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Abstract

Classifying cancer using gene expression can be an important tool for under-

standing the specific characteristics of a patient’s cancer and for guiding the

most appropriate treatment approach. By identifying the specific genes that are

involved in the development and progression of a particular cancer, it may be

possible to tailor treatment to target those genes and improve outcomes for the

patient. In addition, by understanding the genetic makeup of a patient’s cancer, it

may be possible to identify clinical trials or targeted therapies that may be more

effective for that patient. Here, in our study, we worked with the TCGA Pan-

Cancer dataset where we used the RNA-seq data for analyzing the gene expres-

sions. The dataset comprises 33 types of cancer. Our study mainly focuses on

implementing an explainable AI-based panCancer classification approach using

gene expression analysis. The goal is to accurately detect the type of cancer in in-

dividuals within a short time. We employed seven classifier algorithms- Logistic

Regression, SVM, XGBoost, Random Forest, MLP, 1-D CNN, and TabNet. To

enhance the performance of the models, we utilized feature selection techniques

such as Lasso, SelectFromModel, Select-K-Best, and ElasticNet. SelectFrom-

Model with 500 features yielded the best performance. We applied ensemble

methods of probability averaging and max voting, with probability averaging

achieving the highest accuracy of 96.60%. Validation of the selected features’

contribution and comparison with gene sets from DESeq2 analysis confirmed

their significance and relevance. This approach provides insights into cancer-

specific molecular mechanisms and pathways. Overall, our study demonstrates

the effectiveness of feature selection in reducing dimensionality while maintain-

ing predictive power and biological relevance.
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Chapter 1

Introduction

1.1 Overview

Cancer is one of the most common causes of death in the whole world, caus-

ing the deaths of nearly 10 million people in 2020 alone [1]. Between 30 and

50 percent of cancer cases can be prevented by quickly diagnosing them and

implementing existing evidence-based prevention strategies [1]. There are sev-

eral ways to detect cancer early, including screenings such as mammograms for

breast cancer and colonoscopies for colon cancer, as well as regular check-ups

and self-exams to identify any unusual changes in the body [2]. It’s important for

individuals to be aware of their own bodies and to report any unusual symptoms

to their healthcare provider for further evaluation. Many cancer patients have

a high chance of recovery if they are diagnosed early and treated appropriately.

Sometimes, a surgeon must know the abnormal cell condition of a patient in the

middle of an operation. That’s why it is vital to diagnose cancer very quickly so

that treatment can start as soon as possible.

The domain of computer science most relevant to our research is Bioinformatics.

Bioinformatics is a field of study that combines biology, computer science, and

information technology to analyze and interpret biological data. It is a multi-

disciplinary field that involves the use of computational techniques and tools to

analyze large amounts of biological data, such as DNA sequences, protein struc-

tures, and gene expression patterns. The goal of bioinformatics is to understand

the underlying biology of living organisms and to use this knowledge to improve

human health and advance scientific research. Bioinformatics has applications

in a wide range of areas, including genomics, proteomics, drug discovery, and

systems biology. It is an important field of study that is helping to drive many of

the advances in modern biology and medicine.

A significant portion of Bioinformatics research is focused on cancer diagnosis.

7
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By using computational techniques and tools, bioinformatics can help analyze

large amounts of biological data, such as gene expression data, and identify pat-

terns and trends that may be useful for cancer classification and diagnosis [3].

Bioinformatics can also be used to predict the response of cancer cells to differ-

ent treatments, which can help guide the selection of the most appropriate treat-

ment for a particular patient. In addition, bioinformatics can be used to identify

potential targets for new cancer therapies, such as specific genes or proteins that

are over or under-expressed in cancer cells [4]. Overall, bioinformatics has the

potential to significantly improve our understanding of cancer and help improve

patient outcomes.

1.2 Understanding Cancer

Cancer is a multifaceted disease that is characterized by the uncontrolled devel-

opment and division of aberrant cells [5]. Benign tumors are growths that are

not cancerous and do not spread to other regions of the body, whereas malig-

nant tumors are cancerous growths that can spread to other parts of the body [6].

Hematologic cancers are those that affect organs and tissues that are responsible

for blood formation, such as bone marrow and the lymphatic system. Solid tumor

cancers, on the other hand, are those that grow tumors in organs other than those

that are responsible for blood formation [7]. Hematologic malignancies involve

aberrant blood cell formation, which has an impact on the body’s ability to fight

infections and regulate bleeding. On the other hand, cancers of solid tumors can

affect any organ and vary in how aggressively they behave [7]. The mutation of

genes is a necessary step in the progression of cancer, which can be caused by a

variety of causes including consumption of nicotine and alcohol, genetics, food,

physical activity, infections, radiation exposure, and chemical exposure. It is a

difficult process because there are various factors that can contribute to cancer

to determine which genes are responsible for each type of cancer [8]. Ongoing

research is aimed at improving our understanding of the genetic and environ-

mental impacts of cancer in order to develop techniques for cancer prevention,

diagnosis, and therapy.
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Figure 1.1: Tumor cell development

1.3 Gene Expressions for Cancer Identification

Gene expression analysis is a useful approach for classifying cancer and identi-

fying the specific type of cancer that an individual may have [9]. By analyzing

the expression levels of certain genes, it is possible to determine the likelihood

that an individual has a particular type of cancer and to differentiate between

different types of cancer [9].

There are several different approaches that can be used for gene expression anal-

ysis, including microarray analysis and RNA sequencing [10]. Microarray anal-

ysis involves hybridizing labeled RNA samples to a microarray chip, which con-

tains probes for many different genes [10, 11]. This allows researchers to mea-

sure the expression levels of multiple genes simultaneously. RNA sequencing,

on the other hand, involves sequencing the RNA molecules in a sample and an-

alyzing the sequence data to determine the expression levels of different genes

[10, 11].

1.4 Motivation and Scope

For proper diagnosis, prognosis, and treatment planning, cancer must be properly

classified due to the disease’s complexity and heterogeneity [12]. Time, erro-

neous results accuracy (cases of false positives or false negatives), invasiveness,

and high prices all contribute to the shortcomings of conventional cancer diag-

nostic approaches such as intrusive biopsies and imaging studies (X-Rays, CT
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scans, ultrasounds, MRIs, and PET scans). In light of these difficulties, it is clear

that new methods are required, ones that are less invasive, more cost-effective,

and faster at yielding reliable results. Subjective criteria are also frequently used

in conventional cancer classification systems, which can lead to discrepancies

and accuracy issues [13]. And so, there is a rising interest in creating rigorous

and objective methods for cancer classification in light of recent developments

in genetic technologies and computational methodologies. Machine learning and

data-driven methods can help researchers find previously unseen connections in-

side massive cancer datasets, leading to more precise diagnoses. These develop-

ments have the potential to dramatically alter cancer diagnosis and customized

treatment, leading to better overall patient outcomes [14].

On the other hand, since circulating miRNAs may be identified directly from bi-

ological fluids such as blood, urine, saliva, and pleural fluid and are less intrusive

than the invasive techniques currently employed for cancer detection, the use of

these molecules as potential biomarkers is being discussed [12]. mRNA, or mes-

senger RNA, is a type of RNA that carries genetic information from DNA to the

ribosome, where it is used to synthesize proteins [15]. In normal cells, mRNA

plays a crucial role in the production of proteins that are necessary for the proper

functioning of the cell. In cancer cells, however, the production of mRNA and

the synthesis of proteins can be altered, leading to the development and growth of

cancer [16]. For example, certain genes may become overactive or underactive

in cancer cells, leading to the production of abnormal proteins or the suppression

of proteins that normally help to regulate cell growth and division.

Researchers are studying the role of mRNA in cancer to better understand the

molecular changes that occur in cancer cells and to identify potential targets for

cancer diagnosis and treatment [17]. For example, some cancer therapies are

designed to target the mRNA of specific cancer-related genes in order to inhibit

the production of abnormal proteins or to restore the function of proteins that

help regulate cell growth.

That is why, we propose a pipeline for cancer classification procedure for ana-

lyzing the gene expressions beforehand for ensuring the reduction of time, early
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diagnosis, and avoidance of invasiveness. By analyzing gene expression data, it

may be possible to identify patterns and characteristics that are associated with

specific types of cancer, which could help doctors accurately diagnose and clas-

sify cancer in its early stages. This could lead to earlier treatment and a higher

likelihood of successful treatment outcomes. In addition, we will investigate the

identification of key genes responsible for each type of cancer using explainable

AI systems, which are designed to provide transparency and accountability in

their decision-making processes. By analyzing the learned patterns and impor-

tance of features derived from our trained models, we can identify the genes that

substantially contribute to classification accuracy. This analysis will allow the

identification of key genes associated with specific types of cancer, casting light

on the molecular mechanisms and pathways underlying tumor development and

progression.

1.5 Problem Statement

Based on the aforementioned discussions, this research aims to propose a pipeline

to classify 33 types of cancer with high accuracy and identify cancer-specific im-

portant gene sets. And so, the objectives of this research are -

• Evaluating the performance of different classifier models on both the raw

dataset and the normalized dataset with and without integrating feature se-

lection techniques.

• Integrating different ensembling approaches to improve accuracy.

• Determining the feature contribution for each sample by applying Explain-

able machine learning models.

• Extracting the list of globally significant genes and patient-specific gene

sets for each cancer type.

• Validating the gene sets by statistical analysis.
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1.6 Research Challenges

Both the process of identifying cancer based on gene expression data and the

process of locating important genes include several challenges. It is of the ut-

most importance to preserve data quality while also ensuring that heterogeneity

in preprocessing and measurement platforms is well managed. When working

with high-dimensional feature spaces, it is essential to have effective procedures

for feature selection. It is necessary to resolve the class imbalance to prevent the

creation of models that are prejudiced. It is crucial to construct models that can

be interpreted and that can offer insights into significant genes and pathways. The

important steps of generalization and validation of several datasets are often over-

looked. It is necessary to carry out biological validation and functional research

on the genes that have been discovered. To successfully control model complex-

ity and prevent overfitting, it is vital to avoid overfitting. Both the variable nature

of cancer and the accurate classification of its various subtypes present several

obstacles to researchers. Lastly, various environmental setup-related concerns

were also engaged in the experiment, such as limitations on time and resources,

such as when experimenting.

1.7 Organization of thesis

The subsequent sections of the dissertation are structured in the following man-

ner. Section 2 discusses the background and motivation for cancer classification

using RNA-seq gene expression. The work also provides an analysis of the cur-

rent literature pertaining to the subject matter and its respective limitations. A

detailed description of the dataset used in this study is included in section 3. In

Section 4, the proposed framework is presented, which demonstrates the ability

to accurately classify 33 distinct types of cancers and identify gene sets specific

to each cancer type. Section 5 of the paper undertakes an analysis of the per-

formance of the proposed architecture and conducts a comparative evaluation

with existing state-of-the-art architectures in the context of a cancer classifica-

tion task. The aforementioned method detects both cancer-specific and patient-
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specific gene sets and subsequently conducts statistical validation on the cancer-

specific gene set. Section 6 of this paper serves as a conclusion to our discourse

and offers guidance for potential areas of future investigation.



Chapter 2

Background Study

2.1 RNA (Ribo Nucleic Acid)

RNA (Ribo Nucleic Acid) is a molecule that is essential in many biological activ-

ities, such as gene expression, protein synthesis, and cellular function regulation

[18]. It is made up of nucleotide-building units and is physically similar to DNA

(Deoxyribo Nucleic Acid). However, RNA is normally single-stranded and in-

cludes sugar ribose rather than deoxyribose [19]. RNA has many implications

in molecular biology and genetics. Several aspects of the contribution of RNA

molecules were explored before digging in depth. They are briefly listed below -

Central Dogma of Molecular Biology: The central dogma analyzes and ex-

plains the transfer of genetic information from DNA to RNA to protein. It offers

the essential concept required for comprehending the role that RNA plays in the

process of gene expression [20].

Transcription: A template molecule of DNA is used in the process of RNA

transcription, which results in the synthesis of an RNA molecule. It entails mov-

ing genetic information that is encoded in DNA to RNA, more specifically to

RNA that is known as messenger RNA (mRNA). The information contained in

DNA is utilized in this process, which is an essential stage of gene expression.

Functional RNA molecules are produced as a result [21].

RNA Processing and Modifications: RNA processing converts the initial RNA

transcript into a mature, functioning RNA molecule. Capping, splicing, polyadeny-

lation, and RNA editing are examples. These mechanisms regulate gene expres-

sion and RNA stability [22].

RNA Interference and Gene Regulation: RNA interference (RNAi) is the

biological process that regulates gene expression. It entails using tiny RNA

14
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molecules to limit gene expression by targeting and degrading messenger RNA

(mRNA) or interfering with translation [23].

2.2 Types of RNA regulating Gene Expression

There are several types of RNA molecules involved in gene expression and reg-

ulation within cells. Some important ones that we have explored through our

study are discussed below -

2.2.1 mRNA (messenger RNA)

mRNA is a molecule of single-stranded RNA that transports genetic information

from DNA to the ribosomes for protein synthesis. It functions as a link between

DNA and protein synthesis. Before being translated into proteins, mRNA en-

dures numerous modifications after being transcribed from specific genes [23].

Figure 2.1: mRNA (messenger RNA)

2.2.2 miRNA (microRNA)

miRNAs are minuscule, approximately 22 nucleotide-long noncoding RNA molecules.

By binding to target mRNA molecules, they perform a key role in post-transcriptional

gene regulation. This binding can lead to mRNA degradation or translational

repression, thus affecting gene expression. miRNAs play multiple roles in devel-

opment, cellular processes, and disease [24].
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Figure 2.2: miRNA (microRNA)

2.2.3 lncRNA (long non-coding RNA)

lncRNAs are a heterogeneous group of RNA molecules longer than 200 nu-

cleotides that do not encode proteins. They have emerged as crucial regulators of

gene expression and participate in a variety of biological processes. The interac-

tion of lncRNAs with DNA, RNA, and proteins influences chromatin structure,

transcriptional regulation, and post-transcriptional processes [25].

Figure 2.3: lncRNA (long non-coding RNA)

2.2.4 DNA methylation

DNA methylation is an epigenetic modification in which a methyl group is added

to the DNA molecule. It is essential for the regulation of gene expression and is

involved in numerous biological processes, such as development, genomic im-

printing, and X-chromosome inactivation. DNA methylation patterns can be sta-
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ble and heritable, influencing gene activity without modifying the DNA sequence

[26].

