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Abstract 

Due to recent energy crises in the post-pandemic world, exploration of marine renewable 

energy sources is more crucial than ever. Significant wave height is a key parameter for wave 

energy extraction, it also has a wide range of applications, including ship navigation, oil and 

gas extraction, and the construction of coastal structures. Among the existing methods of 

measuring significant wave height, direct measurements using buoys are very expensive and 

limited in number, moreover these provide data with low time and spatial resolutions whereas 

numerical models are based on mathematical equations, assumptions and becomes complex 

when they are applied for generalization purpose. With a view to facilitate the utilization of 

wave energy and foster research activities by providing cheap dataset of wave properties with 

high spatial and time resolution, this work focuses on developing a generalized machine 

learning model that is able to predict significant wave height from wind parameters on a huge 

area around the coastlines of USA and Canada. Four machine learning models have been used 

in this work; 2 deep learning models (Artificial Neural Network (ANN) and Self Normalizing 

Neural Network (SNN)) and 2 gradient boosting tree-based models (XGBoost and LightGBM) 

and performance of these models have been evaluated on test data, distinct from the one used 

for training. The deep learning models have showed greater fitting capacity compared to tree 

based model on the training data, achieving the lowest Mean Squared Error(MSE) (0.047 for 

ANN, 0.063 for SNN, 0.226 for XGBoost, 0.108 for LightGBM) and highest R2 score (0.953 

for ANN & 0.937 for SNN, 0.894 for XGBoost, 0.892 for LightGBM) whereas the gradient 

boosting models demonstrate better generalizing capacity compared to the deep learning 

models on both the known (data from these buoys are included in the training set) and unknown 

(data from these buoys are not included in the training set) buoys. Furthermore, impact of 

outlier detection and removal using Tukey’s Fence method on the performance of ANN & SNN 

has been evaluated and found to be insignificant.   
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Chapter 1 Introduction 

Significant wave height is instrumental to several coastal activities like ship navigation, marine 

traffic control, Port locating, environmental monitoring, deploying coastal protection 

structures, wave energy converters, building platform for the oil & gas extraction, dredging 

activities [1]–[4].Hazardous occurrences or disasters brought on by extreme weather events 

can be predicted  with the use of high-seas estimations of significant wave height and it aides 

in planning coastal risk management tasks [5]–[9]. Prediction of significant wave height is also 

vital for assessing the wave resistance which causes significant fuel consumption on the ship 

hull and offers safety and improved performance for ship navigation[10]. Prior knowledge of 

significant wave height is critical for the continually evolving aquaculture business, numerous 

military exercises along the coasts & deep seas and the efficient usage of ocean energy potential 

[11]. In recent decades, there has been a widespread adoption of the wave-based power 

industry, which has predominantly stemmed from the imperative of global leaders to transition 

to renewable energy sectors [12]–[14]. The precise history of significant wave height permits 

forecasting of future weather trends and patterns, which is paramount for maximization of the 

potential of these power industries [15]. The assessment of wave parameters in seaports is 

crucial for safety reasons, as it enables the shipment and unloading of freight in safe conditions. 

As such, numerous research activities have been conducted all over the world to improve 

accuracy and reduce the computational demands of predicting and forecasting wave height. 

In this study, a Machine Learning strategy has been proposed to deliver reliable datasets while 

making efficient use of scarce resources and minimizing the necessary amount of computing 

effort. The aim of this research is to illustrate the reliability of ML models as an alternative to 

numerical models for generalization purposes and to show that high-cost rate associated with 

direct buoys implementation can be circumvented by ML models. In this work, a generalized 
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machine learning model is trained & tested based on standard datasets provided by NDBC 

(National Data Buoy Centre) & necessary datasets were downloaded through ERRDAP. 

Location of the study area is selected mostly along the coastlines of USA, Canada and several 

European countries and finally the model is validated based on some unseen datasets. When 

fed wind data & atmospheric data, this generalized model can provide significant wave height. 

This will significantly reduce the cost of adopting direct buoy measurement, increase both 

spatial and time resolution of the datasets and facilitate academics with precise datasets of 

significant wave height which will ultimately boost the economic prosperity of least developed 

and emerging nations by exploiting their wave energy potentials. After analyzing several 

machine learning models, tree-based models (XGBoost, LightGBM) are selected as these 

models perform well in structured & tabular dataset, also performances of these models have 

been compared with two deep learning models Artificial Neural Network (ANN) and Self-

Normalizing Neural Network (SNN).  

1.1 Background of this study 

Significant wave height can be influenced by a variety of meteorological variables, including 

water depth, tides, air temperature, atmospheric pressure, and wind related parameters such as 

wind direction, gust, speed, fetch [16], [17]. The buoys are reliable sources of measuring these 

meteorological data in near and deep sea which can be categorized into two main categories 

[18]:  

1. Moored buoys 

2. Drifting buoys 

Moored buoys are fixed at ocean beds even in adverse weather conditions to routinely gather 

precise data, monitor weather condition, but relatively expensive to deploy & maintain   

whereas Drifting buoys are typically connected to a drogue or marine anchor,  inexpensive to 
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deploy, float on the ocean's surface, they are typically carried by ocean eddies, and provide less 

precise data than moored buoys[19], [20]. NDBC has installed roughly 50 C-MAN stations and 

over 100 Moored buoys primarily along the coastlines of the United States which can measure 

air temperature, seawater temperature, water level, humidity levels, sea surface pressure, wind 

related parameters, wave properties and significant wave height continuously & transmit data 

in real time [21]. Although data collected by Moored buoys are highly quality controlled, but 

these have limited spatial coverage, limited time resolution, expensive to maintain and repair, 

susceptible to sensor drifting, biofouling which might affect the accuracy level. To increase the 

spatial coverage and to provide inexpensive datasets, NDBC has also deployed numerous 

drifting buoys as part of various research programs, including GARP, FGGE, and TOGA which 

can measure longitude and latitude, barometric pressure, sea surface temperature, wind 

properties[18]. The less precise data collected by drifting buoys is transmitted to the ground 

station via NOAA satellite, which takes a considerable amount of time [22]. In addition, there 

can be data loss because of difficulties in transmission and marine life interference. Among the 

various buoys that have been deployed by the NDBC, only wave rider buoys can estimate wave 

parameters directly whereas most of the buoys can measure sea surface temperature, wind 

parameters, air temperature, longitude and latitude. Due to their high initial cost and ongoing 

maintenance requirements, Wave rider buoys have seen relatively limited deployment outside 

of the coasts of the United States, Canada, and Europe. Unfortunately, poor nations lack access 

to these buoys and research operations in these regions are being severely hampered and their 

wave energy harnessing potential is being underutilized. 

To compensate for the drawbacks of direct measurement mentioned above, scientists from all 

over the world have employed a variety of approaches and created a multitude of wave models 

that can be categorized into three distinct groups according to Hu et al. [23]. 
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1. Numerical Model (rely heavily on mathematical equations and diverse boundary 

conditions) 

2. Machine Learning and statistical models (utilize the correlations between parameters to 

estimate output without taking ocean physics into account) 

3. Hybrid models (integration of numerical and ML models) 

Several numerical models like JONSWAP [24],WAM [25],SWAN [26],WAVEWATCH III 

[27] have been invented over the years to replicate wave properties. The implementation of 

numerical models is very challenging due to the fact that a change in location affects the physics 

and boundary conditions of the mathematical equations which augments computational burden 

to a great extent [28]. Moreover, due to the necessity for accurate local bathymetric 

measurements, generalization across a vast region also results in considerable inaccuracies for 

numerical models [29], [30]. Additionally, these models perform badly during drastic 

occurrences such as sudden storm peaks [31]. Large amounts of high-quality data, which are 

quite difficult and expensive to gather, may be needed to train and validate numerical models. 

So, the feasibility of utilizing machine learning model as an alternative to numerical model for 

wave height prediction has been examined comprehensively in this work. After an extensive 

literature review, two tree based models (XGBoost and LightGBM) & two deep learning 

models (ANN, SNN) has been selected as they perform well in large structured and tabular 

dataset. Input parameters have been selected based on the literature review, also to justify the 

parameters, Pearson Correlation matrix has been determined to find the correlation. Based on 

the result of correlation matrix, input parameters that have been selected for our model are 

listed in Table 1-1.  
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Table 1-1: Input variables & target variable used in ML models 

 
Variables 

Acronym Description Unit 

Input  

longitude Longitude °E 

latitude Latitude °N 

atmp Air Temperature ℃ 

bar Air Pressure hPa 

mwd Wind Propagation Direction 
 

° true 
 

gst Wind Gust Speed ms−1 

wspd Wind speed ms−1 
 

wspu Wind speed, Zonal ms−1 

wspv Wind speed, Meridional ms−1 

Output  wvht Significant wave height m 

 

1.2 Objectives with Specific Aims 

Present work aims to build a generalized machine learning model as an alternative to direct 

measurement & numerical model to predict significant wave height for a humongous area 

around the coastlines of USA and Canada. It will be a prediction-based model which will take 

wind parameters, location, temperature, pressure of a specific buoy (which lies within the 

coverage of the trained model) as input and provide significant wave height as output for that 

specific buoy. The computation time will be minimal for this model and both the time 

resolution and spatial resolution would be higher than conventional methods of predicting 

significant wave height. This model aims to provide cheap dataset with satisfactory precision 

and accuracy to the nations that lack access to wave height measuring buoy to foster research 

activities and unleash their wave energy harnessing potential. 



 

6  

This work has following objectives: 

• To analyze the feasibility of extracting wave energy and the potential of wave energy 

to mitigate energy crisis around the world through extensive literature review 

• To comprehend the importance of significant wave height prediction and the feasibility 

of machine learning model as an alternative to numerical models for wave height 

prediction through extensive literature review 

• Selection of Input parameters for the proposed Machine learning model and 

implementing Pearson Correlation matrix to justify the selection of input parameters 

• Selection of suitable Machine Learning models capable of handling this huge dataset 

(XGBoost, LightGBM, ANN, SNN) 

• To Train this model based on train and validation data and later the performance of the 

models will be evaluated on the unknown stations. 

• To contrast the tree-based model with the deep learning models based on their 

generalization capability in wave height prediction. 

1.3 Organization of this thesis 

This thesis is structured into five chapters. Chapter 1 starts with a brief introduction about the 

importance of significant wave height, its applications in different fields, different methods of 

measuring significant wave height and finally the proposition of implementing machine 

learning methods to predict significant wave height from wind parameters. In the next 

subsections, background of this work has been discussed where problems related to the two 

conventional approaches of significant wave height prediction (Direct Measurement & 

Numerical Models) have been identified and in the next subsection, ultimate aim and the 

objectives of this work have been discussed and this chapter ends by exhibiting the organization 

of this dissertation.  
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In chapter 2, an extensive literature review is given which is divided into 5 sections. The first 

section gives a brief introduction on Ocean energy, its harnessing potentials across different 

parts of the world. In the second section, different types of ocean renewable energy (ORE) 

along with their utilization have been discussed which can be subdivided into 4 sub-sections. 

For each type of energy extraction processes, insights of relevant energy extraction devices 

have been given. In the third section, significant wave height has been established as a vital 

parameter by exhibiting its relationship with wave energy flux and for the final section 

extensive literature review has been given for current progress of utilizing machine learning 

techniques to predict significant wave height. The overall discussion in this sub-section have 

been based on two different perspectives: prediction-based works and forecasting based works. 

The final section for this chapter gives an overall summary of this chapter.  

Chapter 3 of the thesis starts with a introduction of the overall modelling procedure of this 

work and the subsequent sections detail the different methods used for the study along with 

how the data selection and processing has been done. The different comparison metrics for 

result justification are also described in this section.  

In chapter 4, the results found from the study are presented and discussed thoroughly.  

The thesis ends with the conclusion and future scope in chapter 5.  Lastly, references are added. 
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Chapter 2 Literature Review 

2.1 Ocean Energy 

Many studies on renewable energies have been conducted globally in recent years as a result 

of the global energy crisis and issues related to the usage of fossil fuels, such as greenhouse 

gas emissions. The energy potential of the seas and oceans has received a lot of attention among 

these resources since they have a large quantity of energy stored in many forms, such as wave, 

tidal, thermal, and current energy, which can more than supply the whole global need for power 

[32]. Compared to other renewable sources, ocean energy has a minimal environmental impact, 

a high-power density, and a high utilization rate. At a level 19.5 m above the sea surface, wave 

power is approximately five times more than wind power. Ocean energy can be harnessed in 

different forms, including tidal and current energy, waves, salinity gradients, and thermal 

gradients. Electrical energy can be generated from the motion of tides through the harnessing 

of tidal energy. The amount of electricity produced is dependent on the intensity of water level 

height ranges or tidal current velocities, with higher electricity generation resulting from 

greater intensity. Onshore or offshore sites can use different wave energy converter 

technologies to harness the kinetic and potential energy associated with ocean waves. Pressure-

retarded reverse osmosis processes and associated conversion technologies can exploit the 

energy resulting from the mixing of fresh water and seawater at the mouth of rivers, known as 

salinity gradient energy. Additionally, ocean thermal energy conversion processes can harness 

the thermal energy generated by the temperature gradient between the sea surface and deep 

water. The capacity of the world's oceans to store 93,100 TWh of electrical energy annually is 

estimated by the International Energy Agency (IEA). Tidal wave and thermal power potentials 

caused by gravity, wind, and sunlight were previously estimated to be 22,000, 2000, and 87600 

TWh/y, respectively, but more recent calculations indicate that wave power alone has a 
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potential of 2985 GW. From 24 to 28 °C at the surface to 4-6 °C in 1-kilometer depths, the 

ocean's temperature changes. The ocean thermoelectric generator might have its roots in the 

temperature difference. In the arid and temperate regions between latitudes 30°S and 30°N, 

temperature fluctuations of 20 °C are frequently encountered. Worldwide, tidal potential is 

evenly distributed, equatorial regions have high OTEC potential, although the tropics have 

higher wave energy potential  [33]–[35].  

In different parts of the world, ocean renewable sources are already producing good quantities 

of energy. Countries like the UK, the USA, South Korea, China and the Netherlands are leaders 

in this sector being surrounded by ocean all around [36].  

