features, and the authors used the

model to evaluate the effectiveness of these measures as indicators of testability.

The authors found that several objectoriented measures, including coupling, co-

hesion, and inheritance depth, were significantly correlated with testability. They

also found that using a combination of these measures was more effective at pre-

dicting testability than using any single measure alone. The authors conclude that

object-oriented measures can be useful indicators of software testability, and that

using a combination of these measures can provide a more accurate picture of the

testability of a software system. They suggest that this information could be use-

ful for developers looking to improve the testability of their software and identify

testing challenges. Fraser and Arcuri, 2014 Large-Scale Evaluation of Automated

Unit Test Generation Using EvoSuite” is a paper that presents the results of a

study on the effectiveness of using EvoSuite, an automated unit test generation

tool, to improve the testability of software systems. The authors used EvoSuite

to generate unit tests for a large dataset of Java programs, and compared the re-

sults to a baseline set of tests that had been manually written by developers. The

authors found that EvoSuite was able to generate tests that covered a significant

portion of the code in the programs in their dataset, and that the tests generated

Chapter 3. Methodology 15

by EvoSuite had a higher rate of statement coverage (a measure of the propor-

tion of the code that was exercised by the tests) than the baseline tests. They also

found that the tests generated by EvoSuite were more effective at detecting defects

in the programs, as they were able to uncover a higher number of defects compared

to the baseline tests[8]. The authors also conducted a user study in which they

asked developers to evaluate the quality of the tests generated by EvoSuite. The

developers reported that the tests generated by EvoSuite were of similar or higher

quality compared to the baseline tests. Overall, the authors found that EvoSuite

was effective at generating high-quality unit tests that improved the testability

of the programs in their dataset. They suggest that automated test generation

tools like EvoSuite could be a useful tool for improving the testability of software

systems and helping developers to write more effective tests. Terragni et al., 2020

”Measuring Software Testability Modulo Test Quality” is a paper that discusses

the use of object-oriented measures to evaluate the testability of software systems.

The authors argue that traditional measures of software testability, which focus on

the characteristics of the software itself, are insufficient for accurately predicting

testability. Instead, they propose using a combination of measures that take into

account both the characteristics of the software and the quality of the tests that

have been designed for it.[?]

Chapter 4

Future Work

Examining the connection between testability and software smells using different

source code met- rics opens up several avenues for future work. Here are some

potential directions for further in- vestigation:

Correlation Analysis: Conduct a thorough cor- relation analysis between testa-

bility metrics (such as code coverage, fault density, or test execution time) and

various software smell metrics. Explore whether specific types of smells, such as

long methods, duplicated code, or excessive class com- plexity, are strongly cor-

related with reduced testa- bility. Investigate the strength and direction of these

correlations to understand the relationship between smells and testability more

precisely.

Smell Detection Tools: Develop or enhance existing tools that can accurately

detect software smells. This includes expanding the range of sup- ported smells

and improving the accuracy of smell detection algorithms. Utilize these tools to

analyze a large corpus of software projects and collect data on the presence and

severity of smells. Then, examine how these smells impact testability metrics and

provide insights into which smells have the most significant effect on testability.

Predictive Modeling: Explore the possibility of building predictive models to esti-

mate testability based on software smell metrics. Use machine learning techniques

to train models on datasets containing both smell metrics and correspond- ing

testability metrics. Investigate which combination of smells has the most sig-

nificant impact on testability, and develop models that can accurately predict

16

Chapter 4. Future Work 17

testability based on smell information alone. Validate the models using cross- val-

idation techniques and evaluate their performance on unseen projects.

Testability Metrics for Smells: Develop specialized testability metrics that specif-

ically target software smells. These metrics should capture the impact of different

smells on various aspects of testability, such as coverage, maintainability of test

code, or ease of writing test cases. By quantifying the testability impact of in-

dividual smells, it becomes easier to prioritize and address smells that have the

most adverse effect on testability. Empirical Studies: Conduct empirical studies

to validate the findings from correlation analyses and predictive models. Design

controlled experiments or case studies to investigate the impact of specific smells

on testability in real-world software projects. Compare testability metrics before

and after smell refactoring to assess the effectiveness of smell removal techniques

in improving testability. Collect qualitative feedback from developers regarding

the challenges they face in testing code with different smells.

Tool Integration: Integrate testability metrics and software smell detection tools

into popular Integrated Development Environments (IDEs) or Continuous Integra-

tion (CI) systems. This integration will provide real-time feedback to developers

about the testability implications of introduced smells, allowing them to take cor-

rective actions early in the development process. Evaluate the effectiveness of such

integrations through user stud- ies and assess the impact on overall code quality

and testability.

By pursuing these future directions, researchers and practitioners can gain a deeper

understanding of the connection between testability and software smells. This

knowledge can inform the development of tools, guidelines, and best practices

that enable developers to proactively address smells and enhance testability in

software systems.

Bibliography

[1] N. Anwar and S. Kar, “Review paper on various software testing techniques

strategies,” Global Journal of Computer Science and Technology, pp. 43–49, 05

2019.

[2] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test

generation using evosuite,” ACM Transactions on Software Engineering and

Methodology, vol. 24, pp. 1–42, 12 2014.

[3] T. Heričko and B. Šumak, “Exploring maintainability index variants for soft-

ware maintainability measurement in object-oriented systems,” Applied Sci-

ences, vol. 13, 02 2023.

[4] N. Kasisopha, S. Rongviriyapanish, and P. Meananeatra, “Method evaluation

for software testability on object oriented code,” 09 2020, pp. 308–313.

[5] V. Terragni, P. Salza, and M. Pezzè, “Measuring software testability modulo

test quality,” 07 2020, pp. 241–251.

[6] O.-J. Oluwatosin, A. Balogun, S. Basri, A. Akintola, and A. Bajeh, “Object-

oriented measures as testability indicators: An empirical study,” Journal of

Engineering Science and Technology, vol. 15, pp. 1092–1108, 04 2020.

[7] M. Zakeri-Nasrabadi and S. Parsa, “Learning to predict software testability,”

03 2021, pp. 1–5.

[8] R. Sharma and A. Saha, “A systematic review of software testability measure-

ment techniques,” 09 2018, pp. 299–303.

34

Powered by TCPDF (www.tcpdf.org)

18

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