Figure 2.4: DNA methylation

There are several other types of RNA molecules involved in regulating gene ex-

pression, like rRNA (ribosomal RNA), tRNA (transfer RNA), siRNA (small in-

terfering RNA), snRNA (small nuclear RNA), and many more. But they have not

been studied in detail because we won’t need them for conducting our research

work, but they can be explored in the future if required.

2.3 RNA in Cancer Classification

Methods based on RNA have made significant contributions to the classification

of cancer by revealing important information about tumor heterogeneity, prog-

nosis, and treatment response. A few examples of RNA’s contribution to cancer

classification are discussed below in detail.

2.3.1 Gene Expression Profiling

The approach of gene expression profiling Figure 2.5 involves assessing the

quantities of RNA transcripts from various genes in a cell, tissue, or organism

[27]. This comprehensive perspective of gene activity and regulation assists re-

searchers in better understanding biological processes, disease states, and treat-

ment responses. To gather gene expression data, procedures such as microarrays

or RNA sequencing are frequently used. This information can then be used to
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detect differentially expressed genes, characterize gene expression patterns, cate-

gorize samples, and infer underlying biological pathways. Gene expression pro-

filing has had a dramatic impact on cancer research. Researchers have identified

unique molecular subtypes of many tumors utilizing RNA-based technologies

such as microarrays and RNA sequencing. This classification based on gene ex-

pression patterns has greatly improved our understanding of tumor biology and

paved the way for individualized treatment approaches. The identification of dys-

regulated genes, prediction of prognosis, and creation of targeted and personal-

ized cancer treatments have all been made possible by gene expression profiling.

Figure 2.5: Gene expression profiling in early breast cancer [28]

2.3.2 Non-coding RNA Signatures

Non-coding RNA signatures Figure 2.6 are distinct patterns or variations in the

expression levels of non-coding RNAs, such as microRNAs (miRNAs) and long

non-coding RNAs (lncRNAs), that have been seen in numerous disorders, includ-

ing cancer [29]. These signals have diagnostic and prognostic value, providing

information about illness presence, progression, and therapy response. They add

to our understanding of disease genesis by revealing molecular pathways. Fur-

thermore, non-coding RNA profiles provide prospective therapeutic targets for

personalized medicine and targeted therapeutics in cancer research.
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Figure 2.6: Noncoding RNAs in extracellular fluids as cancer biomarkers [30]

2.3.3 Fusion Gene Detection

RNA-based methods have been critical in detecting fusion genes Figure 2.7,

which are produced as a result of chromosomal rearrangements and have the abil-

ity to induce oncogenesis. Fusion gene identification approaches, such as RNA

sequencing (RNA-seq), have proven very useful in the categorization and di-

agnosis of specific tumors, such as pediatric sarcomas and hematological malig-

nancies. Identifying and characterizing hybrid genes using molecular approaches

such as RNA sequencing and fluorescence in native hybridization is part of the

detection process. These approaches aid in the detection of fusion transcripts,

provide insights into disease causes, and direct therapy options. Fusion gene dis-

covery helps with cancer categorization, diagnosis, and understanding of distinct

tumor subtypes linked to fusion genes, which can lead to the development of

targeted therapeutics [31].
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Figure 2.7: Fusion gene detection [32]

2.4 Literature Review

Due to the high dimensionality of the data, it is essential to explicitly specify

characteristics while classifying cancer. And so based on the success rate in find-

ing key characteristics and accessibility to data from high throughput equipment,

machine learning-based [33] and deep learning-based approaches have recently

become more prominent in the categorization of cancer cells using different types

of datasets composed of single-omics like - mRNA data, miRNA data, lncRNA

data, DNA-methylation data or combination of different datatypes (multi-omics),

etc.

Since our work was based on gene expression analysis of mRNA data, we first

tried to go through some works relevant to it. Amrane et al. [34] used the Breast

Cancer Dataset (BCD) to determine whether a tumor is benign or malignant using

two classifiers: the Naive Bayesian Classifier and K-Nearest Neighbor (KNN).

The ID property was removed from the dataset, which included 11 other proper-

ties. After preprocessing, 683 samples remained. Compared to NB, which had

an accuracy of 0.961932, KNN had a greater accuracy of 0.975109. And for

computing the final prediction, in the KNN algorithm, new instances were com-

pared to the training set to determine the final prediction, while the NB algorithm

involved dividing the dataset into testing and training sets, calculating the mean

and standard deviation of each feature and class, and measuring the probability
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of each feature and class. But their limitation was that although KNN did better

if the dataset was larger, KNN would have dropped out of the top spot due to the

computation’s time complexity.

Another experiment performed by Sara Tarek [35], proposed an ensemble system

for cancer classification using gene expression data, addressing the drawbacks of

enhancing result accuracy, covering more cancer types, and mitigating the ef-

fect of over-fitting. They employed three benchmark cancer datasets (Leukemia,

Colon, and Breast cancer datasets) and preprocessed the data using feature selec-

tion algorithms, normalization, and logarithmic transformation. Five base clas-

sifiers using the 3-NN algorithm and other gene selection techniques made up

the proposed ensemble system. In order to post-process the data, they addition-

ally employed majority voting and error estimation techniques. Using different

measures including ROC, AUC, and BCI, the performance of the classification

was evaluated. Reducing ensemble error, BCI, and AUC, the proposed approach

exhibits notable improvements in performance parameters for all three malignan-

cies.

Podolsky et al. [36] processed four publicly available lung cancer data sets, in-

cluding those from the Dana-Farber Cancer Institute, the University of Michigan,

the University of Toronto, and Brigham and Women’s Hospital. These datasets

were analyzed using seven machine learning methods, including k-NN, Naive

Bayes, SVM, and the C4.5 decision tree. AUC values were used to gauge these

algorithms’ efficacy. The findings demonstrated that various algorithms worked

best for various datasets, with k-NN and SVM typically providing higher AUC

values. On the University of Toronto dataset, the C4.5 decision tree outperformed

all other algorithms, whereas, on the University of Michigan dataset, C4.5 was

the exception. The dataset from the Dana-Farber Cancer Institute revealed that

k-NN had the greatest averaged AUC while Naive Bayes had the lowest.

Experiments based on deep learning-based approaches have also been conducted

on mRNA datasets. Lyu et al. [37] applied a deep learning-based approach to tu-

mor type classification using normalized-level-3 RNA-Seq gene expression data
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from 33 tumor types in the Pan-Cancer Atlas. To exclude noisy and unimpor-

tant genes, the data were log-transformed and filtered. The filtered data were

normalized and molded into a 102x102 picture. Three convolutional layers with

max-pooling and batch-normalization layers were employed in the classification

model, which was then followed by three fully connected layers with drop-out

layers in between. The workflow is presented in Figure 2.8. With two pairings of

misclassification for the READ and CHOL samples, the model has an accuracy

of 95.59% after being trained using 10-fold cross-validation. Significant genes

were found for six different cancer types using KEGG pathway analysis. Be-

cause of the smaller sample size, CHOL was incorrectly classified as LIHC.

Figure 2.8: Workflow proposed by Lyu et al. [37]

Joseph M. de Guia et al. [38] in their experiment with TCGA RNAseq data

containing 33 types of cancer, used normalized and log-transformed gene sam-

ples to create 2D images with a size of 102×102 pixels. After preprocessing,

they used a convolutional neural network (CNN) with three hidden layers and

an output layer to classify the images into 33 different cancer types. Tenfold

cross-validation was used to validate the model after it had been trained using
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two gradient history technique algorithms. Additionally, the scientists developed

a heatmap to show the scores of each gene in the classification job and utilized

guided backpropagation and Grad-CAM to analyze the coarse localization map

for the relevant genes. With the notable exception of CHOL and READ, the accu-

racy of the model was higher than 95.6% for all cancer types. A gene functional

categorization method was used to assess 400 possible biomarker indicators and

annotate the genes according to how similar their functions were. Using criteria

like p-values for correlation with the major gene pathways and their associated

biomarkers, the functional analysis results were then compared with the pertinent

pathways of the cohort cancer types.

Apart from the above-mentioned works based on mRNA gene expressions, we

also tried to go through experiments relevant to the dataset (TCGA PanCancer

dataset) that we used for our work. Li et al. [39] worked with 31 types of tumor

data collected from TCGA. RNA-seq expression of 9096 tumor samples was

used in the analysis. They have applied k-Nearest Neighbour (k-NN) [40] for

classification, log2-transform for data normalization, and genetic algorithms for

gene selection. They ran a classification experiment using those data sets after

choosing 20 genes.

Pan-cancer analysis is becoming more popular as researchers use improved se-

quencing technology and resources such as The Cancer Genome Atlas (TCGA)

to discover critical determinants in cancer formation.

Hsu et al. [41] used TCGA RNA-sequencing data to classify 33 kinds of can-

cer Figure 2.9. The accuracy, training time, precision, recall, and F1-score of

five machine learning methods were evaluated: decision tree, k-nearest neigh-

bor, linear support vector machine, polynomial support vector machine, and ar-

tificial neural network. The linear support vector machine (SVM) outperformed

the other methods, with the greatest accuracy rate of 95.8%. The research also

emphasizes the significance of advanced data pre-processing approaches in im-

proving the model’s performance. Overall, this study highlights the benefit of

utilizing machine learning and RNA-sequencing data for pan-cancer categoriza-

tion, adding to a better understanding of the disease.
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Figure 2.9: Cancer type prediction and classification based on RNA- sequencing data
[41]

Mostavi et al. [42] along with the other authors, introduced three Convolutional

Neural Network (CNN) models for the classification of tumor and non-tumor

samples using gene expression data. In 34 classes (33 tumors and 1 normal),

the models 1D-CNN, 2D-Vanilla-CNN, and 2D-Hybrid-CNN obtain high pre-

diction accuracies (93.9–95.0%). Figure 2.10 portrays the architectures of these

three CNN models. A saliency technique is used to further analyze the 1D-CNN

model, revealing 2090 cancer indicators that exhibit agreement with the cancer

kinds they represent. Notably, popular indicators like GATA3 and ESR1 have

been discovered in breast cancer. The 1D-CNN model is further extended for

subtypes of breast cancer prediction, with an average accuracy of 88.42% across

5 subtypes. Independent of tissue-of-origin effects, the authors contend that their

models provide precise cancer detection and shed light on the biological signifi-

cance of cancer marker genes. These replicas have lightweight hyperparameters,

enabling easy adaptation for future clinical applications.
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Figure 2.10: Illustration of three CNN models proposed by Mostavi et al. [42]

Laplante et al. [43] suggest using a deep neural network classifier as a means of

determining the location of malignancies throughout the body. They were able

to achieve an astounding 96.9% accuracy in the classification of tumors across

20 anatomical sites by using 27 TCGA miRNA stem-loop cohorts. They begin

by preprocessing the expression data, then classify the data utilizing a neural net-

work with six hidden layers, and lastly, they train the model utilizing the ADAM

optimizer and the Categorical Cross-entropy loss function. Their method indi-

cates the feasibility of employing data from miRNA stem-loop sequencing for

precise tumor localization. The F1 score as a whole is 96.88%, and the majority

of classes have achieved a score of 90% or higher, with the exception of cervi-

cal and endocervical cancers, which are frequently misclassified as uterus tumors

due to their proximity to the uterus. These results highlighted the effectiveness of

miRNA stem-loop sequencing data in oncology inference tasks. However, they

did not differentiate between the various cohorts, nor did they confirm the trans-

ferability of their model by conducting experiments using data from a different

source.

Mahin et al. [44] introduced PanClassif, a technique to improve the performance

of a variety of machine learning classifiers while using only a small number

of efficient genes to identify cancer from RNA-seq data. The Cancer Genome

Atlas (TCGA), which has 8287 cancer samples and 680 normal samples, was

used to collect 22 different types of cancer samples. To deal with data noise,

PanClassif used k-Nearest Neighbour (k-NN) smoothing to smooth the samples.
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Then, using an Anova-based test, effective genes were chosen. The oversampling

technique SMOTE was used to balance the train data. Six classifiers—SVM

(linear kernel), SVM (RBF kernel), Random Forest(RF) [45], Neural Network, k-

Nearest Neighbor(KNN), and Adaboost [46] algorithm—were used to assess the

performance of the technique. Figure 2 depicts the mechanism of their proposed

method.

Figure 2.11: Complete workflow of PanClassif [44]

The top genes from the TCGA cancer datasets were then subjected to gene set

enrichment analysis, and the majority of the genes chosen showed an association

with cancer and tumor-related ailments. Additionally, they tested the efficacy

of their suggested technique using single-cell RNA-Seq datasets from the Gene

Expression Omnibus (GEO). Among the 6 classifiers, RF performed best con-

sidering both datasets and on the TCGA dataset, KNN performed better. Using

five distinct datasets with various numbers of genes chosen, figure 3 shows a spi-

der plot for the ACC score for the multi-class classification task generated using
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TCGA data. However, they did not provide any short list of features for each

cancer classification. For example, the gene that is responsible for skin cancer is

certainly not responsible for lung cancer.

The process of identifying a restricted set of genes that hold significance for clas-

sification has been the focus of several research endeavors. Several authors have

addressed the task of identifying genetic markers for diseases by utilizing feature

selection techniques in machine learning algorithms [47, 48, 49, 50]. Methods

for filter selection place characteristics in order of classification effectiveness in

order to find the best ones. According to mutual knowledge, Pavithra et al. [48]

established the filters, while Guyon et al. [51] arranged them in accordance with

the weights of a recursive Support Vector Machine (SVM) trained for classifica-

tion.

Lopez-Rincon et al. [52] proposed an ensemble approach to extract 100 miRNA

for multi-class cancer classification.

Figure 2.12: Summary of the different datasets and their use in the experiments [52]
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A subset of The Cancer Genome Atlas dataset (TCGA) encompassing 8023

cases, 28 distinct kinds of cancer, and 1046 unique stem-loop miRNA expres-

sions served as the basis for their ensemble feature selection methodology. In

order to distinguish between various types of cancer and normal tissues, they im-

plemented 8 different classifiers (Bagging, Gradient Boosting, Random Forest,

Ridge, SGD, SVC, Logistic Regression, Passive Aggressive) along with 10-fold

cross-validation. Based on them they also proposed an ensemble approach to

identify the minimal miRNA entities. They examined 14 GEO datasets from

5 different platforms and cancer types to corroborate their findings Figure 2.12.