2.2 Different types of ORE and their Utilization 

2.2.1 Energy Harvesting Technology from the Wave 

The most well-known representation of ocean energy is energy from the wave. Waves are a 

result of the effects of the wind on the water's surface. Because of this, wave power is 

tangentially seen as a form of solar energy. It has long been proposed to use wave energy for 

energy purposes. The exploration of wave energy involved a number of experiments and 

programs, but these efforts eventually came to an end due to the drop in the price of oil and the 

underwhelming results of the experimental units [37]. Due to the volatility of the oil market, 

worries about global warming, and restrictions on greenhouse gas emissions over the past 

decades, interest in WECs has increased [32]. Wave energy in particular and renewable energy 

in general attracted a lot of attention in the 1970s. This desire, however, did not lead to the 

development of any system with respectable technological and financial qualities. Having high 

goals for the programs was one of the primary causes. In the UK, for instance, the goal was to 

create 2 GW of wave power producing capacity by 1983. As a result, there were exceedingly 

expensive, oversized designs. Recent systems have been developed as small individual units, 
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typically less than 500 kW, which may be deployed in huge numbers to generate enormous 

amounts of electricity, based on the previous experiences [38]. Shoreline, near shore, and 

offshore systems are the three basic divisions of these devices. The complicated mooring 

systems, undersea electrical cables, or high-pressure pipes are not needed by the shoreline 

systems to transport generated electricity to the shore. They are also simpler to install and 

maintain. However, there aren't many places that would be suitable for such plants, and the 

wave energy there isn't as high as it is offshore. Additionally, because each coastline has 

specific characteristics, it's possible that mass manufacture and economies of scale cannot be 

used to shoreline systems, which could result in higher installation costs. Since the waves are 

calmer and less damaging to the coastal zone once the wave energy has been absorbed, the near 

shore systems can be useful for coastal protection. Before commercialization can be achieved 

for the offshore ones, the accessibility and dependability of the plants must be greatly increased. 

The way the WECs transform wave energy into the required product can also be used to identify 

them. Wave energy is extracted and has great force but low velocity. Before it can be used in 

a generator to generate electricity, this energy must be converted into a high-speed spinning 

motion. This necessitates a complex mechanical system, which raises the plant's construction 

and maintenance costs and decreases system reliability due to the large number of moving 

parts, which lowers the system's ability to endure powerful storms [39]. 
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Point Absorber Device 

 

Oscillating Wave Surge Converter 

Figure 2-1: Different types of wave energy converters [40] 

2.2.1.1 Point Absorbers 

As indicated in Figure 2-1, point absorbers are a form of floating oscillating body that consists 

of a heaving buoy that uses a Power Take-Off (PTO) to extract wave energy from the motion 

between the buoy and a fixed reference or between a submerged body and the sea bed [41]. 
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Point absorbers were first theorized in the 1900s but the first small scale studies took place in 

Japan in the 1980s [42] and later in Norway [43]. 

The generated energy may take the form of shaft power, air or liquid pressure, which can be 

converted to electrical energy in coastal or offshore facilities, or direct electricity, depending 

on the mechanism utilized. Additionally, there are proposals to operate reverse osmosis water 

desalination facilities with generated high pressure sea water [44], [45].  

2.2.1.2 Oscillating Water Column (OWC) 

One of the most common types of wave energy converters are the oscillating water column 

types though it spent a long time in the development phase. The system utilizes a gradually 

narrowing water column and water trapping. The top of the water column is narrowed at the 

inlet of the turbine. This design increases the trapped air flow in the designed column cell. The 

pressurized air flows through the turbine which ultimately produces electricity. The system 

does not directly use any wave but uses the air trapping and pressurizing capacity of the waves 

to generate power by rotating the turbine using air flow. Air in these systems can flow in both 

directions. This flaw is rectified by using Wells Turbine which spins unidirectionally regardless 

of air direction [32]. 

2.2.1.3 Attenuators and Terminators 

Attenuators and terminators technology of wave energy harvesting utilizes the relative motion 

between multiple floating structures. Double-action pumps are moved in these systems by the 

pitch and yaw motions between the structures or sections riding parallelly to the wave direction. 

Lower force is induced the area being lower due to its relative orientation with the wave. 

Several attenuator and terminator type wave converters have been designed and deployed. The 

most prominent was the Scottish Pelamis wave converter. The Pelamis converter, cylindrical 

in shape is segmented in nature. It can covert the vertical and horizontal induced wave motion 
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at the hinged joints to pressurized fluid which can be used to run electric generators through 

hydraulic motors. The final transfer of electrical power occurs by means of cables to the shore. 

There are several instances of Pelamis being used – one full-fledged system in the UK in 2004, 

a 2.25 MW WEC attenuator plant in Portugal, a 3 MW  4unit plant in Scotland and several 

others [32]. After several attempts at making their product commercially viable, the company 

had to declare bankruptcy finally in 2014 after failing to secure funds needed [46]. Other wave  

energy converters based on the attenuator and terminator concept are the wave star energy 

converted which was registered in 1898 [32]. The model has been mostly experimental except 

for one installed in the North Sea which was capable of developing 500 kW of power. Another 

similar technology is the McCabe wave pump which is close to the pelamis in the concept of 

power generation but yet to be commercially realized [47]. 

2.2.1.4 Overtopping Devices 

Most ocean wave energy converters are complicated in nature and consists of many parts. The 

abundance of parts possess complication in maintenance and repairing. To eliminate these 

issues overtopping devices were introduced. These devices have very small number of movable 

parts making them very suitable and easy to implement. The concept of these devices is very 

simple where some type of a reservoir or barrage is created that can hold the water coming in 

with the waves. The water is then let to flow back to the sea through a low-head turbine which 

produces the wanted electric  power [32]. One of the devices of this type is the Waveplane A/S 

which is capable of storing incoming wave waters at different heights. The water is then 

allowed to pass through the turbine to produce electricity. The product initially showed good 

promise but later went under the radar [48]. Another overtopping device is the famous Wave 

Dragon, credited to be one of the most successful devices of the type. The system utilizes the 

concept of hydro power stations and can be added with wings to increase wave deposition in 

the reservoir [49]. Aalborg University conducted a laboratory test worth 1:50 scale model in 



 

14  

the 1999s by developing a software for simulation. The study showed the proposal to be usable 

and insurable. Another 1:4 turbine test conducted at TU Munich showed that the model was as 

efficient as existing hydro turbine-based power plants. Based on these experiments, Soerensen 

et al. deployed a 1:50 prototype in the Danish Wave Energy Test Station at  Nissum Bredning 

in 2003 and found the survivability and power production to be satisfactory [50]. The Tapered 

Channel Wave Energy Device, shortened as Tapchan is another kind of overtopping devices. 

This one has guided channels through which the incoming waves are amplified and then 

discharged into an above the water line reservoir. The process of electricity generation is 

similar to the others using a low head turbine. The first of the kind was introduced in Norway 

but yet to see practical implementations [38]. 

2.2.1.5 Oscillating Wave Surge Converters 

Oscillating Wave Surge Converter has a design that uses a buoyant flap anchored to the sea 

bottom. The oncoming waves hit the flap and the movement of the flap at the hinge is converted 

to electrical energy. These type of converters usually operate at an intermediate depth of water 

[51]. Several projects were undertaken as the CETO OSWC device to be installed in Australia 

capable of generating about 5 MW of power.  The project had several prototypes installed in 

2003, 2006 and 2008 with a final commercial scale set up in 2009. Another system based on 

the CETO model named bioWAVE was proposed to be setup in Australia with a capacity of 

250 kW [32]. No subsequent information about the plans were found. WaveRoller and 

Pendulor are two similar projects. Several proposals were developed about these designs but 

other than a prototype, no practical implementation was seen [52]. Salter Cam is a patented 

device that can extract energy from the waves. The device promises to convert almost 90% of 

the impacted wave energy to electrical, chemical or mechanical energy with minimal loss [32], 

[53]. 
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2.2.1.6 Submerged Pressure Differential Converters 

Commonly installed near the shore on the seabed, Submerged Pressure Differential Converters 

are another type of Ocean wave converters that can generate electricity by using the created 

pressure differential due to the rise and fall of the level of water due to waves. The pressure 

gradient allows pumping the fluid through an arrangement that generates the electricity [54]. 

Archimedes Wave Swing by AWS Ocean Energy is a submerged pressure differential 

converter. Several models have been tested to study the prospects as – a 16 kW swing in 

Glasgow and an 80-kW unit in Orkney, both of which has exceeded expectations. The company 

plans to develop 500 kW units soon that can be integrated to develop about 10 MW of power 

in each platform [55]–[57].  

2.2.2 Tidal & Current Energy Extraction Technology 

Most renewable energy sources are in one way or other linked to solar energy and derived from. 

But the tides of the ocean are created due to the effect of the existing gravitational forces 

between the Moon and the Sun with the water bodies on the Earth and the rotation of the earth 

[58].  The global reserve of Tidal energy is about 100 GW but only some of it can be extracted 

due to geographical limitations [59]. 

2.2.2.1 Tidal Barrage 

Tidal energy extraction can be done in a variety of ways but the primary idea is very similar to 

the hydroelectricity power production technologies. But in tidal energy extraction, the flow of 

the tides is not unidirectional in all cases requiring several arrangements. Primarily a barrage 

is created that traps the oncoming tidal water and separates them on either side of the barrage 

erected. The height differential allows the water to pass from one side to another through a 

turbine installed in the barrage wall. This generates the required electricity [32]. 
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There are many successful implementations of the Tidal Barrage extraction system. The largest 

tidal power plant in the world follows this principle to generate up to 254 MW of power. The 

Sihwa Lake Tidal Power Station generates this power on an unpumped flood generation 

scheme where only the tidal inflow generates power. The plant has  10 25.4 MW Bulb type 

turbines installed with an annual generation of 552 GWh of electricity [60], [61]. South Korea 

has another Tidal Barrage Power plant in Uldolmok that powers 430 households. The Tidal 

Barrage station has a barrage width of 3260 meters and channel speed exceeding 6.5 meters 

per second with a capacity of 1.5 MW peak and an annual output of 2.4 GWh [62], [63]. The 

world’s first Tidal Barrage system set up in France on the Rance River in France is still working 

producing peak 240 MW of power with a capacity factor of 28% and an annual generation of 

500 GWh. The plant has a tidal range of 8 meters and spans 750 m in length accommodating 

24 Turbines. The electricity generation cost is cheaper in comparison to other sources and the 

plant attracts quite a lot of visitors also [64]. China’s Jiangxia Tidal power station is another 

working tidal barrage power station with a peak of 3.2 MW. The plant has three turbines of 

500, 600 and 700 kW respectively. The maximum tidal range stands at 8.39 meters and the 

annual generation is 6500 MWh [65]. 

2.2.2.2 Tidal Stream Generator 

Tidal Stream Generators can be said to be the different types of underwater devices capable of 

extracting energy from the flowing water. These are similar to the wind turbines and known as 

tidal turbine. Classified into six types, the tidal stream generators are horizontal and vertical 

axis turbines, oscillating hydrofoils, venturi devices, Archimedes screws and tidal kites [66]. 

Three commonly tidal turbines are shown in Figure 2-2. One of the most notable tidal turbines 

developed by Orbital Marine Power was set up at the Fall of Warness Tidal Test Site, Orkney 

owned by the European Marine Energy Centre (EMEC) back in 2016. The model known as 

SR2000 was capable of generating peak 2 MW of power and had two turbines with rotor blades 
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spanning 16m in length. The blades were at a water depth of 33 meters. The turbine tested for 

a 12 month continuously generated 3200 MWhs of electricity. Though it had a lifetime of 20 

years, it was taken off in 2018 from the site and the later model Orbital O2 has been deployed 

in the location since 2021 [66]–[68]. 

 

Horizontal-Axis Turbine 

 

Vertical-Axis Turbine 

 

Oscillating Hydrofoil 

 

Ducted Turbine 

 

Archimedes Screw 

 

Tidal Kite 

Figure 2-2: Different types of Tidal Stream Generator [69] 

The Orbital O2 was successfully deployed on 22nd of April 2021 amid the coronavirus 

pandemic from the Port of Dundee. The largest existing tidal turbine has the capacity of 

meeting the demand of 2000 homes and can offset near to 2200 tons of produced Carbon-di-

Oxide a year. The O2 is part of the FORWARD 2030 project by the EU’s Horizon 2020 

research plan where it is planned to deploy 2030 MW of tidal energy before 2030. The 

integrated plan for a greener future will see multiple O2 turbines connected with a host of other 

renewable energy devices with the EMEC systems for massive decarbonization efforts [70]–

[72]. Other than the Orbital O2, several other small-scale prototypes have been developed such 

as the HS300 Turbine in Kvalsund which is a 0.3 MW grid connected turbine set at a depth of 
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50m within a 700 m wide channel in Norway. The turbine was developed for a period of 3 

years and after testing was taken off in 2007. This model led to the development of the HS1000 

Turbine which helped develop the 1.5 MW MK 1 turbine which was installed in the MeyGen 

project [73]. The ongoing project has a plan of installing capacity to 86 MW from installed 6 

MW by the installation of 49 more along with its installed 4 turbines. The project lease can 

have up to 398 MW capacity installed and divided into 3 phases with each increasing the 

capacity gradually [74], [75]. Atlantic  Resources Corporation, responsible for the AR 1500 

model of the MeyGen project also deployed a 1 MW turbine before at the EMEC facility during 

2011 [76]. Other smaller implementations include the Seaflow, a 300 kW propeller type 

prototype turbine installed in Devon in 2003 [77]; a prototype project in New York City 

between Queen and the Rossevelt Island in the East River; SeaGen, a 1.2 MW turbine installed 

in Norther Ireland in 2008; Evopod, a  1/10 scale turbine set in Northern Ireland and the Triton 

3, a 3 MW turbine set up in the Thames [66]. 

Crossflow turbines based on the Darreius design was deployed as a prototype in the South 

Korea with plans to be scaled up to 90 MW but no further information could be retrieved [78]. 

Flow Augmented Turbines were also proposed in Australia but the project was not 

commercially deployed after the initial trials [66]. Oscillating devices has been developed by 

Australian company BioPower System based on the Biomimicry of swimming species to 

develop the bioSTREAM tidal power converter system. Several power rated version of the 

device are still in R&D phase [79]. Swedish company Minesto proposed a tidal kite device 

capable of developing between 150 and 800 kW of power [80]. 