Additionally, they examined the 777 BRCA samples in the TCGA dataset, which

were divided into 5 distinct subtypes (Triple-negative/basal-like, Luminal A, Lu-

minal B, HER2-enriched, and Normal-like). They used the 100-miRNA signa-

ture in five different tests (BRCA subtype in TCGA, BRCA subtype in GEO

datasets, tumor type classification, tumor tissue versus normal tissue, and GEO

datasets) Table 2.1. According to their findings, Logistic Regression performed

best across all experiments, and Ridge had the worst accuracy. They then con-

ducted a bibliographical meta-analysis, which confirmed that 77 out of the 100

miRNAs in the signature are found in lists of circulating miRNAs utilized in

cancer research, either in stem-loop or mature-sequence form. They also demon-

strated that hsa-miR-21, which was produced from their suggested output, ap-

peared to be the miRNA that was overexpressed most frequently across all kinds

of tumors. However, they only provided a certain number of features for all kinds

of cancer. Additionally, global feature attribution and person-specific feature at-

tribution have not been discussed.

Lastly, we have also gone through some other works relevant to ours to get a

deeper insight into the most commonly used models, feature extraction tech-

niques, and much more relevant to our field of interest. A database from the UCI

Repository that contains 801 samples and 20,531 characteristics that are specific

to 5 forms of cancer (breast, kidney, colon, lung, and prostate) has been success-

fully used to test the Grouping Genetic Algorithm (GGA) by Garcı́a-Dı́az et al.

[53]. A few candidate classifiers (<50 from the total of 20,531) with an average
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TT vs TCGA GEO
Classifier TCGA NT GEO (Subtype) (Subtype) Global

Gradient Boosting 0.9359 0.9846 0.6697 0.9725 0.8909 0.8907
Random Forest 0.9324 0.9839 0.8085 0.9725 0.8634 0.9121

Logistic Regression 0.9237 0.9799 0.9351 0.9647 0.8476 0.9302
Passive Aggressive 0.8831 0.9606 0.8678 0.9556 0.8197 0.8974

SGD 0.9035 0.9767 0.9393 0.949 0.8145 0.9166
SVC 0.9154 0.9791 0.7724 0.9451 0.8355 0.8895

Ridge 0.8305 0.947 0.8867 0.9503 0.83 0.8889
Bagging 0.911 0.9812 0.7682 0.9555 0.907 0.9046

Table 2.1: Comparison of the 8 classifiers, for the different experiments with the 100-
miRNA signature as demonstrated by Lopez-Rincon et al. [52]

accuracy of 98.81% are chosen by the GGA from a total of 20,531 attributes. The

potential discrepancy in the solution space exploration by the suggested approach

is a limitation. The selection of several tens of genes from 20,531 genes from the

enormous number of characteristics implies a vast search field. Also, they did

not work with 33 different types of cancer, as the dataset is highly imbalanced

and may create a bias towards a larger sample class.

Lai et al. [54] investigated the feasibility of developing an accurate approach of

prognostic stratification for patients with non-small cell lung cancer (NSCLC).

In order to make an accurate prediction of overall survival, they used a deep

neural network (DNN) that took into account both gene expression data and

clinical information. Patients were initially classified into biomarker-positive

and biomarker-negative subgroups based on their responses to a panel of seven

well-established NSCLC biomarkers. The authors then found eight more novel

prognostic gene biomarkers by employing a systems biology approach to the re-

search. Along with clinical data, these 15 biomarkers were incorporated into a

bimodal learning DNN to predict the 5-year survival status of NSCLC patients

with a high degree of accuracy (AUC-ROC of 0.8163, accuracy of 75.44%). This

predictive model has the ability to guide decisions regarding individualized ther-

apy and contribute to the evolution of precision medicine in NSCLC. It achieves

this promise through the utilization of deep learning. However, they worked with

only one cancer type and did not perform a variety of cohort analyses.
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Zhang et al. [55] integrated an unsupervised feature learning framework for the

purpose of recognizing a variety of traits based on gene expression profiles. In or-

der to obtain features, the system utilizes a combination of principal component

analysis (PCA) and an autoencoder neural network. For the purpose of predict-

ing clinical outcomes in breast cancer, an ensemble classifier known as PCA-AE-

Ada is created. This classifier is based on the AdaBoost algorithm. Comparisons

are made between the proposed method and several other gene signature-based

algorithms, one of which is a baseline method known as PCA-Ada. The results

of the experiments show that the suggested strategy, which makes use of deep

learning techniques, is superior to other approaches in terms of the AUC-ROC,

the maximum classification accuracy (MCC), and other evaluation criteria across

a variety of different breast cancer datasets. The purpose of this study is to im-

prove the accuracy of cancer prognostic predictions using a supervised classifier

learning mechanism that incorporates feature selection, feature extraction, and

deep learning approaches. However, there are still obstacles to overcome in un-

derstanding the intricate structure of the deep learning model and enhancing the

generalization capacity with more datasets that are accessible to the public. In

our study, we have tried to overcome the shortcomings mentioned above.
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Dataset

The Cancer Genome Atlas (TCGA) [56] is a collaborative initiative aimed at

expediting our comprehension of the molecular underpinnings of cancer via the

utilization of genome analysis techniques, such as extensive genome sequenc-

ing. This initiative is comprehensive and well-coordinated. The TCGA dataset

includes a wide variety of genomic data, including gene expression data gener-

ated using RNA-Seq.

Figure 3.1: Number of samples in each cancer type

RNA-Seq is a technique for profiling the expression levels of RNA molecules

in a sample. One common way to quantitate gene expression levels from RNA-

Seq data is by using FPKM (Fragments Per Kilobase of transcript per Million

mapped reads) [57, 58]. FPKM is a measure of the abundance of a transcript

in the sample, normalized for differences in the total number of reads produced

by the sequencer, and for the length of the transcript. TOIL (Transcriptome-

Oriented Incremental Learning) is a software tool that performs reference-based

transcriptome assembly and quantification using RNA-Seq data. It is based on

31
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RSEM (RNA-Seq by Expectation Maximization) [59], which is a software pack-

age that estimates the abundance of transcripts in an RNA-Seq sample by using

the Expectation Maximization algorithm.

In summary, TCGA gene expression data generated using RNA-Seq can be quan-

tified using the FPKM metric, and tools like TOIL and RSEM can be used to

analyze and interpret this data. And combinedly, the TOIL RSEM fpkm data

is based on mRNA sequencing data. It estimates the expression level of genes

based on the sequencing reads of mRNA transcripts

The data was downloaded from the TCGA Data Portal, on September 1, 2016.

There are a total of 10535 patient samples along with their 60,499 features. We

take into account the file’s protein-coding values and eliminate all of the features

when an item doesn’t adhere to the study protocol. It reduces the total number of

features to 19,238. Furthermore, we download the corresponding phenotype data

and map each cancer type with each tumor tissue sample. Figure 3.1 presents the

total number of samples in each cancer type.
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Proposed Methodology

4.1 Overview

In this research, we propose a novel pipeline for classifying 33 distinct cancer

types. The proposed architecture utilizes SelectFromModel [60] to select 500

features from a total of 19,239 features. We classified the cancer categories us-

ing seven classification models, including logistic regression [61], support vec-

tor machine (SVM) [62], Extreme Gradient Boosting (XGBoost) [63], random

forest [45], multi-layer perception (MLP) [64], 1-D CNN [65, 66], and TabNet

[67]. To enhance the performance of our classification models, we combined the

top three performing models, logistic regression, SVM, and XGBoost, using the

Probability averaging [68] and Max voting [69] ensemble method.

SHAP (SHapley Additive Explanations) [70] was utilized to analyze the perfor-

mance of the models and determine the significance of the features in predicting

cancer types. SHAP is a potent instrument that permits the calculation of both

local and global feature importance values for the various models. SHAP was ap-

plied to logistic regression, SVM, XGBoost, random forest, MLP, and 1d CNN

models, while TabNet’s feature importance values were utilized for the TabNet

model.

To validate our findings, we performed DEG [71] analysis and used DESeq2 [72]

to identify globally significant genes for each specific malignancy. To further

validate the significance of the features identified by our models, we compared

the genes obtained from our classification model with the DEG analysis gene set.

The results indicate that the proposed architecture obtains a high degree of classi-

fication precision for the 33 distinct cancer types. In addition, our SHAP analysis

revealed the most significant characteristics of each cancer type and shed light

on the decision-making processes of the models. The overview of the proposed

methodology is shown in Figure 4.1.

33
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Figure 4.1: Proposed architecture

4.2 Data Preprocessing

4.2.1 Filtration of Features

The TCGA dataset, comprising nearly 60,499 features, has been used in this

study. In order to facilitate interpretability and ease of analysis, our examination

was restricted solely to mRNA characteristics. The process involved the mapping

of ensemble IDs to their respective gene symbols, thereby enabling the utiliza-

tion of gene common names instead of ensemble IDs for reference purposes.

Furthermore, it was essential to eliminate characteristics apart from the mRNA

data in order to streamline the dataset and reduce its dimensionality. Follow-

ing the exclusion of non-mRNA features, our dataset comprised a total of 19,235

mRNA features. This process of identifying only the pertinent characteristics en-

abled us to concentrate our analysis on the most informative genes and enhance

the precision of our findings. Figure 4.2 represents the overall procedure of data

preprocessing.

4.2.2 Discarding Normal Tissue Samples

Our study centered on the identification of genes specific to cancer through the

analysis of a dataset comprising 10,535 samples of tumor and normal tissues

across 33 distinct cancer types. In order to ascertain the exclusivity of cancer-

specific genes, the normal tissue samples were eliminated from the dataset, and
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Figure 4.2: Data pre-processing

solely the tumor tissue samples for each cancer type were retained. It was imper-

ative to mitigate any potential impact that the existence of non-cancerous tissues

may exert on the genetic profile of particular malignancies. The objective of our

study was to isolate genes that exhibited predominant expression in tumor tis-

sues, while being absent or minimally expressed in normal tissue samples. Ex-

cluding normal tissue samples from the analysis aided in mitigating the possibil-

ity of encountering erroneous positive or negative outcomes. The total number of

samples obtained after excluding all normal tissue samples was 9807. The sam-

ple size for each cancer type was sufficiently large and representative, enabling

the identification of cancer-specific genes with a high level of confidence.

4.2.3 Normalization

This study involved the utilization of two distinct data normalization method-

ologies, specifically the Min-Max Scaler [73, 74, 75] and Standard Scaler [76,

77, 78], for the purpose of preprocessing the dataset prior to classification. The

objective was to assess the impact of these techniques on the performance of the

classification models.

The technique of normalization holds significant importance in the fields of ma-
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chine learning and data analysis [41, 79]. It guarantees that the features are

standardized to a common scale, which is a crucial prerequisite for numerous

algorithms to function efficiently. In the event that the input data features exhibit

dissimilar scales or significant differences in magnitudes, it may result in certain

weights within the model being updated at a much faster rate than others. This

can impede the convergence process, leading to a slow convergence or even a

complete failure of the model to converge. Data normalization, which involves

scaling and shifting the input data to have a similar range of values, can help

mitigate this issue. The process of normalization is utilized to mitigate the im-

pact of feature scale on the performance of a machine-learning model. This is

especially crucial when working with data that exhibits varying units or orders of

magnitude. The normalization of data has the potential to enhance the efficiency

and convergence of specific algorithms.

The normalization technique known as the min-max scaler involves scaling data

to a predetermined range, often spanning from 0 to 1 (Equation 1). This is

achieved by performing two operations on the data: subtracting the minimum

value and dividing by the range of the data. The utilization of a straightfor-

ward normalization technique can prove to be advantageous when dealing with

data that possesses a predetermined range and remains unaffected by outliers. In

certain scenarios, the utilization of a particular scale may be imperative for the

algorithm to effectively process the data, rendering it advantageous. The min-

max scaler technique is susceptible to outliers and may lead to a reduction of

data integrity in the tails of the data distribution.

Xstd =
X −X .min(axis = 0)

X .max(axis = 0)−X .min(axis = 0)

Xscaled = Xstd ∗ (max−min)+min (1)

here min, max = feature range

Conversely, the standard scaler is a normalization technique that converts the

data to possess a mean of zero and a variance of one through the process of mean
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subtraction and division by the standard deviation (Equation 2). This normaliza-

tion technique exhibits greater resilience in handling data with unknown ranges

and is comparatively less susceptible to the influence of outliers.

Xscaled = (x−u)/std (2)

In the context of training samples, the variable u represents the mean, which is set

to zero if with mean = False. Similarly, the variable std represents the standard

deviation, which is set to one if with std = False.

4.2.4 Feature Selection

The process of Feature Selection is a statistical technique utilized to decrease

the dimensionality of data by selecting relevant features and disregarding irrel-

evant ones within a given dataset [80]. It holds significant importance in the

classification of cancer genes, as it aids in the reduction of data dimensionality

and the identification of pertinent genes that are linked to cancer [52, 81, 82, 60].

Through the implementation of diverse feature selection methodologies, it is fea-

sible to identify the most important genes that hold the utmost significance in the

classification of the 33 distinct categories of cancer. The reduction of dataset

complexity can enhance the precision and efficacy of classification models [83].

In general, the process of selecting features can be categorized into three types:

Filter methods, Wrapper Methods, and Embedded methods [84].

The filter method is a frequently employed technique in the preprocessing of

data. The present approach integrates ranking methodologies with primary crite-

ria and employs sorting methodologies for variable selection. The wrapped ap-

proach involves identifying features that are appropriate for the machine learning

algorithm employed. When employing a machine learning algorithm, the filter

method is utilized prior to the wrapped method. The wrapped method is then

employed during the machine learning process until an appropriate feature is

identified.

Embedded methods refer to a class of techniques that preserve the iterations of
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the model training process and selectively extract the most significant features

that contribute to the training process for specific iterations. The regularization

method is the prevalent embedded technique, which penalizes features by assign-

ing a coefficient threshold. Several regularization algorithms include LASSO,

Elastic Net, and Select From Model.

The current study employed four distinct feature selection methods, namely Se-

lectFromModel [60], Lasso [83, 85], SelectKBest [86], and ElasticNet [87], to

ascertain the most pertinent genes for the categorization of 33 diverse cancer

types. The techniques were applied to the dataset that underwent standard scaler

normalization to determine the top 100, 500, and 1000 genes. Subsequently, the

chosen genes were employed in a classification framework to categorize the 33

distinct cancer types present in the dataset.

SelectFromModel: The SelectFromModel technique is a feature selection ap-

proach that relies on a specified estimator to identify the most significant features

[60, 88]. The estimator undergoes training on the dataset, following which the

feature importance scores are computed. Subsequently, a predetermined thresh-

old is established to elect the most salient features that surpass the said threshold.

This approach is advantageous due to its ability to autonomously identify signif-

icant features without necessitating extensive prior expertise. The function was

provided with an estimator and a predetermined limit on the number of features

to be considered for selection.

LASSO: The LASSO technique is a regression analysis approach that incor-

porates variable selection and regularization in order to enhance the predictive

accuracy and interpretability of the resulting statistical model [89]. Its primary

utility lies in feature selection. An al pha value of 0.5 was employed, and a

max iter of 1000 was utilized to select the leading 100, 500, and 1000 genes.

SelectKBest: In contrast, SelectKBest represents a feature selection approach

based on filtering [90]. The process involves the selection of k features with

the highest score, as determined by a designated scoring function. The scor-

ing function may encompass a range of statistical tests or f eature ranking tech-

niques that assess the significance of the features. The F − test scoring function,
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specifically fclassif, was employed for classification purposes. The number of

features varied from 100, 500, and 1000.

Elastic Net: The Elastic Net algorithm [91] is designed to optimize the trade-off

between precision and weight magnitude in a linear model by utilizing both L1

and L2 regularization techniques [92, 93]. This approach has gained significant

popularity in the field of bioinformatics for feature selection due to its tendency

to generate parsimonious models with minimal non-zero weights. The L1 ratio

was established at 0.4, and the top genes were selected based on the number of

features.

All feature selection methods that were taken into consideration have been im-

plemented within the machine learning package known as sci-kit-learn.

4.3 Classifiers

The process of selecting an appropriate classification model is a critical aspect of

machine learning, given its potential to significantly influence the accuracy of the

outcomes. Diverse classification algorithms exhibit distinct advantages and lim-

itations that may impact their efficacy when applied to a particular dataset. This

study outlines a pipeline in which seven distinct classification methodologies

were employed, namely Random Forest, XGBoost, Logistic Regression, SVM,

MLP, 1-D CNN, and TabNet, with the aim of determining the optimal models for

our dataset. The selection of these models was based on their widespread usage,

prior research, and their capacity to effectively manage data with a high number

of dimensions [44, 41, 94, 95, 33, 96].

The performance of each model was assessed through the implementation of a

stratified k-fold cross-validation technique, where k was set to 5. The utilization

of the stratified k-fold technique is recommended for the proposed pipeline due

to its ability to preserve the consistent distribution of each class across all folds.

This approach minimizes the potential for bias and enhances the dependability

of the outcomes. The data were partitioned into training and testing sets in an

80:20 ratio to assess the models’ ability to generalize to new data.
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Two normalization techniques, namely min-max and standard scaler, were em-

ployed in the analysis. Additionally, the baseline data was retained without any

normalization applied. The purpose of this study was to conduct a performance

comparison between models trained on normalized data and those trained on

baseline data. The utilized feature selection algorithms encompassed Select-

FromModel, Lasso, SelectKBest, and ElasticNet. Every algorithm possesses

a distinct methodology for selecting the most significant features from a given

dataset. Experiments were carried out without the implementation of any feature

selection algorithm in order to establish a baseline performance for the classi-

fication models. Through the utilization of various feature selection algorithms

and classification models, we have identified the optimal combinations for cancer

classification. The aforementioned methodology not only enhances the precision

of the categorization process but also diminishes the complexity of the issue, ren-

dering it practically manageable to process vast sets of data. Figure 4.3 represents

the classification procedure for different classifier models.

Figure 4.3: Classification Architecture

In order to maintain consistency in the comparison, the parameters used for

model fitting were held constant throughout all experiments. The aforementioned

analysis aided in identifying the feature selection algorithm that potentially en-

hanced the classification performance, as well as the classification model that

exhibited superior performance on the given dataset.

Two commonly used tree-based models, namely XGBoost and Random Forest,

were utilized in our experimentation. XGBoost and Random Forest are preferred
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choices for gene classification in tabular data due to their high accuracy, feature

importance analysis, robustness, and flexibility. These algorithms have proven to

be effective in handling the complexities of gene expression data and providing

reliable predictions for cancer-type classification[97, 98, 99, 100].

XGBoost: XGBoost is a gradient-boosting algorithm known for its superior

performance in tabular data classification tasks. It relies on decision trees and

employs a boosting methodology to enhance its efficacy. Boosting is an iter-

ative technique that involves training multiple weak models and subsequently

aggregating their predictions to generate a more resilient model. The XGBoost

methodology utilizes optimized gradient boosting [101] by means of parallel pro-

cessing, tree pruning, missing value handling, and regularization techniques to

mitigate the risks of bias and overfitting (Figure 4.4). Moreover, XGBoost ex-

hibits excellent performance on structured data and has demonstrated superior

classification capabilities compared to numerous other methodologies. The XG-

Figure 4.4: XGBoost

Boost hyperparameters were configured in the following manner for our exper-

iments: ob jective = ”multi : so f t prob”, max depth = 4, learning rate = 0.1,

n estimators = 1000, and early stopping = 10. The concept of early stopping

involves the cessation of the training process prior to its natural conclusion in the

event that the performance on a validation set fails to exhibit improvement be-

yond a predetermined threshold over a specified number of iterations. The imple-
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mentation of techniques aimed at mitigating overfitting and minimizing training

time can be beneficial.

Random Forest: The Random Forest algorithm operates by generating numer-

ous decision trees during the training phase and amalgamating their forecasts to

yield a conclusive output. The construction of each decision tree involves the

random selection of a subset of features and a subset of samples from the train-

ing data. The algorithm proceeds to partition the data into increasingly smaller

subsets by utilizing the chosen features in a recursive manner, until either the

maximum depth is attained or a predetermined stopping criterion is satisfied.

The ultimate outcome of the Random Forest algorithm is established through

the consolidation of prognostications from all decision trees. In the context of

multiclass classification, the algorithm is designed to assign the class label that

receives the greatest number of votes from the decision trees Figure 4.5. The hy-

perparameters for the Random Forest algorithm were configured to have a value

of n estimators = 20. The aforementioned value was employed to achieve opti-

mal accuracy while avoiding overfitting the model.

Figure 4.5: Random Forest

Logistic Regression and Support Vector Machines (SVM) are commonly em-

ployed algorithms in gene classification within the scope of traditional Machine

Learning methodologies. The interpretability, feature selection capabilities, ro-
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bustness to outliers, and scalability of decision trees make them a suitable choice

for gene classification tasks [41, 102, 103, 104, 51, 105].

Logistic Regression: In the context of multiclass classification, logistic regres-

sion is utilized to estimate the probabilities of each class. This is achieved by fit-

ting numerous binary logistic regression models. The algorithm acquires knowl-

edge of the weights or coefficients linked to the features. Logistic regression cal-

culates the probability of each class for new instances by utilizing the acquired

weights and input features. It then predicts the class with the highest probability

to make accurate predictions. The logistic regression model postulates a linear

association between the predictor variables and the natural logarithm of the prob-

ability of the response variable (Figure 4.6). In our logistic regression model, we

have set the max iter parameter to 1000, which indicates the utmost number of

weight updates the algorithm will perform during training. The aforementioned

parameter has an impact on the convergence of the algorithm and establishes the

number of iterations executed to minimize the loss function.

Figure 4.6: Logistic Regression

The regularization strength in logistic regression is governed by the C parameter.

Regularization is a method employed to avoid overfitting in machine learning

models by incorporating a penalty term into the loss function. A diminutive C

value augments the regularization potency, thereby mitigating the influence of

superfluous or cacophonous attributes and fostering more parsimonious models.
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The value of C has been assigned as 100.

The logistic regression’s penalty parameter plays a crucial role in determining the

regularization type that is implemented. l2 regularization [106], also known as

L2 or ridge regularization [107], has been selected for our model. The implemen-

tation of L2 regularization promotes the reduction of weights to a more moderate

and equitable scale while avoiding the constraint of complete elimination. The

utilization of this technique aids in the management of model complexity and the

reduction of the impact of outliers or values that deviate significantly from the

norm.

Support Vector Machines (SVM): The Support Vector Machines (SVM) al-

gorithm is a robust machine learning technique that is extensively employed

for multiclass classification in the analysis of gene cancer [51, 105, 108]. The

method efficiently segregates diverse categories of gene expression data by iden-

tifying an optimal hyperplane that exhibits a maximal margin, defined as the

spatial gap between the hyperplane and the nearest data points belonging to each

category. Within the domain of gene cancer multiclass classification, the Sup-

port Vector Machine (SVM) algorithm is of significant importance in identifying

the support vectors, which are the data points that are in the closest proximity

to the decision boundary. It utilizes the gene expression levels linked with var-

ious cancer types to map the gene expression data to a feature space with high

dimensions and then proceeds to identify the hyperplane that optimally separates

the classes. Figure 4.7 shows the architecture of SVM In our particular analy-

sis, we utilized the SVM implementation referred to as svm.svc, with specific

parameter configurations. The selection of a ‘linear’ kernel is based on the as-

sumption that the gene expression data can be separated linearly in the feature

space, which facilitates the implementation of a linear decision boundary. The

value of the regularization parameter ‘C’ was established as 1, with the intention

of achieving an equilibrium between the objectives of maximizing the margin

and minimizing the training error. This approach was adopted to prevent the

occurrence of overfitting or underfitting.

In order to achieve accurate convergence in the optimization process, the toler-
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Figure 4.7: Support Vector Machines (SVM)

ance parameter ‘tol’ was established at a value of 1e− 5. The aforementioned

value serves as a determinant for the point at which the optimization procedure

concludes, upon the occurrence of a decrease in the objective function that is less

than or equal to the designated tolerance.

Moreover, the parameter ‘decision f unction shape’ was configured as ‘ovo’ (one-

vs-one) [109], which employs a technique of generating binary classifiers for

each pair of classes, and the ultimate prediction is determined by a voting mech-

anism. The aforementioned methodology effectively addresses the task of mul-

ticlass classification, while duly considering the unique cancer subtypes that are

evident in the gene expression dataset. The objective of our study was to achieve

efficient separation of various cancer classes using gene expression data through

the configuration of SVM with specific parameter values. This was accomplished

by leveraging the assumption of linear separability, appropriate regularization,

precise optimization convergence, and efficient handling of multiclass classifica-

tion.

The utilization of deep learning has emerged as an effective strategy for the clas-

sification of cancer owing to its ability to acquire intricate patterns and extract

significant features from data with high dimensionality [38, 37, 110, 111, 42].

Deep learning models have the ability to automatically extract pertinent features



4.3 Classifiers 46

from vast genomic data sets, such as gene expression profiles or DNA sequences,

without the need for manual feature engineering. The aforementioned capabil-

ity enables a more extensive examination of the data, which has the potential

to reveal concealed associations and biomarkers that could aid in precise cancer

categorization. For the classification of 33 types of cancer using deep learning,

two commonly used models are MLP (Multilayer Perceptron) and 1D-CNN (1-

Dimensional Convolutional Neural Network).

Multilayer Perceptron (MLP): The MLP is a type of neural network that fol-

lows a feedforward architecture [112], comprising distinct layers of input, hid-

den, and output nodes. This neural network architecture is commonly regarded

as a superficial variant of deep learning, characterized by a limited number of

concealed layers (Figure 4.8). In the context of analyzing gene expression data,

individual gene expression profiles are considered as input, and the output layer

generates class probabilities for the given sample [113, 114, 115].

Figure 4.8: Multilayer Perceptron (MLP)

The MLPClassifier has been configured with multiple parameter values. A reg-

ularization strength of 0.001 is indicative of a modest al pha value that serves to

strike a balance between effectively capturing patterns in the data and mitigat-

ing the risk of overfitting. The selection of a learning rate initialization value

of 0.001 is intended to promote a consistent and incremental approach to model
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convergence throughout the training process. The Rectified Linear Unit (ReLU)

[116] activation function is recognized for its ability to efficiently capture non-

linear associations within the data.

The Multilayer Perceptron (MLP) is composed of three hidden layers, each com-

prising 100 neurons. This architecture enables the model to acquire intricate rep-

resentations by means of multiple layers of abstraction. The model’s weight op-

timization process has been implemented using the ‘Adam’ [117] solver, which

is a highly effective stochastic gradient-based optimizer. A maximum of 200 it-

erations is set (‘max iter’) to prevent superfluous training time and mitigate the

risk of overfitting. The rationale behind selecting these parameters is to achieve

an equilibrium between the intricacy of the model and its ability to perform well

on unseen data.

1D-CNN (1-Dimensional Convolutional Neural Network): Several convolu-

tional neural networks (CNN) models have been suggested for the purpose of

predicting cancer types [42, 118]. The convolutional neural network architecture

(Figure 4.9) utilized in this study takes gene expression data in the form of a

vector and applies one-dimensional kernels. The 1D-CNN architecture that was

implemented comprises multiple layers aimed at effectively modeling gene ex-

pression data for the purpose of cancer classification. The gene expression data

is received by the input layer in the form of a sequence, with a maximum length

of ‘maxlen‘. In order to standardize the input, a BatchNormalization [119] layer

is implemented, succeeded by a Dropout [120] layer with a rate of 0.3 to enforce

regularization of the model and mitigate overfitting.

The normalized input is then sent through a Weight Normalized [121] Dense

layer with 4096 units, which assists in capturing complex data relationships. The

resulting output of the aforementioned layer is transformed into a tensor with di-

mensions of (256,16). Following this, an additional layer of Batch Normalization

and Dropout is implemented for the purpose of regularization. In this study, a

Weight Normalized 1D Convolutional layer is employed with 64 filters, a kernel

size of 3, and Rectified Linear Unit (ReLU) activation. Subsequently, the feature
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Figure 4.9: 1D-CNN

maps undergo Average Pooling for the purpose of downsampling. The incor-

poration of a residual connection serves to capture supplementary information

from the preceding layer. An additional grouping of techniques includes Batch

Normalization, Dropout, and Weight Normalized methods. The application of

convolutional layers is succeeded by an element-wise multiplication operation

between the output of said layers and the feature maps obtained from the pre-

ceding stage. Subsequently, the feature maps undergo a process of Max Pooling

to achieve additional downsampling, following which the resulting tensor is flat-

tened. The flattened tensor undergoes Batch Normalization and ReLU activa-

tion. Subsequently, the compressed tensor undergoes processing via a sequence

of three fully connected layers, each comprising 512, 256, and 128 units, re-

spectively. The activation function employed in each layer is Rectified Linear

Unit (ReLU). The ultimate stratum comprises a set of ‘num classes‘ entities

that employ so f tmax activation to generate the anticipated probabilities for ev-

ery category. The compiled model employs the sparse categorical cross-entropy
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loss function, utilizes the Adam optimizer with a learning rate of 0.001, and

assesses performance using accuracy as the evaluation metric.