2.2.2.3 Tidal Lagoon 

Tidal lagoons are by principle of energy generation similar to the tidal barrage system of energy 

generation but they differ from the tidal barrages in the sense that tidal barrages are natural 

systems whereas tidal lagoons are created artificially. Turbines are incorporated into the created 



 

19  

walls that has the ability to capture the tidal potential energy effectively [81]. Tidal lagoon 

method of tidal energy harnessing is still a very new concept and has not been explored much. 

The very first Tidal Lagoon was planned to be deployed in Swansea Bay in the UK but the 

project was rejected after initial go ahead. The project funded by the government was 

eventually dropped and a new Blue Eden plan was conceptualized which will be completely 

privately funded [82]–[84]. A comparative study by D. Vandercruyssen et al. found that tidal 

barrages and lagoons both have their pros and cons and depending on the location being 

considered, the schemes should be choose [85].  

2.2.2.4 Dynamic Tidal Power 

Dynamic tidal power is a novel idea for tidal energy harnessing. Commonly known as DTP, 

the system can be imagined to be a barrier 30 or more kilometers long ending up in the sea. It 

requires a structure perpendicular to the coast and a parallel barrier at the end. The two barriers 

will form a ‘T’ shape (shown in Figure 2-3). The structure inhibits the flow of the tidal wave 

and a heigh difference in the level of water on either side of the barrier is created. The water is 

allowed to flow through Bi-Directional Turbines installed in the dam.  

 

DTP System Traditional Barrage System 

Figure 2-3: Schematic of DTP system and traditional tidal barrage system [86] 
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The positive side of the DTP includes a higher power output, stable power, availability and 

combined implementation. But the DTP implementation requires at least 30 kilometers length 

to be viable. This being a considerable length makes it difficult to implement. Currently no 

power plant following the concept Kees Hulsbergen and Rob Steijn, the inventors of DTP exists 

but feasible locations are proposed along the coast of China, South Korea and the UK [87]. 

Y.H. Park from the Korea Institute of Ocean Science & Technology ran numerical simulations 

of DTP of 10 km, 30 km and 50 km in the Yellow Sea for a period of 30 days case by case 

basis. Though the produced power might be an over estimation but it was observed that the 

peak power had the potential to reach up to 23,383 MW which would have a net total annual 

generation of 61 TW h equaling 68% of the installed tidal barrage capacity in 2014.  Similar 

studies in Netherlands showed a potential of annual generation of 40 TW h by a 35 km T-

shaped DTP [88]. Dai et al. predicted DTP in the Taiwan Strait of China and made a 

comparative analysis of the power production with the open ratio. The open ratio can be said 

to be the ratio of the open area of the turbines to that of the lateral area of the dike. The 

numerical study found the mean power increase from 0.43 GW to 0.89 GW as the open ratio 

was changed in between 2% and 8% but the power decreased with open ratios greater than 8% 

[89]. Shao et al. investigated DTP systems numerically in the Yellow Sea and the Bohai Sea 

and concluded that in place of a single larger dam, the combination of more than one dam has 

the potential to exceed the efficiency of a single working dam due to less interference with 

surrounding hydrodynamic conditions [90]. Y.H. Park from the KIOST caried out numerical 

simulations with different shapes of DTP but it did not show massive improvement in the 

results. Park concluded that the traditional DTP might be the most economical choice though 

future studies and practical experimentations can give more accurate results. DTP shapes 

should be optimized based on the tidal condition of the location chosen and the best output can 

be extracted from a 70 kilometers long simple DTP [91]. Armoudli et al. simulated a 30 km 
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long DTP near the Faror Island in the Persian Gulf. The 3D numerical model found up to 760 

MW of power can be generated by using direct-drive permanent magnet synchronous 

generators with a water level difference of 1.2 meters between the two sides of the dam [92]. 

Dynamic Tidal Power though conceptualized and patented in 1997 but yet lacks any practical 

development or experimentation on actual setups due to being quite costly as the size of the 

barrier should be at least 30 kilometers long to be considered viable. But numerical studies 

show good promise and this should be explored extensively. 

2.2.3 Ocean Thermal Energy Extraction Technology (OTEC) 

The potential of ocean thermal energy conversion (OTEC), which is one of the permanent and 

readily available renewable energy sources that could help with base-load power supply, is 

significantly bigger than that of other ocean energy kinds. OTEC systems are practically 

infinite sources of energy since they rely exclusively on the sun and ocean currents, which 

cover more than 70% of the earth's surface and absorb solar radiation. They are essentially the 

most efficient energy storage systems in existence because of this. OTEC merely stores solar 

thermal energy as a result of the ocean's temperature gradient between the surface-warm water 

and the deep-sea cold water [93]. OTEC is suitable for a variety of tasks, including cooling and 

power production. The core idea behind OTEC technology is to use surface-warm ocean water 

(25–30 °C) to heat and evaporate a working liquid, which creates steam that drives a turbine to 

spin and produce power. When the fluid is once more condensed to a liquid state at a deep cold 

water source's temperature (4-6 °C), the thermodynamic cycle is complete [94]. The schematic 

of a basic OTEC system in shown in Figure 2-4. The change in water temperature has a 

significant impact on the cycle's efficiency. Higher efficiencies are produced by larger 

temperature differences.  
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Figure 2-4: Schematic of a basic OTEC system [95] 

This happens as a result of the water's modest temperature difference (of roughly 20 °C) and 

the thermodynamic cycle's generally low efficiency. When the temperature difference is 20 °C, 

the Carnot cycle efficiency—the ideal thermodynamic cycle in theory—is approximately 6.7%. 

As a result, choosing an appropriate working fluid and thermodynamic cycle are crucial factors 

in boosting OTEC systems' efficiency [96], [97]. D. Vera et al. has examined a wide range of 

OTEC system types and given an outline of the major challenges facing OTEC technology. 

The steam turbine needs to be optimized if the OTEC system is to operate more efficiently. 

Due to the restrictions put forth by the minimal water temperature difference, the OTEC power 

generation system's efficiency is frequently subpar [95]. J. Langer et al. reported a case of 

upscaling of OTEC plants as they are mostly available in small scale which is not really viable. 

They concluded that up to 45 GW of power can be harnessed in Indonesia by taking proper 
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steps in regions with higher electricity demands [98]. In a different work, J. Langer et al. ran a 

study for studying the feasibility of a 135 MW gross plant in Ende and found that the project 

is feasible. They also suggested that similar power plants could be developed in at least 11 

locations as Hawaii, the USA; Lamu, Kenya; Kumejima, Japan; Tarawa, Kiribati; Manay, the 

Philippines; Rainbow Beach, Australia; Lagos, Nigeria; Fernando de Noronha, Brazil; Ofu, 

Samoa; Montego, Jamaica and Port Gentil in Gabon. The temperature profile and electricity 

demand of these places should vary from the one in Indonesia but the locations might be 

suitable given the ocean condition [99]. OTEC plants were first conceptualized in the 1800s 

with the first of a kind 22 kW plant being set up in 1930. The plant could not stand and a natural 

calamity and got destroyed. Not much practical progress was made regarding commercial 

deployment. Several plants were designed and numerically studied in the USA, India, 

Indonesia and Cuba but commercial deployment is still not there [32]. In the 1970s, a 100 kW 

closed cycle OTEC planned was built by Tokyo Electric Power Company on Nauru Island 

which produced about 30 kW of useful electricity [100]. During the Arab-Israeli War of 1973, 

President Carter planned to produce 10 GW of electricity from OTEC systems by 1999 but that 

was never realized [101]. Several privately funded research beds were developed in Europe 

without any actual output. A 1 MW floating OTEC test bed was deployed in India near Tamil 

Nadu which eventually failed due to a faulty cold water pipe but researches are still being 

funded by the Government of India [102]. A plant capable of generating up to 30 MW  of  

power was planned  by Ocean Thermal Energy company on St. Croix costing a maximum of 

300 million dollars but the project stopped due to the associated resort’s bankruptcy [103]. 

Makai Ocean Engineering connected the very first OTEC plant to the grid in Hawaii, the USA 

for the first time in 2015. The plant is capable of generating 105 kW at the moment with plants 

to install up to 100 MW of power generating capacity to provide electricity to 120,000 

Hawaiian homes [104], [105]. Another demonstrator plant is set up in Okinawa prefecture of 
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Japan in collaboration with Saga University. The 100 kW class plant works as a test bed for 

future OTEC integration with the Japanese grid and is also open to visitors [106]. Commercial 

application of OTEC though remains unrealized but the researches in this direction show its 

viability. 

2.2.4 Salinity Gradient Energy Extraction Technology 

Salinity gradient technologies use the chemical pressure difference between freshwater and 

seawater's differing ionic concentrations to produce power. Due to the high concentration of 

salt in seawater, it has a higher osmotic pressure than freshwater. Reverse electrodialysis (RED) 

and pressure-retarded osmosis (PRO), two major technological kinds, use semi-permeable 

membranes to create an osmotic potential that can be used to drive turbines in deltas or fjords 

to produce power. By converting the osmotic pressure of saline solutions to hydraulic pressure 

through a process known as pressure retarded osmosis, or PRO, electricity can be produced. 

PRO technologies produce energy from the differential in salt content between saltwater and 

freshwater, much like reverse electrodialysis systems do. Reverse electrodialysis, or RED, is a 

process that uses the carefully regulated mixing of two pools of water with various salinities to 

produce electricity. Several cation and anion exchange membranes are commonly constructed 

into high- and low-salinity compartments in RED technology. These membranes form charged 

poles like batteries when freshwater and saltwater are passed through them in opposition to 

each other [107].  

The total estimated energy generation capacity of Salinity Gradient Extraction Technology is 

around 2.6 TW. These systems are very expensive to implement and as such makes them 

difficult to deploy. The advent of newer technologies and the development of cheaper 

membranes provide hope for such systems [32]. Statkraft Osmotic Power Prototype at Tofte in 

Hurum, Norway is the world’s pioneering plant that runs on the principal of Salinity Gradient 

Energy Extraction Technology. Researchers at the plant calculated that up to 2.85 GW of power 
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can be extracted through the methods implemented [108], [109]. Apart from this, full-fledged 

practical operations based on this technology is yet to be realized but researchers are 

continuously working to make it viable. 

2.3 Relationship between Wave Energy Flux and Significant Wave 

Height:  

In the preceding sections, the immense potential offered by wave energy to alleviate the global 

energy crisis has been exhaustively discussed, and various devices to extract wave energy, their 

applications, and limitations have been outlined. Prediction of significant wave height is crucial 

as wave energy flux is directly related to the significant wave height and can be described by 

the following equation [110]: 

  P =
ρg2

64π
 Hs

2Te (2.1) 

Where,  

P= Energy Flux 

Te= Wave Period 

Hs=Significant Wave Height 

So, this work aims to predict significant wave height from wind parameters and later this 

significant wave height can be related to harness wave energy flux for a specific location and 

based on these wave energy flux, specific wave energy extracting devices can be employed at 

that location. 
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2.4 Machine Learning Models to measure significant wave height: 

Machine learning models may be a great substitute to mitigate the shortcomings imposed above 

as they works based on the correlation between input & target parameters which reduces the 

computational burden in generalization approach and provide precise values of target variable 

in a short amount of time, also both spatial & time resolution is high for these models. Based 

on their objective and data source, machine learning models can be divided into various 

categories. The two major categories are: 

2.4.1 Prediction Models 

These types of models take input data from multiple buoys to train a regression model, which 

then predicts the desired output of a nearby buoy. Mahjoobi et al. [111] evaluated the 

performance of CART, ANN, and C5 algorithms for predicting wave height in Lake Michigan 

and concluded that regression models are superior to classification models and akin to ANN 

models in terms of their effectiveness in prediction purpose. Elbisy et al. [112] has compared 

the performance of MART model and multiple ANN models in terms of significant wave height 

prediction at Abu Qir Bay coastal zone, Egypt. Various wind parameters have been used as 

input features after analyzing their significance in terms of output prediction, and it has been 

determined that MART model is superior to all other models, while RBFNN is the best among 

ANN models. Gracia et al. [113] has proposed an artificial neural network (MLP) model and a 

decision tree model, and then combined their performance via ensemble learning to enhance 

the wave parameter predictions of numerical models. In this study, 12 years of data from 4 

buoys along the coast of Spain have been used, and the authors have concluded that in coming 

years, a machine learning model could even completely supplant the numerical model. Kumar 

et al. [114] has implemented two sequential learning algorithms, MRAN and GAP-RBF to 

predict the significant wave height and the prediction performance is compared with SVR and 

ELM. The author has collected data from 14 stations in the Gulf of Mexico, the United 
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Kingdom, and the Korean region for approximately five years. It has been determined that 

MRAN outperforms all preceding models. The integration of meteorological and structural 

data has been proposed in the training of supervised machine learning models (ANN, Tree 

based models) to enhance wave height forecasting ability by Demetriou et al. [11]. Gunaydin 

et al. [115] compared ANN models and regression models for predicting the monthly average 

wave height from mean wind speed, air temperature, and sea level pressure for three distinct 

buoys in the Atlantic. After analyzing seven various configurations of input features, this study 

justifies the aforementioned three input features as the optimal combination. The ANN model 

trained with all input features has been identified as the superior one and finally the pi theorem 

has been implemented in regression models to generate prediction-capable formulas. 

Shamshirband et al. [116] compared the efficacy of three machine learning models (SVR, 

ANN, ELM) to the SWAN simulation model of two distinct stations situated in Persian Gulf. 

It has been determined that ELM outperforms other models, but that all models fail to 

accurately predict extreme weather events. In this study, numerical models demonstrated 

identical efficacy to ML models. As an alternative to numerical models for simulating wave 

properties, James et al. [117] proposed  two machine learning (ML) models (MLP as a wave 

height regression model and SVM as a wave period classification model). The wind parameters 

were derived from the SWAN model, validated against buoy measurements, and used as input 

features for the surrogate model. The bathymetry datasets were obtained from the National 

Oceanic and Atmospheric Administration (NOAA). When steady-state SWAN model 

conditions are examined, the author has demonstrated that ML can replace numerical models 

admirably in predicting wave height and period. Hu et al. [23] have compared the efficacy of 

two machine learning (ML) models (XGBoost, LSTM) with the numerical model 

WAVEWATCH3 in predicting wave parameters in Lake Erie based on wind parameters. This 

study utilized National Data Buoy Center (NDBC) standard wind data from 1994-2013 for 
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model training, 2014-2015 for model validation, and unobserved data from 2016-2017 for 

model performance evaluation on wave height and period prediction. This work's results justify 

the use of ML models due to the dramatic decrease in computation time compared to numerical 

models; while XGBoost performed best among the individual models, the ensemble 

implementation of all the models showed much greater promise than the separate 

implementations. Etemad-Shahidi et al. [118] has suggested a tree-based model as an 

alternative to ANN models for predicting wave height in Lake Superior using wind parameters. 