The 1D-CNN architecture is designed to effectively capture relevant patterns

and features in gene expression data for accurate cancer classification. This is

achieved through the incorporation of normalization, dropout, weight normal-

ization, convolutional, pooling, and fully connected layers. Although deeper

convolutional neural network (CNN) models tend to exhibit higher accuracy in

computer vision tasks when dealing with limited sample sizes in cancer-type pre-

diction, it is advisable to use shallower models to mitigate the risk of overfitting

and minimize the resources required for training [119, 120].

The efficacy of the transformer architecture in cancer classification [122, 123,

124] is attributed to its capacity to apprehend distant dependencies and acquire

contextual associations from gene expression data. The self-attention mecha-

nism is employed by transformers to represent the interrelationships among var-

ious positions in the input sequence. Moreover, transformers utilize numerous

attention heads and layers, facilitating the acquisition of hierarchical represen-

tations and the incorporation of both local and global dependencies. Based on

the aforementioned reasons, we have made the decision to incorporate the Atten-

tive Interpretable Tabular Learning neural network (TabNet) as the classification

model for our study.

Attentive Interpretable Tabular Learning neural network (TabNet): The ef-

fectiveness of the TabNet architecture in cancer classification can be attributed to

its distinctive amalgamation of attention mechanisms and tabular data handling

[125, 126, 127]. The TabNet model integrates a revised version of the Trans-

former attention mechanism, enabling the model to discern and focus on sig-

nificant features and acquire intricate associations within the data (Figure 4.11).

Furthermore, TabNet employs a feature selection mechanism in its training pro-

cess that dynamically chooses a subset of features to concentrate on. The incor-

poration of interpretability into the model not only enhances its performance in

terms of generalization but also mitigates the risk of overfitting.
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Figure 4.10: TabNet

The Adam optimizer with default parameters was utilized to train the model, and

a StepLR scheduler was implemented to modulate the learning rate throughout

the training process. The scheduling algorithm was set up with a step size of

10 and a decay rate (gamma) of 0.9. Through the implementation of a dynamic

learning rate, the model demonstrated efficient convergence towards an optimal

solution. In order to regulate the training procedure, a threshold of 150 epochs

was established and a strategy of early stopping was executed with patience of 60

epochs. In order to enhance memory utilization, a batch size of 512 and a virtual

batch size of 512 were employed. The weighting of the samples was established

as 1, signifying that equivalent significance was attributed to all occurrences in

the training dataset.

4.4 Ensemble Approach

The utilization of ensemble approaches in combination with classification mod-

els can yield significant advantages. The amalgamation of various discrete mod-

els into a unified ensemble model can yield a substantial enhancement in the

overall efficacy and precision of the classification undertaking [128, 129]. Fur-

thermore, the utilization of ensemble approaches has the potential to enhance

stability and dependability through the mitigation of the influence of outliers or

noisy data points. We have implemented two types of ensemble approaches -
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Max-Voting and Probability-Averaging on three of our top-performed classifica-

tion models- Logistic regression, SVM, and XGBoost.

Max voting employs multiple independent classifiers or models for training and

utilizes majority voting for making predictions. Each model generates a predic-

tion and the class label with the highest number of votes is chosen as the ultimate

prediction. The ensemble model utilizes the notion that various models possess

unique advantages and disadvantages. By amalgamating their forecasts, the en-

semble model gains from their combined knowledge.

Probability averaging entails training multiple classifiers and averaging their pre-

dicted probabilities for each class. The approach of averaging the predicted prob-

abilities of each model is utilized to obtain a more precise estimation of class

probabilities, rather than relying on the majority vote. This methodology incor-

porates model confidence and assigns greater weight to dependable predictions,

leading to improved accuracy and calibrated probability estimation.

We have chosen an odd number of classification models to apply ensemble method-

ologies for mainly two reasons. First, when making predictions, an odd number

of models allows for the prospect of a majority vote. When each model in the

ensemble predicts a class label, an odd number of models ensures that there is

always a majority class when voting. This can aid in decision-making and re-

duce the likelihood of ties, which can occur when an even number of models

are considered. Second, ensembling an odd number of models can help in han-

dling outliers or noisy predictions. In the case of outlier predictions from a single

model, having an odd number of models permits the ensemble to effectively dis-

regard these outliers and rely on the predictions of the majority of models.

4.5 Feature Attribution

Feature attributions indicate how much each feature in the model contributed to

the predictions for each given instance [70]. When there is a request for predic-

tions, we get predicted values as appropriate for our model. When we request

explanations, we get the predictions along with feature attribution information
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[130]. With the help of feature attribution, we will be identifying the cancer-

specific genes and also the patient-specific gene set for each cancer. We will be

using SHAP [131] for feature attribution in our work.

Figure 4.11: Explainability analysis

The SHAP technique is a mathematical approach utilized to elucidate the predic-

tions generated by machine learning models. This approach is grounded in the

principles of game theory. It can elucidate the prognostications of any machine-

learning model through the computation of the individual contribution of each

feature to the prediction. Some advantages of SHAP [132, 133] are:

• The utilization of Shapely values ensures that the forecast is equitably al-

located among diverse characteristics.

• The global interpretation is obtained by calculating the Shapely values for

an entire dataset and subsequently aggregating them.

• This technique establishes a connection with other interpretability methods,

such as LIME.
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• SHAP has a lightning-fast Tree-based model explainer.

4.5.1 Calculating the Feature Attribution Score

When calculating feature attributions using SHAP, different types of SHAP ex-

plainers need to be used depending on the category of the trained model. Here

are some commonly used SHAP explainers for different types of models:

• TreeExplainer: This explainer is suitable for tree-based models such as

decision trees. We used this for Random Forest and XGBoost.

• LinearExplainer: This explainer is specific to linear models and provides

SHAP values based on the coefficients of the linear model. We used this

one for Logistic Regression and SVM.

• DeepExplainer: This explainer is designed for deep learning models. We

used it on 1D CNN and MLP.

To calculate feature attributions using SHAP, we typically need to pass test data

to the explainer along with the trained model. The explainer then uses the model

and the test data to generate SHAP values, which represent the contribution of

each feature to the output prediction for each instance in the test data. SHAP

gives a 3D array with dimensions (classes, sample size, f eature size). So from

this array, we have to extract the relevant rows for our work.

4.5.2 Identifying the Correctly Predicted Samples

When identifying global and local specific gene sets for each cancer, we only

focused on the correctly predicted samples made by the model. This approach

aims to extract the genes that positively contribute to accurate predictions, as

the genes from incorrectly predicted samples could introduce noise or incorrect

signals to the important gene set.

By considering only the correctly predicted samples, you can prioritize the genes

that consistently and positively influence the model’s ability to make accurate
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predictions for each cancer type [134]. This helps to reduce the impact of po-

tential false positives or misleading gene associations that may arise from incor-

rectly predicted samples.

Focusing on correctly predicted samples enables the identification of gene sets

that are more likely to be biologically relevant and specific to each cancer type

[135]. These genes can potentially offer insights into the underlying molecular

mechanisms and pathways associated with the specific cancer types, aiding in

further understanding and targeted research in cancer biology.

4.5.3 Extracting the Feature Attribution for a Relevant Sample List of Each Can-

cer

SHAP array contains feature attribution for each cancer for each of the samples.

But the samples do not belong to every class. So we have taken the sample list

from each cancer of the main dataset and according to that, we have separated the

rows from the SHAP array for each cancer. Then from this list, we discarded the

wrong predicted sample lists. On these sets, we have done further calculations

which lead to global and patient-specific gene sets.

This approach allows for a more focused and accurate exploration of the gene

expression patterns associated with each cancer type. By considering only the

correctly predicted samples and focusing on relevant feature attributions, we can

obtain more meaningful and biologically significant gene sets.

4.6 Cancer-specific Gene Set

We have collected the gene sets for the correctly predicted samples of each cancer

and these scores combined give an idea of the global importance of these genes.

To determine the global importance of genes, we calculated the median of each

column (gene) across the collected gene sets specific to particular cancer [136].

By calculating the median, we obtained a representative value that reflects the

central tendency of the gene’s importance across the correctly predicted samples.
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After obtaining the median values for each gene, we sorted them in descending

order for each cancer type. This sorting allows us to rank the genes based on

their importance scores, with higher scores indicating greater importance in the

context of a specific cancer type. So if we now select the top 500 cells from a

cancer row, these will be the top 500 important features of that specific cancer.

4.7 Patient-specific Gene Set

We applied feature attribution for each sample in the dataset. Then we will get

the specific genes for each patient for all 33 cancers. For a specific cancer, the

results of all patient-specific gene sets will be analyzed which can provide a set

of genes that will be greatly helpful for gene therapy and can be a stepping stone

for precision medicine.

To determine the patient-specific genes, we sort the contribution values in de-

scending order for each cancer type from the lists of scores obtained after per-

forming earlier tasks. This sorting allows us to rank the genes based on their

importance scores for a specific patient.

4.8 Statistical Validation

Statistical validation is essential in data analysis to establish the significance of

the results and eliminate the possibility of random chance. Validation is crucial

in studying cancer-specific gene sets to confirm their biological significance.

Differential Gene Expression (DGE) analysis is a frequently employed approach

for detecting genes that display varied expression levels across distinct sample

groups [137, 138]. DGE analysis enabled the identification of genes exhibiting

significant expression level variations across various cancer types. This analysis

facilitated the identification of genes that may have a significant role in contribut-

ing to individual types of cancer. DESeq2, a commonly used software tool, was

employed for statistical genomic analysis and quantification of differential gene

expression [133, 99].
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4.8.1 DESeq2

DESeq2 is a feasible tool for analyzing differential gene expression in RNA-seq

data. DESeq2 employs negative binomial generalized linear models to detect

differential expressions. Using empirical Bayes approaches, it calculates priors

for log fold change and dispersion as well as posterior estimates for these val-

ues [72]. DESeq2 involves several steps for differential expression analysis, as

illustrated in Figure 4.12. DESeq2 employs normalization factors (size factors)

to model raw counts and address discrepancies in library depth. The method

will estimate gene-wise dispersion and subsequently reduce these estimates to

enhance the accuracy of dispersion estimates for count simulation. Finally, it

employs the Wald test or the Likelihood Ratio Test to fit the negative binomial

model and conduct hypothesis testing.

Figure 4.12: DESeq2 working principle

In this analysis, we utilized raw counts of gene expression values of both tumor

samples and healthy tissue samples [139, 140]. The low counts were removed,

keeping rows that have at least 10 reads. The factor level was set to “healthy

tissue”. A Differential Gene Expression (DGE) analysis was conducted on in-

dividual samples of each cancer type to identify cancer-specific genes that have

a significant impact on each type of cancer. These genes represent the overall

behavior of the population with respect to each cancer type and can be viewed as
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Index Cancer type Tumor sample count
Healthy tissue
sample count

Total differentially
expressed gene

1 BLCA 364 19 802
2 BRCA 984 112 707
3 CESC 261 4 1337
4 CHOL 33 11 1904
5 COAD 287 43 878
6 ESCA 185 13 818
7 HNSC 462 44 889
8 KICH 62 27 1449
9 KIRC 477 74 821

10 KIRP 238 31 768
11 LIHC 297 50 737
12 LUAD 505 61 1026
13 LUSC 491 53 1769
14 PRAD 428 50 266
15 READ 89 12 883
16 STAD 382 35 637
17 THCA 443 55 445
18 UCEC 143 25 1205

Table 4.1: Cancer wise total number of differentially expressed genes using DESeq2

global features. We used a threshold of |log2Fold−change|> 3 and an adjusted

p− value < 0.001 to identify differentially expressed genes. Table 4.1 presents

a comprehensive summary of the sample sizes for both tumor and healthy tis-

sues, along with the aggregate count of genes that exhibit differential expression

across 18 distinct cancer types.
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Experimental Results

5.1 Experimental Setup

In this section, we present the experimental setup and describe the various factors

involved in the training and testing phases of our cancer-specific classification

pipeline.

5.1.1 Environment

In our work, we utilized both R and Python for different stages of the project.

RStudio was employed to apply DESeq2, a popular R package, for obtaining

global important features specific to individual cancers. On the other hand, the

Python environment was utilized for training the classification model and con-

ducting the remaining experiments. The specific details of the Python environ-

ment used are as follows:

• Processor: Intel® Core™ i9−12900K (12 cores, 24 threads)

• RAM: 128 GB

• GPU: 2 × NVIDIA GeForce RTX 3090

• GPU Memory: 2 × 24 GB

5.1.2 Dataset Split

The performance of each model was assessed through the implementation of a

stratified k − f old cross-validation technique, where k was set to 5. The uti-

lization of the stratified k − f old technique is recommended for the proposed

pipeline due to its ability to preserve the consistent distribution of each class

across all folds. This approach minimizes the potential for bias and enhances the

dependability of the outcomes. In accordance with the Pareto principle [141],

58
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which is also referred to as the 80/20 rule or the principle of factor sparsity, the

data in the sample were divided into two sets: 80% for training and 20% for test-

ing, as documented in reference [142]. A validation set comprising 20% of the

data from the training set is utilized in relation to the entire dataset.

5.2 Evaluation Metrics

5.2.1 Accuracy

Accuracy is a machine learning evaluation metric that measures the ratio of cor-

rect predictions made by a model to the total number of predictions. The accu-

racy is determined by the formula N/M ∗100%, where N represents the number

of correct predictions and M represents the total number of samples. Equation 3

represents the detailed equation. of accuracy score.

Accuracy =
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative
(3)

The accuracy score is determined by evaluating the model’s performance on a

test set comprising previously unseen data samples. This guarantees a more de-

pendable evaluation of the model’s capacity to generalize and provide precise

predictions on unobserved data. Accuracy measurement assesses the model’s

performance in accurately classifying data. A higher accuracy score reflects the

model’s effectiveness in making accurate classifications by indicating a higher

percentage of correct predictions.

5.2.2 Precision

Precision is defined as the ratio of true positives to the total number of posi-

tive predictions made across all classes (Equation 4). In a multi-class problem,

precision is employed to assess the proportion of correctly classified instances

for each class relative to all instances that were classified as belonging to that

particular class. In the context of imbalanced classification problems featuring

multiple classes, precision is computed by dividing the sum of true positives for



5.2 Evaluation Metrics 60

all classes by the sum of true positives and false positives for all classes. The out-

come corresponds to a numerical value ranging from 0.0, indicating the absence

of precision, to 1.0, representing complete or flawless precision.