For the study, NDBC standard datasets of wind and wave parameters were collected from 2000 

to 2001. The subsequent training and testing of the models revealed that the M5 algorithm 

based on Tress outperformed ANN models. Also, the use of tree-based models has been 

validated because they do not require the time-consuming topology determination phase of 

Ann models, their results are readily interpretable, and their computational unit and time 

requirements are less. Malekmohamadi et al. [16] have used multiple soft computing methods 

(ANN, SVM, BN, and ANFIS) to predict wave height in Lake Superior based on wind 

parameters. In this work, the dataset preprocessing phase includes sensitivity analysis of the 

input parameters, and the optimal input parameters were chosen based on the performance of 

several different configurations on an MLP model. Except for the BNs, all models predict wave 

height exceedingly well and can be relied upon in this sector, according to the findings of this 

study. 

2.4.2 Forecasting Models 

These types of models take historical data from a specific buoy to train a model capable of 

predicting the future measurement of the objective variable for that buoy. Deo et al. [119] 

proposed an ANN model to forecast wave period and wave height from wind parameters for 

three locations in Karwar, India, at a very nascent stage in the application of machine learning 

models to replicate wave parameters. The author has performed sensitivity analysis to 
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determine the optimal combination of input parameters, and fifty distinct input combinations 

have been supplied for this purpose. Although it is a very rudimentary model with limited 

capacity, the author has demonstrated the viability of ML models for predicting wave 

parameters, paving the way for future research. Makarynskyy et al. [120] implemented ANN 

models to forecast wave height and wave period with a lead time of one to twenty-four hours 

in an earlier work employing ML models in wave height forecasting. The model was applied 

in two distinct locations, the Atlantic and the Irish Coast, and was based on some initial 

predictions, which were later corrected and then merged with measurements and previous day 

forecasting to predict wave parameters for the following day. The forecasting and subsequent 

correction and integration of multiple ANNs validated the feasibility of ML models to forecast 

wave parameters, but it was discovered that this simple model cannot capture a broad range of 

variations in the target parameters for the oceanic site. Agrawal et al. [121] have compared the 

performance of ANN models to that of two stochastic models (ARMA and ARIMA) for 

predicting wave height in the Indian Ocean with a lead time of 3, 6, 12 and 24 hours. This study 

demonstrates that ANN outperforms stochastic models for shorter lead time forecasting, 

whereas all models produce comparable results for long range forecasting. Zamani et al. [122] 

implemented ANN models with time-lag and other models with IBL technique, the author 

compared the performance of wave height forecasting for two distinct locations in the Caspian 

Sea, concluding that ANN with time-lag outperforms other models. Nitsure et al. [17] proposed 

using genetic programming as an alternative to numerical models to forecast the peak wave 

height for four buoys located along the United States and Indian coasts. For the proposed 

model, wind parameters were used as input variables, the lead time was 12h and 24h and 

satisfactory results were obtained using this technique. Ali et al. [123] has proposed an MLR-

CWLS model to forecast wave height 30 minutes in advance. Australia's coastal zone has been 

chosen as the study area and eight years of data have been selected for this study. Finally, the 
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efficacy of this model was contrasted to that of conventional MLR, MARS, M5 Model Tree, 

and it was concluded that MLR-CWLS model is superior to other models. Berbic et al. [124] 

has proposed ANN and SVM models to forecast wave height with a 0.5-5.5-hour lead time. 

Initially, only wave height with time latency was used for forecasting; subsequently, wind 

parameters with time lag have been added to the model, which enhanced its accuracy. For 

greater accuracy, it has been determined that SVM and ANN should be used in shorter and 

longer lead times, respectively. To facilitate the navigation of a self-governing ship, Domala et 

al. [125] has contrasted the efficacy of Deep learning models (FBProphet) and tree-based 

models (XGBoost and Random Forest) in forecasting wave height for six distinct stations 

(three from Hawaii and three from Puerto Rico). Wind-related parameters, Pressure, and 

Temperature have been utilised to train the model, and wave properties have been chosen as 

the dependent variable for this study. XgBoost has been deemed the finest ensemble model in 

terms of both accuracy and prediction time, and FBProphet has demonstrated comparable 

performance without the need for hyper-parameter tuning. Gomez-Orellana et al. [126] have 

proposed a novel MTEANN model to forecast wave height and energy flux simultaneously 

with a 6-hour and 12-hour lead time for six distinct stations in the United States. This paper's 

primary objective is to validate the effectiveness of a novel strategy known as zonal strategy, 

in which a single model can predict wave parameters for each station located within an identical 

zone. MTEANN with zonal strategy outperforms all other methods when compared to 

MTEANN trained for individual stations first and SVM, Lasso regression with zonal strategy 

subsequently. Jorges et al. [127] have proposed an innovative method of forecasting and 

reconstructing wave height using LSTM neural networks and bathymetry data. In comparison 

to SVR, MLR, FFNN, and RF, Parallel LSTM has been proven to be the preferable model. 

Incorporating bathymetry data as an input feature enhanced the forecasting performance of 

these models, justifying the incorporation of this feature in future works. Mahjoobi et al. [128] 
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have used SVM with both an RBF and a Polynomial Kernel to predict wave height and 

compared the results to those of MLP and ANN models. Wind characteristics collected with a 

6-hour lag were utilized as input features, and data from Lake Michigan was collected over the 

course of 2 years. The author has demonstrated that SVM with RBF outperforms all other 

models, and the implementation of SVM is validated due to its capacity for generalization, 

fewer input parameters, and shorter computational time. Using meteorological data as input 

characteristics generated from numerical models, Fernández et al. [129] have constructed eight 

nominal & ordinal classifiers for wave energy & height forecasting in two buoys (4 points 

around each buoy). The author concluded that, among ordinal classifiers, SVORIM and 

SVOREX performed exceptionally well in wave height prediction but not satisfactory in wave 

energy forecasting. Guijo-Rubio et al. [130] has proposed an MTEANN model for forecasting 

wave energy flux with multiple time horizons (both short and long).  Reanalysis data from three 

buoys in the Gulf of Alaska were used as input in this study. Output for four various time 

horizons was retrieved from a single model, and the results were compared to those of the SVR 

and ELM models. According to the author, MTEANN with Su-Li outperforms all other models. 

2.5 Summary: 

Ocean Energy has tremendous potential as a renewable energy to alleviate the worldwide 

energy crisis. However, to utilize this source, prior knowledge of significant wave height can 

be effective as it is directly related to the wave energy flux which will ultimately aid in choosing 

the appropriate locations to deploy wave energy converters. Although direct measurement is 

the most precise and accurate method, it is extremely expensive and has seen limited 

deployment, also both the spatial & time resolution is low. Most underdeveloped nations lack 

access to these buoys that can predict significant wave height directly and for this research 

activities are being seriously hampered and wave energy harnessing potential is underutilized. 

Numerical models could have been an alternative, but they are based on assumptions and 
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equations, if location changes, subsequently all the assumptions have to be altered for that 

specific location which is computationally burdensome, accuracy is also less. Finally, after 

extensive literature review, machine learning models have been found to be the most 

appropriate method to predict significant wave height from the wind parameters. Two Tree 

based models and two deep learning models have been selected for this work, and the study 

area is around the coastlines of USA and Canada. To the best of our knowledge, no other work 

has incorporated data from more than 14 stations to train models, whereas in this study, data 

from 47 stations have been taken which covers a huge area, also the efficacy of trained models 

was evaluated on unknown stations for that model, a novel concept in and of itself. 
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Chapter 3 Materials and Methods 

3.1 Introduction 

Before training a machine learning model, a number of factors with significant impact on the 

model must be considered. The entire modelling procedure of this work is illustrated in Figure 

3-1. The first step is data collection, as the model is entirely based on the training data, its 

performance will have a significant impact if the data is not quality controlled. For this work, 

standard dataset from 47 distinct stations were collected using ERRDAP and the dataset is 

provided by NDBC. The second step is selection of the input parameters for the training 

purpose of the model and this entire work is based on extensive literature review and also 

justified by employing Pearson Correlation Matrix in Figure 3-6. As the raw dataset contains 

many outliers and null values which drastically deteriorate models’ performance if not 

removed. So, in the next step, all the null values, missing values were completely removed 

from the dataset. After that the entire dataset was standardized to transform the input feature 

range to identical values and thus the bias for a particular input feature is avoided while training 

the deep learning-based models. The feature distribution before and after standardization is 

illustrated in Figure 3-5. The impact of outlier removal on model performance was also 

evaluated in this work. For the outlier removal, Box-Cox transformation technique has been 

employed and the distribution of the features after the transformation is illustrated in Figure 

3-8 and the distribution of the features after outlier removal is illustrated in Figure 3-9. In the 

next step, entire data set was divided into training data and test data, the training is again 

divided into training data and validation data. Train and validation data have been used to train 

the model while test data have been kept aside to measure the performance of the model on a 

completely unseen data. Hyper-parameter tuning was carried out to find the optimized model 

and finally the performance for each model is evaluated and contrasted based on three error 

matrices (MAE, MSE, R2). 
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Figure 3-1: Flowchart for Overall Modelling Procedure 

3.2 Study Area and Data Collection 

This research examines a vast region mostly along the coastlines of the United States and 

Canada. For the research, 47 stations are selected, including 1 station from the Bering Sea, 8 

stations from the Gulf of Alaska, 2 stations from the North Pacific Ocean (near USA coast), 6 

stations from the Caribbean Sea, 9 stations from the Gulf of Mexico, and the remaining 21 

stations from the North Atlantic Ocean. The predominant reasons for selecting these regions 

include the availability and ease of access to datasets in these regions, as well as the heightened 

research interest in these regions because of the enormous wave & wind energy harnessing 
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potential these places offer, their effect on the marine transportation & global food chain sector 

and the recent population, industrial, and economic growth adjacent to these regions [131]. The 

datasets are provided by the National Data Buoy Center (NDBC) which is governed by the 

National Oceanic and Atmospheric Administration (NOAA) as a part of their National Weather 

Service (NWS) program. The National Data Buoy Center (NDBC) operates a global network 

of data collecting moored buoys extended from the western Atlantic to Pacific, Bering Sea to 

South Pacific & the majority of these provide a wide variety of wind-related characteristics, 

including wind direction, speed, gust, barometric pressure, wind, and sea temperature, from 

which wave parameters may be derived, which is essential for scientific research, 

meteorological observation, and forecasting. Standardized and slightly modified datasets titled 

‘NDBC Meteorological Buoy Data’ provided by NOAA NMFS SWFSC ERD were obtained 

through ERDDAP, a site specialized for accumulating scientific data [132]. The input features 

were selected on basis of previous work after extensive literature review, and also by evaluating 

their correlation to the target variables. The selected features are listed in Table 1-1. The 

datasets used in this study were primarily collected using three types of buoys: 3-meter discus 

buoy, moored buoy, and 3-meter foam buoy which are maintained by NDBC. Specifications 

of the buoys and description of the measurements have been listed in Table 3-1. In Figure 3-2, 

both the wind propagation direction and velocity is illustrated by Rose plot for 4 distinct 

stations denoted by a, b, c, d .From the distribution, it is clear that wind velocity is 

predominantly between 5 and 10 ms−1 and that it blows from distinct directions at various 

stations.  The ‘Matplotlib Basemap Toolkit’ (a dedicated library of python to generate 2D maps 

from coordinates of the location) has been employed to visually illustrate the chosen buoys' 

positions in this study. The Basemap module is provided with input that includes the precise 

latitude and longitude coordinates of each individual buoy, as listed in Table 3-2. The longitude 

range provided for the input data spans from 58 degrees West to 178 degrees West, while the 
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latitude range covers from 15 degrees North to 61 degrees North. Additionally, a standardized 

bathymetry dataset sourced from ERDDAP is also included as input. This bathymetry dataset 

furnishes essential information regarding the ocean depth at various points on the map. 

Consequently, Basemap utilizes the buoy coordinates and bathymetry data to generate a 

comprehensive map in Figure 3-3 illustrating the precise locations of each buoy in conjunction 

with the surrounding oceanic topography. From January 2010 to January 2022, over twelve 

years of data were collected for this study. The dataset has a temporal resolution of 1 hour, with 

some buoys having a resolution of 10 minutes. Station wise mean properties for the entire 

dataset have been listed in Table 3-3 and subsequently the deviation of the input and output 

features are listed in Table 3-4 which shows moderate deviation for each feature in the dataset 

except Wind direction. The dataset exhibits a substantial presence of null values across 

different categories. Since the buoy data are real-time weather data, noise and other types of 

disturbances are also present in the measured dataset. Additionally, the buoy data has a very 

high degree of variability, as observed from the further investigation: the standard deviation of 

the data is very high. For wave height, often the standard deviation is half or almost equal to 

that of the mean. This, along with the presence of outlier, sensor misreading and other forms 

of indistinguishable contamination renders the dataset quite challenging for our purpose: 

predicting the significant wave height.  
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                              (a)                                                                            (b) 

  
                               

                               (c)                                                                         (d)  

 

Figure 3-2 (a-d): Wind Rose plots for different stations 
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Table 3-1: Buoy specifications and description of measurements 

 

Table 3-2: Buoy location and serial number 

Buoy Number/ID Location Longitudes Latitudes 
41013 33.44 N 77.76 W -77.76 33.44 
41025 35.01 N 75.45 W -75.45 35.01 
41043 21.03 N 64.79 W -64.79 21.03 
41044 21.58 N 58.63 W -58.63 21.58 
41046 23.82 N 68.38 W -68.38 23.82 
41047 27.47 N 71.45 W -71.45 27.47 
41048 31.83 N 69.57 W -69.57 31.83 
41049 27.49 N 62.94 W -62.94 27.49 
41053 18.47 N 66.10 W -66.10 18.47 
41056 18.26 N 65.46 W -65.46 18.26 
42002 26.06 N 93.65 W -93.65 26.06 
42003 25.93 N 85.62 W -85.62 25.93 
42012 30.06 N 87.55 W -87.55 30.06 
42019 27.91 N 95.35 W -95.35 27.91 
42035 29.23 N 94.41 W -94.41 29.23 
42036 28.50 N 84.51 W -84.51 28.50 
42039 28.79 N 86.01 W -86.01 28.79 
42040 29.21 N 88.24 W -88.24 29.21 
42055 22.12 N 93.94 W -93.94 22.12 
42056 19.82 N 84.95 W -84.95 19.82 
42059 15.30 N 67.48 W -67.48 15.30 
42060 16.43 N 63.33 W -63.33 16.43 
42085 17.87 N 66.53 W -66.53 17.87 
44005 43.20 N 69.13 W -69.13 43.20 
44007 43.53 N 70.14 W -70.14 43.53 
44009 38.46 N 74.69 W -74.69 38.46 
44013 42.35 N 70.65 W -70.65 42.35 
44014 36.61 N 74.84 W -74.84 36.61 
44017 40.69 N 72.05 W -72.05 40.69 
44018 42.20 N 70.15 W -70.15 42.20 
44029 42.52 N 70.57 W -70.57 42.52 
44030 43.18 N 70.43 W -70.43 43.18 

Measuring Height of Air Temperature Approximately 3.7m above elevation of the site 
Height of Anemometer Approximately 4.1 m above elevation of the site 

Measuring depth of Sea Temperature 1.5 m below water line 
Radius of Watch Circle 2000 yards avg. 

Depth of Water 1900 m avg. 
Elevation of the Site Sea level 

Elevation of the Barometer 2.7 m above sea level 
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44032 43.72 N 69.36 W -69.36 43.72 
44033 44.06 N 69 W -69.00 44.06 
44034 43.50 N 67.88 W -67.88 43.50 
44037 37.00 N 76.09 W -76.09 37.00 
46001 56.30 N 148.02 W -148.02 56.30 
46022 40.75 N 124.53 W -124.53 40.75 
46027 41.84 N 124.38 W -124.38 41.84 
46060 60.59 N 146.79 W -146.79 60.59 
46061 60.24 N 146.83 W -146.83 60.24 
46073 55.01 N 172.01 W -172.01 55.01 
46076 59.47 N 148.01 W -148.01 59.47 
46078 55.56 N 152.64 W -152.64 55.56 
46080 57.95 N 150.04 W -150.04 57.95 
46082 59.67 N 143.35 W -143.40 59.69 
46085 55.88 N 142.88 W -142.88 55.88 

 

Table 3-3: Station wise mean properties for the parameters 

Station 
Number 

Wind 
Direction 

(°) 

Wind 
Speed 
(m/s) 

Wind 
Gust 
(m/s) 

Air 
Pressure  

(hPa) 

Air 
Temperature 

(° C) 

Wind 
Speed 
Zonal 
(m/s)   

Wind 
Speed 

Meridional 
 (m/s) 

Significant 
Wave 
Height 

(m) 
41013 171.45 6.78 8.31 1017.52 19.77 -0.20 0.61 1.32 
41025 187.50 7.32 9.02 1016.78 20.70 -0.05 1.75 1.48 
41043 103.33 6.19 7.58 1016.58 26.50 -0.04 -4.85 1.80 
41044 108.59 6.04 7.41 1017.41 26.07 0.12 -4.57 1.87 
41046 120.15 5.94 7.30 1017.23 26.05 0.46 -3.73 1.74 
41047 150.41 6.04 7.41 1018.20 24.46 0.42 -1.64 1.71 
41048 186.28 6.74 8.31 1018.13 22.60 0.94 1.00 1.91 
41049 142.52 5.67 7.05 1019.04 24.76 0.29 -1.90 1.84 
41053 100.74 5.76 7.26 1015.62 28.14 0.18 -5.28 0.99 
41056 93.55 5.89 7.40 1015.35 27.83 0.19 -5.37 0.96 
42002 130.62 6.05 7.39 1016.17 25.45 1.16 -3.08 1.16 
42003 133.45 5.80 7.22 1016.88 24.80 -0.46 -2.49 1.07 
42012 167.47 5.55 6.77 1017.47 21.59 -0.21 -0.69 0.76 
42019 137.07 6.41 7.85 1016.27 23.52 1.03 -2.54 1.21 
42035 150.89 5.78 6.99 1016.67 21.36 0.70 -1.73 0.85 
42036 158.81 5.34 6.55 1017.39 23.02 -0.31 -1.24 0.86 
42039 165.99 5.55 6.85 1017.44 23.25 0.03 -1.09 0.96 
42040 160.36 6.01 7.36 1017.30 22.92 0.00 -1.21 0.94 
42055 107.46 6.29 7.58 1014.26 26.30 -0.40 -4.33 1.24 
42056 100.07 6.40 7.72 1014.19 27.23 -0.54 -4.79 1.22 
42059 92.20 7.39 8.87 1013.54 27.75 -0.04 -6.93 1.57 
42060 87.35 6.77 8.12 1014.49 27.36 -0.87 -6.07 1.35 
42085 79.22 6.44 7.86 1014.90 28.54 -1.21 -5.71 1.09 
44005 198.29 6.81 8.34 1015.36 10.03 0.06 1.46 1.41 
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44007 199.44 5.62 6.89 1015.02 8.82 0.01 1.35 0.96 
44009 195.38 6.35 7.69 1016.49 14.37 -0.20 1.20 1.19 
44013 194.28 6.10 7.41 1015.40 10.30 -0.21 1.17 0.91 
44014 182.60 6.38 7.77 1017.39 16.41 -0.74 0.81 1.48 
44017 203.90 6.74 8.23 1016.21 11.72 0.04 1.92 1.32 
44018 192.04 6.30 7.64 1015.57 11.20 0.39 1.17 1.24 
44029 195.83 5.83 7.13 1014.82 10.72 -0.08 1.19 0.94 
44030 193.19 5.56 6.82 1014.84 9.93 0.12 1.20 1.00 
44032 198.52 5.90 7.27 1014.78 8.93 -0.09 1.34 1.15 
44033 191.88 5.32 6.66 1014.67 7.76 -0.54 1.20 0.65 
44034 198.87 5.88 7.23 1014.94 8.19 -0.23 1.40 1.19 
44037 201.15 6.46 7.96 1015.18 10.05 0.22 1.52 1.47 
46001 198.90 7.63 9.46 1006.78 7.57 1.59 1.42 2.62 
46022 208.99 6.01 7.48 1017.70 11.67 -1.13 0.30 2.43 
46027 212.64 5.50 6.92 1017.22 10.69 -0.64 0.19 2.19 
46060 168.14 5.25 6.52 1009.29 7.09 0.10 -2.12 0.67 
46061 156.55 6.28 7.82 1008.33 7.07 0.28 -2.78 1.45 
46073 191.49 8.66 10.60 1005.18 5.46 -0.14 0.43 2.51 
46076 161.50 6.35 7.91 1006.89 7.23 -0.41 -1.48 2.00 
46078 206.46 8.05 9.98 1007.37 7.46 0.48 2.10 2.58 
46080 188.31 7.07 8.74 1006.48 7.87 0.68 0.47 2.25 
46082 162.81 6.73 8.44 1008.00 8.01 1.36 -3.04 2.31 
46085 194.66 7.38 9.15 1008.22 8.52 1.77 0.84 2.62 

 

Table 3-4: Station wise deviation for the parameters 

Station 
Number 

Wind 
Direction 

(°) 

Wind 
Speed 
(m/s) 

Wind 
Gust 
(m/s) 

Air 
Pressure  

(hPa) 

Air 
Temperature 

(° C) 

Wind 
Speed 
Zonal 
(m/s)   

Wind 
Speed 

Meridional 
 (m/s) 

Significant 
Wave 
Height 

(m) 
41043 57.24 2.24 2.61 2.82 1.56 3.12 3.18 0.62 
41044 61.74 2.31 2.68 2.95 1.63 3.10 3.37 0.64 
41046 70.65 2.42 2.82 3.34 2.01 3.66 3.69 0.71 
41047 90.21 2.98 3.50 4.17 2.95 4.47 4.74 0.86 
41048 94.07 3.40 4.07 5.60 3.85 5.33 5.16 1.08 
41049 88.85 2.76 3.24 4.21 2.69 4.18 4.31 0.86 
41053 33.03 2.03 2.41 2.01 0.90 1.86 2.44 0.23 
41056 29.42 1.52 1.92 2.45 0.79 2.31 1.67 0.25 
42002 73.80 2.72 3.21 4.37 3.67 4.77 3.22 0.66 
42003 94.23 2.72 3.24 3.89 3.56 4.30 4.02 0.68 
42012 100.82 2.74 3.27 4.89 6.40 4.43 4.27 0.47 
42019 82.31 2.82 3.36 5.33 4.87 5.47 3.42 0.63 
42035 87.77 2.71 3.24 5.49 6.63 4.93 3.60 0.41 
42036 102.19 2.88 3.42 4.42 5.02 4.22 4.17 0.61 
42039 98.88 2.87 3.42 4.42 5.04 4.28 4.41 0.64 
42040 100.23 3.02 3.58 4.78 5.34 4.86 4.49 0.60 
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42055 74.37 2.59 3.03 4.26 2.59 4.25 3.05 0.70 
42056 64.03 2.39 2.79 2.78 1.70 3.84 2.95 0.54 
42059 27.73 1.87 2.21 2.04 1.07 2.29 2.22 0.49 
42060 35.25 2.21 2.58 2.09 1.16 2.56 2.57 0.42 
42085 41.63 1.99 2.39 1.97 1.36 2.11 2.65 0.31 
44005 100.12 3.60 4.38 8.79 6.80 5.68 5.00 0.91 
44007 100.74 3.18 3.84 9.00 8.02 4.87 4.02 0.64 
44009 101.16 3.31 4.01 7.46 7.98 5.50 4.42 0.66 
44013 97.82 3.31 4.08 8.72 7.98 4.79 4.88 0.73 
44014 108.00 3.40 4.14 7.02 7.40 5.70 4.30 0.86 
44017 93.71 3.49 4.27 8.12 7.98 4.84 5.53 0.77 
44018 95.38 3.45 4.18 8.38 6.80 5.23 4.77 0.85 
44029 98.82 3.05 3.76 8.41 7.90 4.68 4.47 0.69 
44030 99.21 3.02 3.70 8.39 7.70 4.58 4.21 0.69 
44032 99.96 3.31 4.09 8.76 7.25 4.92 4.45 0.73 
44033 106.32 3.00 3.76 9.00 7.46 4.57 3.83 0.39 
44034 100.07 3.47 4.28 8.83 6.28 4.90 4.54 0.77 
44037 96.30 3.38 4.17 8.67 6.91 5.21 4.87 0.95 
46001 86.75 3.67 4.49 13.71 4.13 5.29 6.26 1.40 
46022 125.73 3.59 4.29 5.98 2.06 6.51 2.30 1.10 
46027 107.60 3.96 4.68 6.07 2.05 6.07 2.94 0.98 
46060 104.59 3.62 4.36 12.26 4.88 3.30 5.03 0.44 
46061 100.07 4.07 4.98 12.25 4.66 4.46 5.33 0.93 
46073 103.70 4.04 4.94 14.13 3.84 6.63 6.87 1.47 
46076 101.16 3.83 4.61 12.83 4.24 4.53 5.67 1.22 
46078 90.71 3.83 4.68 13.23 4.38 5.45 6.72 1.38 
46080 92.30 3.83 4.68 12.84 4.00 5.04 6.21 1.29 
46082 88.46 4.39 5.31 12.38 4.21 3.50 6.42 1.38 
46085 87.48 3.47 4.26 13.39 3.65 5.15 6.01 1.37 
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Figure 3-3: Locations & Bathymetry of the buoys 

3.3 Data Sets Pre-Processing 

The entire preprocessing steps are divide into 5 steps as illustrated in Figure 3-4 which are 

described in the following sections.The data retrieved from the buoys is formatted in comma-

separated values (.csv) and is stored as individual files for each buoy. This format is not suitable 

for the purpose of training and testing machine learning and deep learning models, as it 

necessitates a single compiled file. The obtained dataset exhibits a significant quantity of 

missing values and instances of unsuitable modeling, necessitating the need for data cleaning. 

On the basis of earlier studies, samples with wave heights less than 0.05 meters were eliminated 

[23]. Additionally, based on the findings of the literature review, it was noted that incorporating 

time lags can enhance the efficacy of the model. Therefore, a time lag of 8 hours was 

implemented. Despite the lack of a substantial correlation between time lag and model 

performance, subsequent testing revealed that a model trained on a maximum of 8 hours of 
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time lag exhibits superior performance compared to a model trained on fewer hours of time lag 

or no time lag whatsoever. 

The dataset also contained features of varying scale, i.e., features with a non-uniform range; 

this makes gradient descent challenging and deep learning models inapplicable. Thus, the data 

were normalized. The data were then divided into training, test, and validation sets. For 

modeling and hyperparameter optimization, training and validation data were used. The testing 

data were only used for final evaluations and were not utilized in any capacity during model 

training or optimization. The distribution of data from different stations in the training, Testing 

and Validation Set are listed in Table 3-5 which exhibits quite an equal contribution from each 

of the station and thus the bias of a particular station is avoided in the modelling procedure. In 

addition, an exploratory data analysis was conducted. 

 

Figure 3-4: Work flow of data processing 

Incorporating time latency necessitates the utilization of atmospheric data characteristics from 

earlier samples. The dataset is sampled every hour; the use of an 8-hour time lapse indicates 

that the characteristics of the previous 8 samples were considered. Previously, time lags were 

incorporated into wave height forecasting [16], [119], and the technique was found to also 

improve the model's performance in the regression task. 