Precision =
True Positives

True Positives+False Positives
(4)

5.2.3 Recall

Precision is defined as the ratio of true positives to the total number of posi-

tive predictions made across all classes (Equation 5). In a multi-class problem,

precision is employed to assess the proportion of correctly classified instances

for each class relative to all instances that were classified as belonging to that

particular class. In the context of imbalanced classification problems featuring

multiple classes, recall is computed by dividing the sum of true positives for all

classes by the sum of true positives and false negatives for all classes.

Recall =
True Positives

True Positives+False Negatives
(5)

Here, recall refers to situations where a gene for a certain cancer type, such as

BLCA, is wrongly predicted or categorized as CHOL rather than the actual can-

cer type BLCA. In other words, recall assesses the proportion of predicted and

classified cancer type T genes among the actual cancer type T genes. The out-

come corresponds to a numerical value ranging from 0.0, indicating the absence

of precision, to 1.0, representing complete or flawless precision.

5.2.4 F1 score

The F1 score is a widely employed metric for the assessment of cancer clas-

sification models. The harmonic mean of precision and recall is a metric that

offers a balanced evaluation of a model’s performance with respect to positive

and negative predictions. Precision measures the capacity of the model to accu-

rately identify positive cases within the predicted positives. Recall quantifies the

capacity of the model to accurately detect positive instances in the presence of
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both true positives and false negatives.

F1-score =
2×Precision×Recall

Precision+Recall
(6)

The F1 score is a metric that integrates precision and recall into a single measure,

assigning equal weight to both performance indicators. The formula for calcu-

lating a specific metric involves multiplying precision and recall, doubling the

product, and then dividing the result by the sum of precision and recall (Equa-

tion 6). The F1 score is a metric that varies between 0 and 1, where a value of

1 represents ideal precision and recall. The F1 score holds significance in the

classification of cancer owing to its ability to account for both false positives and

false negatives, which are critical factors in medical diagnosis. It provides a bal-

anced assessment of the model’s overall accuracy and is commonly used when

there is an imbalance between positive and negative cases.

5.3 Performance Analysis

In our study, we conducted experiments on our dataset with seven different clas-

sification methods. These algorithms are examples of numerous machine learn-

ing method branches that are frequently used for tabular classification tasks. The

objective was to investigate and evaluate how various model types performed in

our particular scenario.

Two of the algorithms we employed, XGBoost [63] and Random Forest [45],

utilized tree-based models. Tree-based models are well-suited for tabular data

analysis because of their propensity to capture intricate linkages and interac-

tions between attributes. Additionally, we used the Logistic Regression [61]

and Support Vector Machine (SVM) [62] classical machine learning techniques.

These algorithms have a strong foundation in statistical modeling and classifica-

tion problems and are widely employed. They deliver outcomes that are easy to

understand and are proficient at working with huge datasets.

We used two separate methods—Multi-Layer Perceptron (MLP) [64] and 1-D

Convolutional Neural Network [65] (1-D CNN)—to combine deep learning tech-
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niques. Deep learning models are excellent at automatically deriving complex

representations and patterns from incoming data. While 1-D CNN uses convo-

lutional layers to identify regional patterns in sequential data, MLP is a flexible

architecture with tightly connected layers. In addition, we used the TabNet [67]

transformer-based paradigm. Transformers have drawn a lot of interest in prob-

lems involving natural language processing, but they also have potential in tabu-

lar data analysis. To handle tabular data, TabNet adapts the transformer design,

and it has proven to be quite effective in a number of classification tasks.

We tried to cover the main machine learning methodologies widely used for tab-

ular classification by incorporating these various algorithms. This gave us a

chance to compare how well they performed and determine which approaches

worked best for the particular dataset and classification issue we were dealing

with.

5.3.1 Performance on the Baseline Dataset, n f eatures=19238

We implemented the aforementioned classifier models using the baseline data

consisting of 19,238 gene features. This gene feature dataset served as the in-

put for our classification models, allowing us to leverage genetic information to

predict and classify the target classes. The results given by the classification

algorithm at the initial stage are shown in Table 5.1.

In the analysis of the gene expression tabular dataset using machine learning

models, it was observed that Logistic Regression achieved the highest accuracy

of 96.43%. SVM, XGBoost, and MLP also performed well, with accuracies

over 95%. Based on the high accuracies achieved by these models, the top three

models, namely Logistic Regression, SVM, and XGBoost were selected for en-

sembling. Two ensembling techniques were applied: Probability Averaging and

Max Voting. When using Probability Averaging, which combines the predicted

probabilities from the individual models, the ensemble accuracy improved to

96.45%. This indicates that combining the predictions from multiple models can

enhance the overall performance. Similarly, with Max Voting, which selects the

majority class prediction among the individual models, the ensemble accuracy



5.3 Performance Analysis 63

D
at

as
et

N
or

m
al

iz
at

io
n

Fe
at

ur
e

Se
le

ct
io

n
N

um
be

ro
f

fe
at

ur
es

C
la

ss
ifi

er
M

od
el

s
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

-S
co

re

E
ns

em
bl

e
A

cc
ur

ac
y

(P
ro

ba
bi

lit
y

A
ve

ra
gi

ng
)

E
ns

em
bl

e
A

cc
ur

ac
y

(M
ax

Vo
tin

g)

T
C

G
A

Pa
n-

C
an

D
at

as
et

[5
6]

—
—

19
23

8

L
og

is
tic

R
eg

re
ss

io
n

96
.4

3%
0.

95
01

0.
94

20
0.

93
91

96
.4

5%
96

.3
3%

SV
M

96
.3

0%
0.

94
18

0.
93

22
0.

93
87

X
G

B
oo

st
95

.5
2%

0.
93

31
0.

91
89

0.
92

03
M

L
P

95
.3

4%
0.

85
97

0.
86

69
0.

86
73

Ta
bn

et
94

.5
6%

0.
91

83
0.

92
18

0.
91

29
1D

-C
N

N
94

.5
0%

0.
83

20
0.

86
60

0.
84

4
R

an
do

m
Fo

re
st

92
.1

7%
0.

90
82

0.
91

15
0.

90
33

St
an

da
rd

Sc
al

ar
Se

le
ct

Fr
om

M
od

el
50

0

L
og

is
tic

R
eg

re
ss

io
n

96
.3

9%
0.

94
84

0.
93

88
0.

93
82

96
.6

0%
96

.5
4%

SV
M

95
.8

7%
0.

93
52

0.
93

73
0.

93
44

X
G

B
oo

st
95

.1
0%

0.
93

31
0.

93
92

0.
93

15
R

an
do

m
Fo

re
st

93
.0

0%
0.

89
94

0.
87

36
0.

87
52

6

Ta
bl

e
5.

1:
Su

m
m

ar
y

of
cl

as
si

fic
at

io
n

m
od

el
pe

rf
or

m
an

ce



5.3 Performance Analysis 64

was slightly lower at 96.33%. Nonetheless, it still outperformed the standalone

models. Probability averaging outperforms max voting in ensemble methods

due to its ability to capture more nuanced information from individual models.

In probability averaging, the predicted probabilities of each class from multiple

models are averaged, resulting in a more precise estimation of the class probabil-

ities. This approach takes into account the confidence levels of each model and

provides a more reliable prediction. On the other hand, max voting simply se-

lects the class with the highest number of votes among the ensemble of models.

While it can be effective when the models are highly accurate and have similar

performance, it may not take into account the relative confidence or certainty

of each model’s prediction. Overall, the ensembling of the top three models re-

sulted in slightly improved accuracy compared to the highest accuracy achieved

by a standalone model (Logistic Regression). This highlights the effectiveness

of ensembling techniques in harnessing the predictive power of multiple models.

It is important to note that accuracy may not provide a complete assessment of

the model’s performance in the case of datasets that are imbalanced, where one

class is much more abundant than the other. Accuracy is influenced by the class

distribution and tends to favor the majority class, which can result in misleading

outcomes. The F1 score is a more informative metric for assessing model per-

formance in such situations. The F1 score evaluates the model’s performance on

imbalanced datasets by taking into account both false positives and false nega-

tives. The F1 score is a useful metric in imbalanced datasets where the minority

class is of interest. The evaluation metric takes into account both recall, which

is the ability to accurately identify positive instances, and precision, which is the

ability to minimize false positives. The F1 score offers a balanced assessment

of a model’s performance on imbalanced datasets by weighing the trade-off be-

tween two metrics. The table shows that the F1 score for Probability averaging

is 93.99% and for Max Voting is 93.86%. The high F1 scores indicate that the

models can classify each of the classes accurately.
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5.3.2 Performance on the Normalized Dataset

We evaluated classifier models using two data preparation techniques: the min-

max scaler and the standard scalar. Each preprocessing strategy was tested along

with each classifier model to see how they affected performance improvement.

We wanted to investigate potential gains in model performance by using the min-

max scaler, which scales features to a defined range (usually 0 to 1), and the

standard scalar, which adjusts features to have zero mean and unit variance.

When compared to the min-max scaler, the use of the data preprocessing tech-

nique, StandardScaler, with the classifier models resulted in a considerable im-

provement in overall accuracy. The models’ accuracy ranged from 96.89% to

91.65%, with Logistic Regression scoring the highest at 96.89%, followed by

SVM and XGBoost. Several things have contributed to this progress. To be-

gin, StandardScaler’s Gaussian Distribution Assumption assumes that the data

has a Gaussian distribution. When the data roughly follows this distribution, us-

ing StandardScaler produces superior results. Furthermore, certain algorithms,

such as logistic regression and neural networks with weight regularization, are

more compatible with StandardScaler since they rely on the mean and variance

of the features. Another advantage of StandardScaler is that it keeps the features’

interpretability by retaining their original distribution while scaling them. This

can be critical in situations when feature interpretability is critical. MinMaxS-

caler, on the other hand, scales the data to a defined range, which may change

the interpretation of the features because they are mapped to a new scale.

Based on the prior evaluation findings, the top three models for ensembling were

chosen: Logistic Regression, SVM, and XGBoost. To combine the predictions

of these models, two ensembling approaches, Probability Averaging, and Max

Voting, were used.

The ensemble accuracy decreased to 96.31% when Probability Averaging was

used. This technique computes the average probability for each class by com-

bining the expected probabilities from each individual model. The ensemble

accuracy indicates that the ensemble model outperformed the individual models



5.3 Performance Analysis 66

in terms of accuracy. Max Voting, which chooses the majority class prediction

among the different models, produced a slightly lower ensemble accuracy of

96.23%. The prediction of each model is considered in this technique, and the

class with the most votes is chosen as the ensemble prediction.

However, it is important to emphasize that in this circumstance, the ensemble of

models did not produce sufficient results. Despite minor accuracy disparities be-

tween the two ensembling procedures, neither approach considerably improved

the overall accuracy of the individual models.

5.3.3 Performance on the Dataset with Normalization and Feature Selection

In the analysis of the gene expression tabular dataset using ML models, the data

was first standardized using Standard Scalar normalization. Four feature se-

lection techniques were applied: Lasso, SelectFromModel, Select-K-Best, and

ElasticNet. Subsequently, four models (Logistic Regression, SVM, XGBoost,

and Random Forest) were trained on the selected features, with 100, 500, and

1000 features chosen for each technique. It is important to note that the feature

selection methods used are not compatible with 1D CNN and MLP models.

This resulted in a total combination of 48 models. Among all the models, the

SelectFromModel technique with 500 features yielded the best performance, fol-

lowed by Lasso, Select-K-Best, and ElasticNet performing the worst. For Lo-

gistic Regression, the accuracy achieved was 96.39%, which was the highest

among the four models considered (Table 5.1). The confusion matrix is shown

in Figure 5.1. SelectFromModel outperformed the other techniques because it

has the ability to automatically select the most relevant features based on their

importance in the classification task. It uses a machine learning model, such as

a decision tree or random forest, to determine the feature importance and selects

the top features accordingly. This approach allows SelectFromModel to capture

the most discriminative information from the input data, leading to improved

classification accuracy.

Lasso, on the other hand, performs well but not as effectively as SelectFrom-

Model. Lasso employs L1 regularization, which encourages sparse feature se-
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Figure 5.1: Confusion matrix for Logistic Regression SelectFromModel

lection by shrinking the coefficients of less important features to zero. While

Lasso can effectively reduce the number of features, it may still retain some less

informative features, leading to slightly lower performance compared to Select-

FromModel. Select-K-Best is a simple feature selection technique that selects

the K-best features based on a univariate statistical measure, such as chi-square

or mutual information. While Select-K-Best can be useful in reducing the dimen-

sionality of the data, it may not capture the complex interactions between features

and their relationship with the target variable as effectively as SelectFromModel

or Lasso. ElasticNet, combining L1 and L2 regularization [143], aims to balance
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between Lasso and Ridge regression. However, in this particular classification

task, it did not perform as well as the other techniques. This could be due to

the nature of the data and the specific characteristics of the cancer classification

problem, where the L1 regularization of Lasso or the feature importance-based

selection of SelectFromModel may be more suitable.

Ensembling techniques were further applied to enhance the performance. Proba-

bility averaging, which combines the predicted probabilities from the individual

models, yielded an accuracy of 96.60%. Max Voting, which selects the major-

ity class prediction, achieved an accuracy of 96.54%. These ensemble results

surpassed the performance of all standalone models as well as the ensembling

results obtained using the raw data and only normalized data.

In addition to accuracy, the F1− scores were also evaluated. The F1− score for

probability averaging was 94.14, and for max voting, it was 93.75. These scores

provide an assessment of the model’s precision and recall, considering both false

positives and false negatives.

The observed improvement in ensembling results demonstrates the effectiveness

of combining the predictions from multiple models, particularly when using the

SelectFromModel technique with 500 features. This suggests that this combina-

tion of feature selection and ensembling can provide valuable insights into gene

expression patterns and enhance the overall predictive performance.