The dataset was split into train test and validation parts using the scikit learn’s [133] train test 

split module. The data was first split into training and test set, and then the training set was 

further split into two datasets: training and validation dataset. The train, test and split dataset 
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was done in such a way that the amounts of samples from each station on the datasets are 

proportional. The validation and testing sets contained 75000 samples each and the training 

data contained 2291184 samples, and the numbers of features were 65 after incorporation of 

time lag. In addition, for model evaluation, one-year data (ranging from 2022 to 2023) from 

some buoys as well as data from buoys not included in the training set were considered. Wind 

speed, wind direction, wind velocity, atmospheric pressure, atmospheric temperature, and the 

vertical and horizontal components of the wind were taken into account because they are major 

wave generation elements [134]. Latitude and longitude were also taken into account to add 

geographical context to the model. 

Table 3-5: Train test and validation data distribution among stations 

Station  
 

Number of data  
Train Set Validation Set Test Set 

41013 40454 1288 1358 
41025 29877 1030 949 
41043 42881 1392 1346 
41044 47682 1526 1547 
41046 47601 1518 1567 
41047 49559 1628 1633 
41048 53239 1755 1741 
41049 59562 1880 1903 
41053 2027 57 57 
41056 1808 64 62 
42002 47854 1571 1549 
42003 44912 1472 1465 
42012 58024 1949 1991 
42019 46452 1539 1566 
42035 62366 2054 2067 
42036 61796 1988 2062 
42039 55151 1803 1756 
42040 32365 1056 999 
42055 59950 1912 2015 
42056 43644 1411 1421 
42059 43553 1450 1424 
42060 48647 1635 1593 
42085 1472 53 43 
44005 34091 1120 1077 
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44007 71669 2371 2420 
44009 40748 1276 1343 
44013 78470 2497 2583 
44014 52388 1750 1718 
44017 38467 1239 1262 
44018 45453 1541 1456 
44029 58634 1954 1875 
44030 68074 2212 2208 
44032 77389 2590 2573 
44033 67463 2179 2169 
44034 72423 2379 2365 
44037 44421 1443 1476 
46001 62510 2138 2034 
46022 41561 1355 1430 
46027 60637 1988 2013 
46060 63486 2059 2013 
46061 67913 2235 2234 
46073 28699 933 924 
46076 61177 2011 2000 
46078 40129 1371 1354 
46080 42479 1363 1340 
46082 48398 1576 1566 
46085 43629 1389 1453 

 

The dataset was scaled by using standardization process, standardization includes computing 

the mean and standard deviation of the data, subtracting the mean and then dividing by standard 

deviation of the dataset. The standardization process can be expressed by equation (3.1). 

z =
x − μ 
σ

 (3.1) 

where,  

 x = actual value of the data point 

 μ= mean of the dataset 

 σ= standard deviation of the dataset 

 x= calculated value of the data point 
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Standardization scales all data points in a dataset to the same scale, ensures that all data points 

have the same scale, and can be used to detect outliers. It aids significantly in gradient descent 

by preventing the optimizer from being affected by variables with larger scales. Moreover, it 

prevents the gradient from exploding or vanishing. Standardization is performed under the 

assumption of a Gaussian distribution, but it can be applied to datasets with other distributions. 

In  Figure 3-5 (a-f), the distribution of input features and target variable is illustrated both 

before and after standardization. Although the range of the different features have become 

identical after standardization, the shape of the distribution remains unchanged for all the 

features.  

As a component of the exploratory data analysis, a correlation matrix was generated in 

conjunction with a histogram, box plot, and probability plot. The correlation matrix illustrated 

in Figure 3-6 indicates a strong positive correlation between wave heights and various wind 

features, including wind speed, wind gust, and the vertical and horizontal components of wind. 

Moderate correlations have been observed between wave height and the remaining parameters. 
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Figure 3-5 (a-f): Distribution of features before and after standardization 

 

 

(a) 

 

 

 

(b) 

 
 

 

(c) 

 

 

(d) 

 
 

 

(e) 

 

 

(f) 
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Figure 3-6: Correlation Matrix for the selection of input features 
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(a) 

 

Figure 3-7 (a-f): Histogram, box plot and probability plot 

(b) 

(c) 

(d) 

(e) 

(f) 

The histogram in Figure 3-7 for 6 variables denoted by (a-f) illustrates the distribution of 

various features and indicates that, with the exception of the Meridional and Zonal components 
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of winds, all features exhibit a skewed distribution to either the left or right. The box plot 

reveals that a substantial quantity of data lies beyond the whiskers, suggesting the existence of 

outlier values in all features, except for air temperature. The presence of curved lines in a 

probability plot or quantile-quantile plot indicates nonconformity of the data to a normal 

distribution. The q-q plot indicates that wind gust and wind speed have a higher tail, suggesting 

that the outliers are larger than the normal values. Conversely, the lower tail for the remaining 

variables indicates that the outer value is lower than the normal distribution. 

3.4 Outlier Removal with Box-Cox method: 

In statistics and data analysis, an outlier is a data point that substantially deviates from the 

expected or normal distribution of the dataset. It is an observation that deviates from other 

values in a random sample from a distribution by an abnormal distance. Outliers can be caused 

by a number of factors, including measurement errors, environmental anomalies, sensor 

limitations, data entry errors, natural variations, and rare events. 

Outliers can have a significant impact on statistical analyses and models due to their ability to 

bias results and distort data interpretation. They can have an impact on the estimation of 

parameters, calculation of summary statistics, and performance of machine learning 

algorithms. 

In this study the outliers were detected using the Tukey's Fence method. The Tukey’s Fence 

method involves the following steps: 

1. Calculation of the first quartile (Q1) and the third quartile (Q3) of the dataset. 

2. Calculation of the interquartile range (IQR) by subtracting Q1 from Q3,  

            IQR = Q3 - Q1. 

3. Determining the lower fence (LF) by subtracting 1.5 times the IQR from Q1,  
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            LF = Q1 - 1.5 × IQR. 

4. Determining the upper fence (UF) by adding 1.5 times the IQR to Q3, 

            UF = Q3 + 1.5 × IQR. 

5. Identifying any data points that fall below the lower fence or above the upper fence. 

6. Classifying the outliers as mild outliers or extreme outliers based on their distance from the 

fences: 

• Mild outliers: Data points that lie between 1.5 times and 3 times the IQR beyond 

the fences. 

• Extreme outliers: Data points that lie beyond 3 times the IQR. 

Tukey’s Fence method requires a normal distribution of the data, in our study the data didn’t 

have normal distribution. The data was converted to normal distribution using scikit learn’s 

quantile transformer. In Figure 3-8 (a-f), distribution of the variables before and after 

transformation is depicted and it is evident from the illustration that all the input features are 

transformed into a normalized shape in this step. Then outlier analysis was done for 6 variables: 

1) Wind Speed 

2) Wind Gust 

3) Air Temperature 

4) Air Pressure 

5) Wind Speed, Meridional 

6) Wind Speed, Zonal 
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Following Outlier analysis, a total of 7257 samples were found to be extreme outliers and a 

further 71528 samples were found to be mild outliers. Both kinds of outliers were removed. 

71528 samples were removed from the dataset. In Figure 3-9 , distribution of the variables after 

outlier removal using Tukey’s Fence method have been depicted. For wind speed, gust and 

zonal component of wind speed, more normalized distributions after outlier removal have been 

observed and the shapes of the remaining variables remain almost same before and after outlier 

removal.  

Following outlier removal, two models: Artificial Neural Networks (ANN) and Self-

Normalizing Neural Networks (SNN) were trained and compared with similar models trained 

on non-outlier removed data to evaluate the outlier removal process’s impact.  
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(a) 

 

Figure 3-8 (a-f): Distribution of variables before and after transformation 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 
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(a) 

 

Figure 3-9 (a-f): Distribution of variables before and after outlier removal 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 
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3.5 Machine Learning Models to Predict Significant Wave Height 

3.5.1 XGBoost 

It is a ML model extensively used for classification and regression related problems in 

supervised learning tasks. XGBoost [135] is an improved version of Gradient Boosting[136], 

although both implements gradient descent to reduce the error in ensemble tree architecture, a 

strong regularization (L1 & L2) substantially reduces the overfitting problem in XGBoost. It is 

a widely used algorithm by data scientists because of its minimal time of training, high 

performance capabilities in large tabular & structured dataset. XGBoost uses a sequential 

ensemble model known as boosting instead of Random Forest's parallel ensemble model, which 

is frequently referred to as bagging. 

Both bagging and boosting are components of an ensemble model in which, rather than 

counting on a single predictive model, a collection of weak models are trained to make distinct 

choices, and then the choices of multiple weak models are incorporated to generate a robust 

model. Bagging employs a popular technique known as Bootstrapping, in which random 

subsets of the provided dataset are generated to train each weak learner independently and same 

data can be used in the sample multiple times. Then, all the weak models are independently 

trained in parallel on this bootstrapped dataset to make predictions and finally a robust model 

is built by aggregating these predictions considering all the models are of equal weight. 

Although the Bagging method can perform well for weak learners with high variance and low 

bias, it typically performs poorly on stable datasets with low variance, computationally 

expensive for larger datasets as well. Boosting on the other hand transforms a set of weak 

learners into strong learners in a sequential training method by reducing error into each 

iteration. At first, the data is used to fit a simple base classifier considering all the data of equal 

weight. To enhance the present model's performance, it fits a new weak classifier without 
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altering the prior one. Each new classifier has to take into account the data points in which its 

predecessors performed poorly and higher weightages are assigned to those points for to correct 

those in the next iteration. Each model learns from its predecessor, assigned a weight based on 

its performance and finally weighted average of all the models are incorporated to make a 

robust model. Boosting is typically implemented in stable models with high bias and low 

variance. There are several boosting algorithms such as Adaptive boosting which works on 

updating weights on the misclassified data in each iteration until a strong prediction is done 

(simple boosting), Gradient boosting which changes the hyper parameters to improve the loss 

function in each iteration, XGBoost which is an optimized version of gradient boosting 

technique. For the regression problem using XGBoost, an initial prediction (average value of 

the target variable) is made by the base model. After calculating all residuals from predicted 

and observed values, an initial decision tree is constructed and a binary split of the tree is 

applied. To identify the optimal split of a leaf, a similarity score is assigned to each of the right, 

left, and upper leaf based on residuals. Using this similarity score, the gain value for various 

splitting conditions is determined, and the split with the highest gain is chosen. Using the 

residuals, an outcome value for every individual leaf is also computed. The Tree building 

process for XGBoost is depicted in Figure 3-10. For the classification problem, output of each 

leaf will be the similarity score whereas for regression type model it will be average of residuals 

for that leaf. If this is a classification problem, log of odds method is further used to calculate 

base model output. Then the output for this tree is again compared to the observed values to 

evaluate the residuals and subsequently using these residuals, a new tree is constructed in a 

similar manner and this iteration continues until the residuals cease decreasing or a 

predetermined number of iterations have been completed. Finally, from the whole set of 

decision trees, the final prediction is the summation of base model output with the product of 
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learning rate and each of decision tree output. Here are some of XGBoost's distinctive features 

that make it an optimized model. 

o Regularization: Because of being an ensemble decision tree, sometimes trees can get 

complex, XGBoost offers the capability to penalize intricate models via L1 and L2 

regularization and circumvent overfitting as well. 

o Sparsity Awareness: Utilizing a distinct split algorithm that can detect various 

sparse patterns in the dataset, it manages sparse values to that are frequently the result 

of several preprocessing steps, such as removing null values and one-hot encoding 

and ensures optimum split of the node. 

o Blocks for Out-of-core Computation: When XGBoost is provided with a dataset that 

is too large for main memory, the dataset is compressed and stored in separate blocks. 

In lieu of accessing them from the hard drive, which is quite sluggish, these small 

dataset units are decompressed in the main memory only when needed, resulting in a 

faster response. 

o Weighted quantile sketch: When the data points are equally weighted, the majority of 

tree-based algorithms can identify the splitting points using quantile sketch method, but 

they cannot deal with weighted data. XGBoost provides a distributed weighted quantile 

sketch algorithm that is capable of dealing with weighted data. 

o Cache awareness: This algorithm has been designed to maximize the use of hardware 

resources by designating internal buffers for gradient statistics in each thread. 

o Parallel Learning: This divides the data into multiple segments that can be utilized 

concurrently for tree generation. 
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Figure 3-10: XGBoost tree building process 

Assuming D as a given data set. 

D = x; y, |D| = n, x ∈ Rm, y ∈ R (3.2) 

n = no of examples in D,  

m = no of features,  

y=target variable  

x= features 

In our dataset, n= 3354160 observations 

m= 12 features (6 actual features and 6 synthetic features generated by time lag addition) 

A tree ensemble model predicts output by combining results from all the trees. Assuming            

K = no of additive functions    
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y�i =  � fk(xi),
k

k=1
fk  ∈ F (3.3) 

Where 𝑦𝑦�𝑖𝑖 = prediction of the target variable at i-th instance, k-th boost 

           𝑥𝑥𝑖𝑖 = i-th sample of the training dataset 

           𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) = output of the k-th tree 

           F= all the output values of the decision tree 

Loss Function, 

Lk =  � L�y�i,ẏi,�
n

i=1

 (3.4) 

To increase the effectiveness & overall model performance, XGBoost employs several hyper-

parameters. 

The Objective Function is defined as, 

Obj =   � L�y�i,yi�
n

i=1

+   �R(fi)
k

i=1

 (3.5) 

Where, 

L = Loss function which assesses the performance of the model 

y�i= Predicted Value 

yi= Observed Value 

R(fi)= penalizes the complexity of the model and reduces overfitting 

Now, Function of a tree is defined as, f(x) to define the complexity 
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f(x) =  wq(x) , w ∈  RT , q: Rm  →  {1,2 , … . , T } (3.6) 

Here, 

𝑤𝑤𝑞𝑞(𝑥𝑥)   =Leaves scores vector 

𝑞𝑞= mapping functions that map input data to the leaves 

T= number of leaves 

Formula for penalizing models’ complexity is given below,  

R(f) =  γT +  α(∥ w ∥) +  
1
2

 λ(∥ w ∥2) (3.7) 

Here, 

γ, λ= Hyper-parameters or constant coefficient 

∥ w ∥2= L2-norm of the weight of the leaf which is controlled by λ 

∥ w ∥=L1-norm of the weight of the leaf which is controlled by 𝛼𝛼 

T= total number of leaves 

Combining Equation (3.5), Equation (3.6), Equation (3.7) we get, 

Obj (t) =  �[L�yi , y�i
(t−1)�

n

i=1

+ ft(xi)] + R(ft )  + constant (3.8) 

The second-order Taylor approximation is computed as we do not know a derivative for 

every objective function. 

Obj (t) =  �[L�yi , y�i
(t−1)�

n

i=1

+  gift(xi) +  
1
2

hif2t(xi)] + R(ft )  + constant (3.9) 

Here,    
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gi = ∂ y�i
(t−1) L�yi , y�i

(t−1)� (3.10) 

hi = ∂2 y�i
(t−1)  L�yi , y�i

(t−1)� (3.11) 

After the removal of constant term and subsequently addition of the regularization factor gives 

the final form of the objective function which is for tth step. 

Obj (t) =  �[
n

i=1

gift(xi) +  
1
2

hif2t(xi)] +  γT +  α � ωj

T

j=1
+  

1
2

 λ � ωj
2

T

j=1
 (3.12) 

3.5.2 LightGBM 

LightGBM is a widely used tree-based algorithm that relies on the gradient-boosting sequential 

ensemble approach & performs well both in classification and regression problems [137]. 

Gradient boosting is a widely used approach in which each successor in the tree is built and 

adjusted based on the residual errors of its predecessors, resulting in an algorithm that is both 

efficient and accurate. In comparison to XGBoost, LightGBM decreases calculation time by a 

substantial margin due to its utilization of unique characteristics. LightGBM expands leaf-wise 

meaning that, given a condition, just a single leaf is divided based on the gain whereas XGBoost 

expands level-wise which costs a lot of computation time. Also, depth is restricted for the leaf-

wise growth to control the overfitting which makes it more efficient. LightGBM employs a 

histogram-based technique in which data is bucketed into bins using a distribution's histogram, 

as opposed to XGBoost's pre-sorted algorithm, which is highly inefficient in terms of 

complexity and CPU demand. Additional feature of LightGBM is exclusive feature bundling, 

whereby the algorithm bundles exclusive characteristics to minimize complexity, hence 

making it more rapid and effective. LightGBM uses Gradient-based One Side Sampling 

(GOSS) to sample the dataset, wherein instead of putting all the data points, data points are 

arranged first best on their gradient value in a descending order, from the first 80%, which has 

a higher error percentage and should be given most priority, 20% data points are taken 
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randomly, and from the remaining 20%, only 10% is fed. This strikes a balance between 

precision and processing time. Light GBM is an efficient approach for processing large-scale 

data and features because, unlike previous GBDT-based methods like XGBoost and GBDT, it 

would build the tree vertically rather than horizontally. 

Provided that, a supervised training set, X = {(xi, yi)}i=1n Suppose a certain function f ∗(x), for 

this function LightGBM strives to find an appropriate approximation function f �(x) that will 

minimize the lost function L(y,f(x)) as described below: 

f̂ = arg minEy,x
f

L(y, f(x)) (3.13) 

After integrating various T regression trees, LightGBM reaches to the final model,  

fT(X) =  � ft(X)
T

t=1

 (3.14) 

wq(x), q ∈  {1,2, … , J} (3.15) 

This represents the regression trees. Here,  

  J = Number of leaves 

 q =  Decision rules of the tree 

 w =Vector that represents leaf node’s sample weight 

At step t, an additive form training which is described below would be done to LightGBM, 

Γt =  � L(yi

T

t=1

, Ft−1(xi) + ft(xi)) (3.16) 

LightGBM uses a fast approximation of the objective function based on Newton's technique. 

Removing the constant term in Equation 3.16 gives a simplified form: 
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Γt ≅  �(gift

n

i=1

(xi) +
1
2

hift2(xi)) (3.17) 

Where 

 gi = First order gradient statistics of loss function      

 hi = Second order gradient statistics of loss function 

Considering Ij = Sample set of leaf j and transferring Equation 3.17 as follows: 

Γt =  �((� gi)wj
iεIj

j

j=1

+
1
2

(� hi + λ)wj
2

iεIj
)) (3.18) 

The extreme value of Γk and the optimum leaf weight scores of each leaf node wj
∗ for a given 

tree structure q(x) can be found in this way: 

wj
∗ = −

∑ giiεIj

∑ hi + λiεIj
 (3.19) 

ΓT∗ = −
1
2
�

�∑ giiεIj �
2

∑ hiiεIj + λ

j

j=1

 (3.20) 

Here, 

 ΓT∗ =Scoring function for measuring tree structure quality. Adding the split gives the final 

form of the objective function: 

 G =
1
2�

�∑ giiεIL �2

∑ hi + λiεIL
+
�∑ giiεIR �2

∑ hi + λiεIR
−

(∑ giiεI )2

∑ hi + λiεI
� (3.21) 

Here the left and right branches' samples are denoted by ILand IR 

3.5.3 Artificial Neural Network (ANN) 

The artificial neural network is a type of soft computation that takes inspiration from biological 

neurons and can approximate any function. The multilayer perceptron model, which was 
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introduced in 1957[138], is widely regarded as the earliest iteration of artificial neural network. 

In 1980[139], the introduction of the backpropagation algorithm revived interest in artificial 

neural networks. Diverse types of neural networks have since been developed for an extensive 

range of applications, including regression and classification tasks, as well as more complex 

endeavors such as question answering and the generation of artificial images from text prompt, 

among many others. 

The artificial neural networks are universal approximators, which means they are capable of 

approximating any continuous function of arbitrary precision. In this study, a complex 

multilayer perceptron network with backpropagation was used as an artificial neural network. 

Overfitting, exploding and vanishing gradients, sparse gradients, and slow convergence are just 

some of the challenges that can arise during the training of deep neural networks. Various 

strategies have been implemented to address such problems. 

Typically, a neural network consists of an input layer, an output layer, and several concealed 

layers in between. Determining the appropriate number of layers and nodes per layer is a 

hyperparameter selection process that typically involves experimentation, practical application, 

or hyperparameter optimization. The nodes are assigned weights and biases, which are then fed 

into an activation function. The resultant output is then fed to the subsequent nodes. The 

process being referred to is commonly known as forward propagation. Mathematically, 

 Z = (W × X) + b  (3.22) 

 A = f(Z)  (3.23) 

Where, 

• Z is the weighted sum of the inputs, including the bias term. 

• W represents the weight matrix connecting the inputs to the neuron. 
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• X is the input vector or matrix. 

• b is the bias vector. 

• A is the output or activation of the neuron. 

• f( ) is the activation function applied to the weighted sum 

The output then computed from the neural network is then compared with the actual target 

values, a loss function is used to compute the loss. Then the gradients are calculated and the 

weights and biases are changed using backpropagation algorithm. The backpropagation 

algorithm employs some optimization algorithm to optimize the cost. The most common 

optimization algorithms are: Stochastic Gradient Descent, RMSprop, Adam, Nadam etc. 

The back propagation algorithm starts with the calculation of the loss using some form of loss 

function. The loss function is a function that quantifies the quantity of prediction error. It 

measures the deviation between the predicted value and the actual value. For the particular 

regression task, the loss function is given in Equation 3.24. 

L =
1

2n
�‖y(x) − aL(x)‖2
x

  (3.24) 

Where,  

n = total number of training data points, 

y(x)= desired output 

L= number of layers 

aL(x) is the output of the network when x is input 

Then the gradient of the loss with respect to each weight 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

 and bias 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

  are calculated. Then 

the weights and biases are updated. 
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Wnew = W − l
δL
δW

  (3.25) 

bnew = b − l
δL
δb

  (3.26) 

Where,  

Wnew is the updated weight  

W is the old weight  

l is the learning rate 

bnew is the updated bias 

b is the old bias 

3.5.3.1 Activation: 

Activation function is a mathematical function applied to the output a neural network node, 

before passing it to the next layer. In the experiment Rectified Linear Unit or ReLU [140] is 

used as activation function.  

The function is, 

𝑓𝑓(𝑋𝑋) = max (0,𝑋𝑋) (3.27) 

 

Figure 3-11: ReLU activation function 
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Without non-linearity, deep neural networks behave as a single-layer network. The ReLU 

activation function is depicted in Figure 3-11 which mitigates the problem of vanishing 

gradients and prevents weight saturation. 

3.5.3.2 Weight Initialization: 

The behavior of a neural network is determined by its initial weights. If all weights are 

initialized with the same value, either zero or one, symmetry will result, meaning the weights 

of all layers will be identical. Gradients will be identical for each weight, so the updated weights 

will remain unchanged. Therefore, weight initialization is required. 

Modern initialization techniques offer superior performance to random initialization and 

accelerate model convergence. 

In this study, He initialization [141] was used for the weight initialization at the beginning of 

the training. He initialization is suitable initializer for the deep neural networks with ReLU 

activation function. It also addresses the problem of vanishing or exploding gradient often 

encountered while training very deep neural networks. 

3.5.3.3 Optimizer: 

Optimizers are used to change and update the weights on every iteration of a deep neural 

network training. The optimizers are used to calculate the gradients of loss with respect to 

weights and biases, which are then used to update the model weights and biases. Many 

optimizer models are proposed and widely used; most optimizers use gradients for optimization 

while some optimizers employ momentum as well. 

Adam optimizer[142] is a stochastic gradient based adaptive learning optimizing algorithm that 

is based on adaptive implementation of first order and second order moments. Adam optimizers 

are computationally efficient, has low memory requirements and are suitable for problems with 

large data or parameters. 
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The adaptation of adaptive learning rate as well as momentum makes Adam optimizer a 

powerful optimizer algorithm capable of fast convergence and address issues like noisy 

gradient, flat region, sparse data. Adam optimizers are also less sensitive to learning rate 

changes, and are used in a wide variety of applications 

3.5.3.4 Dropout: 

Very large neural networks are prone to overfitting, where the model performs too well on the 

training dataset, but does not generalize well outside of the training data. Regularizing is a 

method to address the problem of overfitting, where the model is penalized for overfitting or 

fitting the training data too well. Dropout[143] is a regularizing method. Dropout is performed 

to counteract the effect of overfitting and to strengthen the model. During training, random 

weights are deleted from a neural network by randomly setting weights of neuron activations 

to zero, making the model more robust and less susceptible to outliers. The intensity of dropout 

is controlled by a hyper parameter called dropout rate, which is the possibility of neuron’s 

being dropped out. 

Recent studies have demonstrated that dropout can assist with underfitting as well as 

controlling overfitting.  

3.5.3.5 Batch Normalization: 

In the very deep neural networks, the gradients of the weights in the deep layers can be very 

large or very low. This can lead to problems as the very large gradient would result in very 

large amount of weight update, while very low gradient would hardly change the weights. This 

problem slows down and destabilizes the model training process, resulting in the failure of the 

model’s learning. This problem is called vanishing or exploding gradient problem. 
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Batch Normalization[144] is done in order to address the problem. In Batch Normalization, the 

input to each layer is normalized and the output is shifted and scaled. The shifting and scaling 

are controlled by two hyper parameters. 

The Batch Normalization algorithm consists of the following equations: 

μB =
1

mB
∑i=1
mB  x(i) (3.28) 

σB 2 =
1

mB
∑i=1
mB  �x(i) − μB�

2  (3.29) 

x�(i) =
x(i) − μB
�σB2 + ε

 (3.30) 

z(i) = γx�(i) + β  (3.31) 

Where,  

• 𝜇𝜇𝐵𝐵 is the input mean, evaluated over the whole mini-batch B 

• 𝜎𝜎𝐵𝐵is the input standard deviations, also evaluated over the whole minibatch B 

• 𝑚𝑚𝐵𝐵 𝑖𝑖s the number of samples in minibatch B 

• x�(𝑖𝑖)is the vector of zero-centered and normalized inputs for instance i. 

• γ is the output scale parameter vector for the  

• β is the output shift (offset) parameter vector for the layer  

• 𝜀𝜀 is a tiny number that avoids division by zero (typically 10–5). This is called a 

smoothing term.  

• z(𝑖𝑖) is the output of the BN operation. It is a rescaled and shifted version of the 

inputs. 
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Apart from addressing the exploding and vanishing gradient problem, the Batch Normalization 

method provides some unique advantages. It speeds up the training and help with convergence, 

it also mitigates the covariance shift of the activation. Batch Normalization imparts slight 

regularization effect as well. 

3.5.4 Self-Normalizing Neural Network: 

Self-Normalizing Neural Networks[145] are a special kind of Neural Networks that uses the 

Scaled Exponential Linear Unit (SeLU) activation function. 

The SELU activation function is given by 

f(x) = λx if x ≥ 0
f(x) = λα(exp (x) − 1) if x < 0  (3.32) 

with α ≈ 1.6733 and λ ≈ 1.0507. 

The use of SeLU activation function which is depicted in Figure 3-12, eliminates the need of 

using normalization techniques as the weights naturally normalizes themselves. These models 

outperform similar models trained with other activation functions and allows for training of 

very deep neural networks. The SNN model weights need to be initialized with the LeCun 

Normal initialization technique. Furthermore, for regularization, regular dropout is not used, 

as it will break normalization. A special kind of dropout named Alpha Dropout is used. The 

normalization of weights results in stable activation during train which helps with convergence 

as well as improving the training speed. SNN models are impervious to the vanishing or 

exploding gradient problem, and provides better generalization.  
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Figure 3-12: SELU activation function 

3.6 Modelling Procedure 

In this study we trained 2 kinds of machine learning models: tree-based models and deep 

learning models. XGBOOST and LIGHTGBM are tree-based model while ANN and SNN are 

deep learning models. 

The modelling of all four models followed identical process. At first hyper parameter tuning 

was done using the Optuna [146] framework. A model was then trained on the optimized set 

of hyperparameter. The optimized model was then used for prediction and further evaluation 

on test data and data from buoys not included in the training set. 

A hyperparameter is a parameter that is set prior to the learning phase of a machine learning 

algorithm. Hyperparameters serve as configuration settings for the learning algorithm, 

governing various aspects including model complexity, learning rate, regularization strength, 

number of iterations or epochs, and choice of optimization algorithm. They are typically 

determined through prior knowledge, domain expertise, or trial and error. 

The selection of appropriate hyperparameters is crucial, as they can have a substantial effect 

on the model's ability to learn and generalize from the training data. Different hyperparameter 
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values can result in varying model performance, accuracy, convergence speed, and ability to 

prevent overfitting and underfitting. 

Hyperparameter optimization, also known as hyperparameter tuning, is the process of 

determining the optimal hyperparameter values for a machine learning model. It seeks to search 

for and select hyperparameters that optimize the model's performance and generalizability. 