5.3.4 Comparison with State-of-the-Art Approaches

Our present study involved a comparative analysis aimed at assessing the efficacy

of the proposed architecture for multiclass cancer classification. We conducted

a comparative analysis with various state-of-the-art [41, 37, 38] techniques that

have been established on the TCGA pan-cancer dataset and executed a classifi-

cation task on 33 distinct cancer categories. Table 5.2 displays the accuracy of

performance for each of the architectures, including the architecture proposed by

us. The findings unambiguously indicate that the architecture we have proposed

exhibits superior performance compared to all of the pre-existing methodologies.
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Number of
Cancer Types References Number of Genes Avg. Accuracy

33

Hsu, Yi-Hsin et al. [41]
- Linear SVM 9900 0.9498

Lyu et al. [37] - Deep
Learning based algorithm 10381 0.9559

de Guia, Joseph M.
et al. [38]- DeepGx 20531 0.9565

Proposed architecture 500 0.966

Table 5.2: Comparison with other state-of-the-art architectures

One crucial advantage of the proposed architecture is its ability to achieve su-

perior performance while utilizing a significantly reduced number of features.

Our architecture necessitates only 500 features, which is significantly lower in

comparison to alternative approaches. The decrease in the number of features

significantly aids in lessening the computational resources necessary for classifi-

cation assignments. Overall, the proposed architecture exhibits superior perfor-

mance accuracy and efficient utilization of computational resources, rendering it

a promising solution for multi-class cancer classification.

5.3.5 Feature Attribution Validation with Deseq2 (n f eatures=19238)

In the analysis of the gene expression tabular dataset using ML models, the

SHAP (Shapley Additive exPlanations) technique was applied to the trained

models. This allowed the identification of cancer-specific gene sets for each

model. To validate these gene sets, a comparison was made with the gene sets

provided by the statistical analysis tool Deseq2 (Figure 5.2).

Deseq2 is known to provide important gene sets specific to each cancer type.

For each model, the intersected genes were obtained by comparing the gene lists

generated by Deseq2 with the top 500 features from the lists obtained from the

model for each cancer type. The counts of intersected genes are summarized

in the table. The significant number of common genes observed between the

gene sets obtained from the ML models and the gene sets provided by Deseq2
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Figure 5.2: Feature attribution validation with Deseq2

indicates that these genes are likely to be important for the corresponding cancer

types.

This finding suggests that the ML models were successful in capturing and iden-

tifying genes that have a strong association with specific cancer types. By using

SHAP and comparing the results with Deseq2, confidence is gained in the im-

portance and relevance of the identified gene sets.

These common genes can provide valuable insights into the underlying biology

of the specific cancer types and potentially serve as potential biomarkers or ther-

apeutic targets. Further analysis and exploration of these gene sets can contribute

to a better understanding of the molecular mechanisms and pathways involved in

cancer development and progression. It is important to note that the validation

of the gene sets using Deseq2 adds credibility to the findings, but further experi-

mental validation or integration with other genomic datasets may be required to

confirm their functional relevance in the context of cancer.
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5.3.6 Feature Attribution Validation with Deseq2 (n f eatures=500)

In addition to applying SHAP to the trained models, SHAP was also applied

specifically to the SelectFromModel (SFM) model with 500 features. From the

feature contribution values obtained through SHAP, class-specific gene sets were

derived for each of the models, using the same methodology as before. These

gene sets were then compared with the gene sets provided by Deseq2 to validate

their relevance (Table 5.3). The table presents the counts of common genes be-

tween the intersected gene sets obtained from the SFM model and the gene sets

provided by Deseq2 for each cancer type.

The intersected gene set represents the genes that are deemed most important for

each specific cancer type. The fact that these gene sets align with the gene sets

derived from Deseq2 confirms the significance and relevance of these genes as

validated by an established statistical analysis tool.

By leveraging the SHAP values and comparing the results with Deseq2, we can

establish a stronger foundation for the importance of the identified gene sets.

These common genes, supported by the consensus between the SFM model and

Deseq2, hold potential implications for understanding the molecular mechanisms

and pathways specific to each cancer type.

5.3.7 Comparison of the Common Genes

The present investigation utilized a two-stage methodology to ascertain prevalent

genes linked to distinct types of cancer. Initially, the top 500 genes were chosen

for each type of cancer by utilizing the Shap values derived from the three most

effective classifiers. These classifiers employed a feature set comprising 19,238

features. The selection of these classifiers was based on their efficacy in pre-

cisely categorizing the various types of cancer. Following this, we implemented

an identical methodology to identify the leading 500 genes utilizing the Shap val-

ues derived from the top three classifiers. However, in this instance, we employed

a truncated feature set consisting of 500 features. Furthermore, the DESeq2 ap-

proach was employed to identify the 500 most distinctive genes for every type of
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cancer. Through the intersection of gene sets derived from both methodologies,

we have successfully identified a set of genes that were consistently detected by

both the proposed architecture and DESeq2.

Figure 5.3 displays a comparison between the prevalent genes detected through

the integration of Logistic regression with selectFromModel for 500 features

(LogReg sfm) and DESeq2 in our proposed architecture, and those identified in

the baseline dataset with 19,238 features (LogReg 19k). The diagram is centered

on four distinct types of cancer, namely BLCA, COAD, LUAD, and UCEC.

(a) BLCA cancer

(b) COAD cancer
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(c) LUAD cancer

(d) UCEC cancer

Figure 5.3: Continued: Common gene set from both statistical DESeq2 analysis and
models trained on two different types of features

The data presented in the figure indicates that the employment of the proposed

architecture results in a greater number of shared genes when compared to the

number of shared features detected within the baseline dataset. The aforemen-

tioned observation suggests that the amalgamation of Logistic regression and

selectFromModel techniques amplifies the detection of common genetic char-

acteristics among the chosen cancer categories. Table 5.3 shows the detailed

common gene set for each cancer type.

The study implicated that the count of common features across different models

is higher for the case of 500 features compared to 19,238 features. This find-
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Cancer Name

Top 500 common feature
contribution from models
trained on 19238 features

Top 500 common feature
contribution from models trained
using SelectFromModel feature
selection approach

LogReg XGB SVM LogReg sfm XGB sfm SVM sfm

BLCA 82 20 69 107 101 89
BRCA 68 14 67 85 71 63
CHOL 187 55 143 112 233 122
COAD 88 27 71 123 129 128
ESCA 79 14 61 110 92 90
HNSC 103 29 88 131 106 100
KICH 220 46 190 139 170 139
KIRC 115 23 109 97 90 81
KIRP 60 15 62 91 83 72
LIHC 35 15 30 114 87 60
LUAD 115 31 112 155 142 158
LUSC 252 57 199 239 240 168
PRAD 45 7 28 56 42 52
READ 101 19 91 113 110 91
STAD 69 21 83 107 92 100
THCA 83 6 55 40 64 59
UCEC 129 30 86 145 174 132

Table 5.3: Top 500 globally common feature contribution using DESeq2 and machine
learning approaches

ing validates the effectiveness of feature selection when resource constraints are

present. It indicates that by utilizing a smaller subset of top features obtained

from the SelectFromModel (SFM) models, comparable results can be achieved

compared to using the entire set of 19,238 features. The higher count of com-

mon features implies that the selected 500 features capture the most relevant and

informative aspects of the gene expression data. These features exhibit similar

characteristics and associations with the gene sets provided by Deseq2, further

confirming their importance in cancer analysis. This observation has practical

implications, especially when resources such as computational power or data

storage are limited. By performing feature selection and focusing on the top fea-

tures, it becomes possible to streamline the analysis process while maintaining

comparable performance to using the full set of features.
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The results suggest that the selected subset of 500 features, derived from the SFM

models, captures the crucial aspects of the gene expression patterns and is just as

effective in identifying important genes associated with specific cancer types as

using the larger set of 19,238 features. This finding supports the notion that fea-

ture selection techniques can offer a practical solution for resource-constrained

scenarios, where it is desirable to reduce the dimensionality of the data while

maintaining or even improving the predictive power and biological relevance of

the analysis.

It is important to note that the effectiveness of feature selection may vary depend-

ing on the specific dataset and analysis context. Further validation and experi-

mentation, as well as consideration of domain knowledge, are essential to ensure

the reliability and generalizability of the selected feature subsets in different sce-

narios.
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Conclusion

mRNA gene expression can be a valuable tool for cancer classification, as the

expression levels of certain genes are often altered in cancer cells and can be

used to distinguish different types of cancer [61, 108]. Feature attribution tech-

niques are a useful tool for making machine learning models more explainable,

particularly in the context of cancer classification. These techniques can help to

identify which features (such as specific genes) are most important for making a

prediction and how they contribute to the final prediction made by the model.

In this paper, we have implemented an Explainable AI-based panCancer classi-

fication approach using gene expression analysis which will help to detect the

type of cancer prevailing in individuals accurately within a very short time. We

have implemented 7 classifier algorithms to classify 33 different kinds of can-

cers, among which two are tree-based models (XGBoost and Random Forest),

two are traditional machine learning algorithms (Logistic Regression and SVM),

and two deep learning-based algorithms (MLP and 1-D CNN) and a transformer-

based model (TabNet). In our gene expression analysis study using machine

learning models, we employed four feature selection techniques: Lasso, Se-

lectFromModel, Select-K-Best, and ElasticNet. Among these techniques, Se-

lectFromModel with 500 features achieved the best performance, followed by

Lasso, Select-K-Best, and ElasticNet. We applied ensemble methods of proba-

bility averaging and max voting, with probability averaging achieving the highest

accuracy of 96.60%. The F1 scores also showed the effectiveness of combining

predictions from multiple models. Validating the selected features using SHAP

values and comparing them with gene sets from DESeq2 analysis confirmed their

significance and relevance. The common genes identified between SelectFrom-

Model and DESeq2 provided insights into cancer-specific molecular mechanisms

and pathways. Feature selection proved effective in capturing relevant aspects of

gene expression data while reducing dimensionality, highlighting its importance

76
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in maintaining predictive power and biological relevance.

Future work can include concentrating on SSGSEA implementation in preci-

sion medicine. SSGSEA enables the identification of patient-specific gene sets,

revealing important insights into the molecular mechanisms underlying the dis-

eases of individual patients. By employing SSGSEA to gene expression data,

unique gene sets that are specifically active or suppressed in each patient’s tumor

can be identified, thereby facilitating the comprehension of disease progression.

Integrating patient-specific gene set information with pathway analysis provides

a comprehensive view of dysregulated biological processes, thereby facilitating

the development of targeted therapeutic strategies and individualized treatments.

Implementing SSGSEA in precision medicine has the potential to revolutionize

cancer treatment by customizing approaches based on the tumor characteristics

of each individual patient, thereby enhancing patient outcomes.
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Chapter A

Supplementary Data

A.1 Top 50 Genes for 17 Cancers

Table A.1 displays the 50 most prominent gene sets across 17 distinct types of

cancer. The gene sets were generated through the identification of shared genes

resulting from the implementation of logistic regression and DESeq2 method-

ologies. The selection of logistic regression with 500 features was based on its

superior performance in terms of accuracy compared to the other six classifiers

evaluated in this investigation. The inclusion of cancer types in the analysis was

determined by the dataset provided by Q. Wang et al [139, 140] to ensure a com-

prehensive representation of diverse cancer types.

Cancer Name Top 50 genes

BLCA

HMGCLL1, SCARA5, MAGEC2, BMP5, GRP, SPRR2F, CSAG1, NBPF4,

PM20D1, POU4F1, TBX5, TBX20, KISS1R, POTEE, PCP4, HAND1,

DMRTA2, TLX3, VCX3B, SCN7A, KRTDAP, HPSE2, MAGEA4, TUBA3E,

KLK2, DES, MMRN1, OR2B6, SPRR2E, EN2, BARX1, MAGEA10,

PRAME, MAGEA6, XAGE1A, PAGE2, ESX1, ATP4A, MAGEA3, CTAG1B,

RHAG, SERTM1, ASB5, ACTC1, HSFY1, CTAG1A, MAGEA2B, HOXC9,

TCF21, CILP

BRCA

SCARA5, MAGEC2, MRGPRX2, CSAG1, NBPF4, FOXG1, MYH1,

GALNT15, KISS1R, URAD, COL6A6, CPB1, TLX3, A2ML1, HBG1,

TMEM215, ALDH1L1, MAGEA4, R3HDML, DES, MMRN1, OR2B6,

MAGEA10, GNGT1, PRAME, SLC30A8, MAGEA6, GATA4, PAGE2, CPA1,

HMX3, HBG2, CSN1S1, MAGEA3, CTAG1B, NKX3-2, SERTM1, LHX2,

BRINP3, CLDN19, MAGEA2B, SULT1C3, MAGEA12, NBPF6, CCDC60,

HPSE2, POU4F1, SMYD1, PAX1, DPT
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Cancer Name Top 50 genes

CHOL

GRP, TTC36, PITX2, PGLYRP1, KISS1R, MROH2B, HOXC13, COL6A6,

XKR6, FRMD7, FCN2, NETO1, MT-ND6, ALDH1L1, MYO3A, REG1B,

HOXC8, PTPN5, SPRR3, FSTL4, OR2B6, EN2, PRAME, TMEM178B,

TGM3, C4BPA, ASIP, SIX2, AGMO, UGT2A2, NPTX2, IL13RA2, UGT2A1,

TTR, SLC28A1, C1orf100, HOXD3, NKX3-2, EPHX3, HOXC9, PGC,

HOXD9, ADAMTS16, SLC5A12, NDST3, HOXD4, PON3, GNG5P2,

CALML3, WNT3A

COAD

CLCA1, HMGCLL1, AQP2, AKAP4, SCARA5, IFITM5, CAMKV,

STMN2, CASR, DHRS7C, MRGPRX2, GOLGA8F, CSAG1, FOXG1,

TBX20, SOX14, HOXC13, HAND1, SP8, DMRTA2, TLX3, SCN7A,

A2ML1, HPSE2, FGF3, MAGEA4, NEFM, HBE1, DES, SPRR3, IRX5,

SPRR2E, EN2, GNGT1, PTF1A, SLC30A8, MAGEA6, GATA4, SIX2,

KRT24, UPK1A, IZUMO2, MAGEA3, RSPO2, TBX5, CDH19, RHAG,

SERPINA9, TCP11, CLDN8

ESCA

CCKAR, G6PC2, SCARA5, PAX3, HOXD11, MAGEC2, STMN2, RSPO2,

SPRR2F, CSAG1, LEFTY1, PM20D1, POU4F1, HOXD13, KISS1R,

POTEE, HOXA11, CT45A6, SP8, NOS2, NMUR2, SCN7A, HOXD10,

MAGEA4, REG1B, CD200R1L, HOXC8, KLK2, DES, OR2B6, EN2,

MAGEA10, GNGT1, IL17A, FABP7, PRAME, MAGEA6, C4BPA, AGMO,

IL13RA2, LAIR2, UGT2A1, ATP4A, MUC5B, ALX1, MAGEA3, CTAG1B,

PNLDC1, HPSE2, LMOD2

HNSC

HMGCLL1, CSN3, HOXD11, MAGEC2, KRT40, DHRS7C, GOLGA8F,

CSAG1, NRAP, HOXD13, KRT4, POTEE, HOXA11, CT45A6, LRRC14B,

SP8, TLX3, SCN7A, KRT85, FCN2, NETO1, HOXD10, STATH, GADL1,

SCGB3A2, ZNF541, MAGEA4, CAV3, DRD5, KRT36, HBE1, HOXC8,

SPRR3, OR2B6, MAGEA10, GNGT1, FABP7, PRAME, NKX2-4,

QRFPR, MAGEA6, TGM3, GATA4, CRNN, XAGE1A, PAGE2, ART3,

UGT2A1, UPK1A, SLC28A1

KICH

MYO1H, AQP2, CCKAR, RAG2, FAM183A, CAMKV, PRL, KRT40,

CASR, RHOXF2B, CSAG1, PITX2, PM20D1, LEFTY1, SPATA22, HELT,

NKX6-1, LRRC14B, CPB1, NMUR2, VCX3B, KRT85, CDH19, AGTR2,

HPSE2, GADL1, TMEM215, CAV3, NEFM, PRND, HBE1, KLK2, UNCX,

DES, LHFPL4, OR14I1, PSG2, IRX5, GNGT1, NEUROD1, TAS1R1,

NPHS2, NPAP1, ADCYAP1, FAM217A, UGT2A2, KRT24, IL13RA2,

UPK1B, UGT1A7
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Cancer Name Top 50 genes

KIRC

AQP2, AMELY, RAG2, IFITM5, STMN2, KRT40, CASR, CSAG1,

POU4F1, TBX5, HELT, HOXD13, KISS1R, CRX, FRMD7, NMUR2,

SCN7A, GADL1, SCGB3A2, MYO3A, REG1B, KRT36, KLRF2, TUBA3E,

UNCX, MAGEA10, FABP7, NPHS2, SLC30A8, FAM217A, GATA4, SAG,

UGT2A2, NPTX2, KRT24, LAIR2, CPA1, UGT2A1, ALX1, MAGEA3,

SERPINA9, CLDN8, LHX2, BRINP3, CLDN19, PM20D1, MC2R,

DMP1, NRK, CA1

KIRP

ZIC4, AQP2, CCKAR, AKAP4, RAG2, BMP5, IFITM5, CAMKV, ADAM7,

TTC36, CASR, PM20D1, HELT, HOXC13, FRMD7, NMUR2, SCN7A,

KRT85, CDH19, AGTR2, HPSE2, GADL1, REG1B, UNCX, REN, EN2,

NEUROD1, MFRP, PRAME, NPHS2, NKX2-4, FAM217A, GATA4, C4BPA,

ASIP, ZNF705D, UGT2A2, IL13RA2, CPA1, HMX3, MUC5B, TTR,

DEFB103B, CLDN8, SLC6A15, ELSPBP1, CLDN19, HSFY1, CNTN6,

TCF21

LIHC

ZIC4, MAGEC2, GRP, RBMY1J, RHOXF2B, CSAG1, PITX2, HNRNPCL1,

KISS1R, PCP4, HOXA11, HOXC13, COL6A6, SP8, VCX3B, CACNG1,

THBS4, FCN2, HOXD10, MAGEA4, DRGX, REG1B, HOXC8, KLK2,

LHFPL4, FSTL4, EN2, MAGEA10, GNGT1, PRAME, NPFFR2, MAGEA6,

TGM3, SIX2, XAGE1A, DEFA3, PXDNL, PAGE2, MAP7D2, CPA1,

LGALS14, ALX1, HOXD3, MAGEA3, CTAG1B, NKX3-2, HOXD8,

SLC6A15, BLOC1S5-TXNDC5, BRINP3

LUAD

ZIC4, HOXD11, MAGEC2, IFITM5, THEG, SPRR2F, CSAG1, NBPF4,

FOXG1, PITX2, POU4F1, SOX14, GUCA1A, HELT, HOXD13, KISS1R,

POTEE, PCP4, HOXA11, HOXC13, ISL1, RAX, ITLN2, LRRC14B, SP8,

DMRTA2, HTR3C, IRX4, OTX2, A2ML1, NETO1, RXFP1, HBG1,

PCDH8, MAGEA4, CAV3, PTPN5, DES, LHFPL4, SPRR3, OR2B6, EN2,

BARX1, MAGEA10, GNGT1, NEUROD1, PRAME, NPFFR2, TFAP2D,

NKX2-4

LUSC

ZIC4, PLCZ1, CSN3, SCARA5, LEFTY2, EVX2, PAX3, HOXD11,

CAMKV, CEACAM8, RSPO2, THEG, UPK1B, SPRR2F, GOLGA8F, CSAG1,

NBPF4, OR7C1, SERPINB13, FOXG1, MYH1, POU4F1, PITX2, IAPP,

TBX20, SOX14, GUCA1A, HOXD13, PGLYRP1, KISS1R, PNLDC1,

POTEE, HOXA11, NKX6-1, HOXC13, COL6A6, ISL1, GAGE12E, CT45A6,

ITLN2, LRRC14B, RAX, SP8, DMRTA2, TLX3, HTR3C, VCX3B, CT45A2,

MAGEC2, SCN7A
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Cancer Name Top 50 genes

PRAD

SIM1, HOXC4, SPRR3, AQP2, OR2B6, WNT9B, PRSS1, GSTM1,

PATE1, GKN1, PRAME, NPFFR2, XAGE1B, HOXB5, PAX1, PON3,

LCN1, B3GNT6, GC, FOXG1, MUC6, POU4F1, XAGE1A, KRT24, IAPP,

TMEM114, HOXC6, CST2, KISS1R, TRIM49, DAZ1, NKX6-1, HOXC13,

IL36RN, ATP6V1G3, KRT13, MAGEA3, CCDC83, NKX2-5, HOXB6,

HOXC12, C10orf99, DAZ4, ELSPBP1, LCN15, MAGEA6, NETO1,

MAGEC2, OTP, NKX2-3

READ

HMGCLL1, AKAP4, SCARA5, EVX2, CAMKV, RSPO2, CASR, DHRS7C,

CSAG1, PITX2, TBX20, SOX14, MROH2B, HAND1, SP8, CPB1,

SCN7A, CDH19, AGTR2, HPSE2, MAGEA4, REG1B, NEFM, PRND,

R3HDML, DES, MMRN1, SPRR3, IRX5, EN2, GNGT1, IL17A, PRAME,

PTF1A, PGPEP1L, MAGEA6, SIX2, KRT24, MAGEA3, RHAG, CLDN8,

ASB5, BRINP3, MAGEA2B, KRTAP13-2, CA1, SNTG2, PGC, DMRTA2,

MAGEA12

STAD

CLCA1, AQP2, HOXA9, AKAP4, SCARA5, HOXD11, MAGEC2, TTC36,

DHRS7C, CSAG1, SERPINB13, LEFTY1, HOXD13, KRT4, POTEE,

NKX6-1, HOXC13, ITLN2, SP8, CPB1, MC2R, VCX3B, IRX4, A2ML1,

KRTDAP, HPSE2, FGF3, MAGEA4, DRGX, NEFM, HOXC8, SPRR3,

OR2B6, EN2, MAGEA10, GNGT1, PRAME, PTF1A, MAGEA6, TGM3,

CRNN, C4BPA, FLG, PAGE2, UGT1A7, ATP4A, UPK1A, SLC28A1,

HOXA11, KRT13

THCA

IBSP, CBLN1, REN, FSTL4, SPRR3, CLDN10, DSC3, UGT3A2, PRSS1,

SCARA5, PTGER1, CEACAM8, STMN2, CD207, DPT, PSG8, B3GNT6,

SFTPA1, SPRR1B, NPTX2, BPIFB1, OBP2B, PSG4, KISS1R, HOXA11,

IL36RN, CDKN2A, MS4A15, SFTPB, NETO1, CCL21, SLC6A15, CGA,

TMEM215, DMP1, COL6A5, NAPSA, CST2, SFTPA2, MMRN1

UCEC

CBLN1, ZIC4, SCARA5, LEFTY2, BMP5, MAGEC2, CAMKV, ADAM29,

CSRP3, SERPINB13, FOXG1, LEFTY1, POU4F1, PITX2, TBX20,

GALNT15, HOXD13, KISS1R, KRT4, POTEE, HOXC13, RAX,

CT45A6, SP8, FRMD7, DMRTA2, TLX3, SCN7A, OTX2, HPSE2,

FGF3, MAGEA4, NEFM, PRND, OSR1, DES, MMRN1, SPRR3, FSTL4,

OR2B6, SPRR2E, BARX1, MAGEA10, GNGT1, FABP7, PRAME, EXD1,

ADCYAP1, SLC30A8, MAGEA6

Table A.1: Cancer-specific top 50 gene set
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A.2 Empirical Results

Table A.2 displays a subset of our meta-analysis conducted on the TCGA gene

expression dataset using our chosen classifiers ( Logistic Regression, SVM, XG-

Boost, MLP, Random Forest, and 1D-CNN), four feature selection techniques

(Lasso, SelectFromModel, Select-K-Best, and Elasticnet), and two normaliza-

tion techniques (Standard Scaler and MinMax Scaler) respectively. Among the

classifiers, Logistic Regression achieved the highest accuracy of 96.43%, while

SVM, XGBoost, and MLP also performed well with accuracies over 95%. By

employing data preprocessing techniques with the classifier models, we found

that standard scaling had a significant positive impact on overall accuracy com-

pared to the min-max scaler. The accuracy of the models ranged from 96.89%

to 91.65%, with Logistic Regression reaching the highest accuracy of 96.89%,

followed by SVM and XGBoost. Additionally, the classifiers were trained with

each of the feature selection techniques selecting 100, 500, and 1000 features

each time. From all possible combinations, SelectFromModel with 500 features,

led to improved performance compared to other techniques like Lasso, Select-

K-Best, and ElasticNet. SelectFromModel outperforms other feature selection

strategies because it automatically selects the most relevant characteristics based

on their importance in the classification task and assesses feature relevance while

selecting the top features based on the respective machine learning models. This

allows the approach to extract discriminative information from the input data,

which improves classification accuracy. These findings underscore the impor-

tance of data normalization and feature selection in enhancing the performance

of machine learning models for gene expression analysis.
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Normalization
Feature Selection

Method

Number of

Features
Classifier Accuracy F1-Score

None None

19238 Logistic Regression 0.9643 0.9643

19238 SVM 0.9630 0.9630

19238 XGBoost 0.9552 0.9552

19238 MLP 0.9534 0.9534

19238 Random Forest 0.9217 0.9217

19238 1D-CNN 0.9450 0.8440

Standard Scaler None

19238 Logistic Regression 0.9689 0.9391

19238 SVM 0.9603 0.9387

19238 XGBoost 0.9552 0.9233

19238 MLP 0.9479 0.9203

19238 Random Forest 0.9165 0.8673

19238 1D-CNN 0.9460 0.8420

MinMax Scaler None

19238 Logistic Regression 0.9617 0.9617

19238 SVM 0.9620 0.9620

19238 XGBoost 0.9547 0.9235

19238 Random Forest 0.9223 0.9223

19238 MLP 0.8446 0.8446

19238 1D-CNN 0.9496 0.8450

Standard Scaler Lasso

100 Logistic Regression 0.8990 0.8990

100 Random Forest 0.9071 0.9072

100 MLP 0.9204 0.9204

100 SVM 0.9137 0.9138

100 XGBoost 0.9244 0.9244

500 Logistic Regression 0.9506 0.9506

500 Random Forest 0.9192 0.9192

500 MLP 0.9370 0.9370

500 SVM 0.9498 0.9498

500 XGBoost 0.9474 0.9474

1000 Logistic Regression 0.9547 0.9547

1000 Random Forest 0.9207 0.9207

1000 MLP 0.9472 0.9473

1000 SVM 0.9538 0.9538

1000 XGBoost 0.9487 0.9487
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Normalization
Feature Selection

Method

Number of

Features
Classifier Accuracy F1-Score

Standard Scaler SelectFromModel

100 Logistic Regression 0.9201 0.9201

100 SVM 0.9371 0.9371

100 XGBoost 0.9263 0.9263

100 Random Forest 0.8970 0.8970

100 MLP - -

500 Logistic Regression 0.9631 0.9631

500 SVM 0.9587 0.9587

500 XGBoost 0.9510 0.9510

500 Random Forest 0.9300 0.9300

500 MLP - -

1000 Logistic Regression 0.9636 0.9636

1000 SVM 0.9638 0.9638

1000 XGBoost 0.9539 0.9539

1000 Random Forest 0.9286 0.9286

1000 MLP - -

Standard Scaler Select-K-Best

100 Logistic Regression 0.8812 0.8812

100 Random Forest 0.8729 0.8729

100 SVM 0.9027 0.9027

100 XGBoost 0.9009 0.9009

100 1D-CNN 0.7930 0.7930

100 MLP 0.9021 0.9027

500 Logistic Regression 0.9441 0.9441

500 Random Forest 0.9107 0.9107

500 SVM 0.9424 0.9424

500 XGBoost 0.9371 0.9371

500 1D-CNN 0.8852 0.8852

500 MLP 0.9399 0.9399

1000 Logistic Regression 0.9551 0.9551

1000 Random Forest 0.9139 0.9139

1000 SVM 0.9514 0.9514

1000 XGBoost 0.9416 0.9416

1000 MLP 0.9469 0.9469
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Normalization
Feature Selection

Method

Number of

Features
Classifier Accuracy F1-Score

Standard Scaler ElasticNet

100 Logistic Regression 0.8843 0.8843

100 Random Forest 0.8803 0.8803

100 SVM 0.9070 0.9070

100 XGBoost 0.9164 0.9164

100 MLP 0.9160 0.9160

500 Logistic Regression 0.9428 0.9428

500 Random Forest 0.8997 0.8997

500 SVM 0.9429 0.9429

500 XGBoost 0.9358 0.9358

500 MLP 0.9371 0.9371

1000 Logistic Regression 0.9428 0.9428

1000 Random Forest 0.8997 0.8997

1000 SVM 0.9429 0.9429

1000 XGBoost 0.9358 0.9358

1000 MLP 0.9371 0.9371

Table A.2: Empirical Results
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