Hyperparameter optimization is crucial because the efficacy of a machine learning model is 

highly dependent on the values of its hyperparameters. By selecting suitable hyperparameter 

values, the model's precision, convergence speed, and ability to generalize well to unobserved 

data can be enhanced. 

3.6.1 XGBoost 

For hyper parameter optimization, 50 XGBoost models were trained for 1000 iterations each. 

Then from the search space, the optimal set of hyper parameters was selected and was used for 

model training. The search space for XGBoost hyper parameters is listed in Table 3-6 

Following parameters were optimized in hyper parameter optimization process: 

1) Learning rate 

2) Lambda  

3) Alpha  

4) Gamma 

5) Growth Policy 

6) Subsample 

7) Col sample 

8) Maximum Depth 
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9) Minimum Child Weight 

Table 3-6: Hyperparameter optimization search space for XGBoost 

Parameter Search Space Optimal Value 

Learning rate 1-3 to 1-1 0.095 

Lambda 1-8 to 1 2.46-7 

Alpha 1-8 to 1 0.47 

Gamma 1-8 to 1 1,25-5 

Growth Policy Depthwise, Lossguide Lossguide 

Sub Sample 0.6 to 0.1 0.97 

Col Sample 0.6 to 0.1 0.66 

Maximum Depth 10 to 12 12 

Minimum Child Weight 2 to 50 25 

 

The XGBoost model on optimal set of hyper parameters were trained for 72,787 iterations 

before converging, early stopping was used to prevent overfitting. The trained model was then 

subjected to evaluation. 

3.6.2 LightGBM 

LightGBM models are more sensitive to hyper parameters compared with XGBoost. 30 

LightGBM models were trained for 100 iterations as part of hyper parameter tuning using 

optuna and the search space for the hyperparameter tuning is listed in Table 3-7. 

The following parameters were considered for hyper parameter tuning: 

1) Learning Rate 
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2) Lambda L1 

3) Lambda L2 

4) Number of Leaves 

5) Feature Fractions 

6) Bagging Fractions 

7) Bagging Frequency 

Table 3-7: Hyperparameter optimization search space for LightGBM 

Parameter Search Space Optimal Value 

Learning Rate 1-3 to 1-1 0.065 

Lambda L1 1-8 to 10 9.849 

Lambda L2 1-8 to 10 0.091 

Number of Leaves 1000 to 50000 44000 

Feature Fractions 0.40 to 1.0 0.509 

Bagging Fractions 0.40 to 1.0 0.862 

Bagging Frequency 1 to 7 2 

 

A lightGBM model was trained on the optimal sets of parameters. The model was trained for 

100 iterations. 

3.6.3 Artificial Neural Network (ANN) 

For ANN model, the whole model was split into blocks. Each block contained 3 fully connected 

layer followed by a Batch Normalization and Dropout layer. The neural network was uniform 

in shape: the number of neurons were uniform throughout the layers. 
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Following parameters were subjected to hyper parameter optimization:  

1) Number of Blocks 

2) Number of Neurons 

3) Learning Rate 

4) Dropout Rate 

50 models were created and trained for 50 iterations each, then the best performing set of 

parameters was selected. The search space and selected values for this model are given in Table 

3-8. 

Table 3-8: Hyperparameter optimization search space for ANN 

Parameter Search Space Optimal Values 

Number of Blocks 1 to 7 3 

Number of Neurons 64 to 512 512 

Learning Rate 1-5 to 1-3 0.000957 

Dropout Rate 0.05 to 0.25 0.05 

 

The model trained on the optimal parameter converged after 167 iterations. 

3.6.4 Self-Normalizing Neural Networks (SNN) 

The SNN model had a triangular shape, this too was split into blocks. Each blocks contained 2 

fully connected layer followed by an Alpha Dropout layer. The number of neurons were 1024 

for the widest layer and 32 for the last layer. The number of neurons in a block was half of that 

of previous block. 

The following parameters were used for hyper parameter tuning: 
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1) Dropout Rate 

2) Learning Rate 

For hyper parameter tuning 25 models were trained for 30 iterations each and the search space 

for dropout rate and learning rate is given in Table 3-9. 

Table 3-9: Hyperparameter optimization search space for SNN 

Parameter Search Space Optimal Values 

Dropout Rate 0.005 to 0.15 005 

Learning Rate 1-5 to 1-3 0.00075 

 

The optimal model converged in only 150 iterations. 

3.7 Model Performance and Validation Criteria 

3.7.1 Evaluation Metrics 

3.7.1.1 R-square (R2) 

R-square indicates the degree to which the data match the regression model. The upper limit 

for the R-square is 1 which indicates both the dependent & independent variables are perfectly 

correlated (perfect fit), however it is not bounded by any lower limit, 0 often indicates a trivial 

fit & negative value indicate fit below average level. R-square is scale-free value, therefore 

whether the values are tiny or high, the R square value will be lower than 1. R-square equation 

is: 

R2 = 1 −
∑(yi −  y�i )2

∑(yi −  y�i )2
  (3.33) 

Where 

 yi= measured value,  y�i = predicted value, y�i= average value 



 

77  

3.7.1.2 Mean Squared Value (MSE) 

In ML applications, it is a common error measure to calculate the mean squared deviation 

between the actual and estimated values. The average squared residual is represented by the 

mean squared error in regression models. 

MSE =
∑(yi −  y�i )2

n
 (3.34) 

Where n= number of observed values 

3.7.1.3 Mean Absolute Error (MAE) 

The mean absolute error is calculated by averaging all the absolute errors from each prediction 

and comparing them to the real value and can be estimated by the following equation. 

MAE =  
1
n
�|yi −  y�i|
n

i=1

 (3.35) 
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Chapter 4 Results and Discussion 

In this section the visual and numerical evaluation of the four models were done as well as a 

comparative analysis of the four algorithm’s performance at predicting the wave heights of 

varying range. 

The numerical evaluation was conducted using the validation data, testing data, as well as data 

gathered from buoys that were not part of the training set and gathered after the training period. 

As part of exploratory analysis, a wide range of graphs have been employed, including bar 

plots of actual and predicted values, to compare the output of multiple models with the actual 

ones and determine, among other factors, if they follow the general trend. 

A violin plot was generated to examine the distribution and density of the residual error across 

various models. The residual error was computed as, 

error = �yactual − yprediction� (4.1) 

Moreover, a scatter plot was generated for each of the four models in order to assess the quality 

of the output model's fit. The predicted values of models are depicted against the actual wave 

height in a scatter plot. 

A line plot was utilized to visually assess the accuracy of the fit and the extent of deviation 

between the predicted and actual values, as both sets of data were plotted on the same axis. 

Ultimately, a bar chart was generated to represent the error metrics and facilitate a comparison 

of the error magnitudes across the four models. 

4.1 XGBoost 

The XGBoost models provide a satisfactory approximation to the actual values, with the 

predicted output not deviating significantly from the actual values. The performance of the 

model based on three evaluation metrics is listed in Table 4-1  which exhibits that the errors of 
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the test set were nearly identical to those of the valid set, indicating no overfitting. The Mean 

Absolute Error (MAE) of the model is comparatively lower than the Mean Squared Error 

(MSE), implying that a significant proportion of the error values are close to zero. The R2 value 

on the validation set and Test set is 0.896 and 0.894 respectively which implies a satisfactory 

fit of the trained model to the actual value. The predicted value also followed the mean of actual 

data closely as listed in Table 4-2, while deviating away from standard deviation.  

Table 4-1: Model evaluation of XGBoost on test and validation data 

 MSE MAE R2 
Valid Set 0.227 0.106 0.896 
Test Set 0.226 0.106 0.894 

 

Table 4-2: Comparison of means and standard deviation of predicted value with actual value 

 Actual Mean Predicted Mean Actual Standard 
Deviation 

Predicted 
Standard 
Deviation 

Valid Set 1.441 1.442 1.01 0.944 
Test Set 1.434 1.436 1.003 0.937 

 

 

Figure 4-1: Scatter plot of wave height against XGBoost prediction on test and validation 
data 

The efficacy of the XGBoost model is evident in the scatterplot illustrated in Figure 4-1 which 

exhibits minimal dispersion around the mean, with only a handful of outliers located at the 
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extremes of the distribution. The model exhibits satisfactory accuracy when evaluated against 

the test and validation data. 

The model was also evaluated on the data: unknown and known buoys and the performances 

have been enlisted in Table 4-3 and in Table 4-4 respectively. 

Compared to known buoys, the model performs marginally worse when predicting unknown 

buoys; however, the magnitude of the difference is significantly smaller than the performance 

decline when compared to test and validation data. The performance was quite satisfactory on 

unknown buoys except Station 46035 and 46066 considering the humongous area this model 

is covering, also there might be some localized factors that deteriorate the performance of the 

model as these haven’t been considered while training the model. For Station 42057, best 

performance is observed (6.7% MSE and 20% MAE), while the MSE is within 14 % and MAE 

is within 30% for other stations except the first two mentioned earlier which is quite impressive. 

Therefore, it can be concluded that although the model overfits the training data marginally, it 

shows satisfactory performance on most of the unknown stations.  

For the known buoys, the performance is much better than the unknown buoys as dataset from 

these stations were utilized while training the model. The model is fitted quite satisfactorily as 

all of the known stations have R2 value close to 0.80. Both the MAE and MSE is impressive 

for all of the known stations except station 46082 which gives 47.5 % MAE and 38 % MSE. 

The errors might be emanated from some local factors for this station which were not 

considered during the training process, also the model might be slightly over fitted to the 

remaining known stations. 

 

 



 

81  

Table 4-3: Model evaluation of XGBoost on unknown buoys 

Buoy number XGBOOST MAE XGBOOST MSE XGBOOST R2 
46035 0.464086 0.420102 0.836135 
46066 0.663947 0.82167 0.591437 
42058 0.296003 0.136799 0.737573 
42057 0.201888 0.067683 0.741534 
42001 0.23583 0.094794 0.781998 
44025 0.274198 0.134604 0.74491 

 

Table 4-4: Model evaluation of XGBoost on known buoys 

Buoy number XGBOOST MAE XGBOOST MSE XGBOOST R2 
41013 0.212389 0.074468 0.812042 
42002 0.247476 0.112031 0.810281 
42040 0.19589 0.078396 0.806552 
46080 0.32323 0.181435 0.855107 
46082 0.47586 0.380273 0.776286 
44034 0.267377 0.126234 0.754938 
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Figure 4-2: Line plot of actual values and XGBoost prediction on known buoys 

 

Figure 4-3: Line plot of actual values and XGBoost prediction on unknown buoys 

The line graphs for the known buoys in Figure 4-2and for the unknown buoys in Figure 4-3 are 

illustrating actual data and predicted output on the same axis. These plots indicate that the 

output of the models closely follows the actual data and their trends for all of the stations for 
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the known buoys. However, it is incapable of adapting to spikes, extreme changes, and outlier 

values. For the unknown buoys, although the performance is comparable with the known buoys 

for the station 42058, 42057, 42001, 44025, but for station 46035, 46066, XGBoost couldn’t 

follow the trend of the actual wave height properly. However, it should be acceptable for a 

model that is covering such a huge area and many of the localized factors were not considered 

while training the model as well for the simplification of the modelling. 

 

Figure 4-4: Scatter plot of Wave Height against XGBoost prediction on known buoys 

For both known and unknown buoy data, the scatter plot in Figure 4-4 and Figure 4-5 

respectively display a greater degree of dispersion than that of the training buoys. Furthermore, 

the error increased for all indicators as the wave height increased. 
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Figure 4-5: Scatter plot of Wave Height against XGBoost prediction on unknown buoys 

4.2 LightGBM 

In addition, the LightGBM model performed similarly on both the valid and training sets. The 

LightGBM model provided an outstanding fit without overfitting, with a regression coefficient 

greater than 0.89 on both the testing and validation set as enlisted in Table 4-5.The mean 

squared error was only 10.8% for both the Test Set and Validation Set and significantly less 

than the mean absolute error, indicating that the majority of the error lies close to zero. 

Table 4-5: Model evaluation of LightGBM on test and validation data 

 MSE MAE R2 

Valid Set 0.108 0.225 0.893 
Test Set 0.108 0.224 0.892 
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Table 4-6: Comparison of means and standard deviation of LightGBM predicted value with 
actual value 

 Actual Mean Predicted Mean Actual Standard 
Deviation 

Predicted 
Standard 
Deviation 

Valid Set 1.441 1.442 1.010 0.922 
Test Set 1.434 1.436 1.003 0.913 

 

The Mean and Standard deviation of predicted values and actual values are listed in Table 4-6 

which clearly implies that LightGBM model's mean closely tracked the actual mean, slightly 

exceeding it in some portions. However, the discrepancy between the actual and predicted 

values demonstrate that the model failed to account for the data's variability and dispersion. 

The model provided a decent fit overall. 

 

Figure 4-6: Scatter plot of Wave Height against LightGBM prediction on test and validation 
data 

The scatterplot in Figure 4-6 is depicting minimum dispersion around the mean when wave 

height is less and for wave height greater than 8 m, performance of the model is not that good. 

So, it is evident that, the performance of the model is impressive for wave height less than 8 m 

on both Test and Validation dataset, but the model can’t perform well on the outliers or extreme 

peak values of the wave height.  
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Table 4-7: Model evaluation of LightGBM on unknown buoys 

Buoy number LGBM MAE LGBM MSE LGBM R2 
46035 0.486137 0.452828 0.82337 
46066 0.527157 0.550724 0.726161 
42058 0.29417 0.133242 0.744396 
42057 0.205622 0.072871 0.721722 
42001 0.235217 0.096707 0.777597 
44025 0.250827 0.112994 0.785863 

 

Table 4-8: Model evaluation of LightGBM on known buoys 

Buoy number LGBM MAE LGBM MSE LGBM R2 
41013 0.209483 0.071336 0.819946 
42002 0.243407 0.11211 0.810146 
42040 0.19366 0.07635 0.811602 
46080 0.328074 0.186386 0.851154 
46082 0.509492 0.435545 0.74377 
44034 0.263408 0.121411 0.764302 

 

The LightGBM model was further evaluated on known and unknown buoy data and the results 

are enlisted in Table 4-7 and Table 4-8.The model exhibited comparable performance on both 

familiar and unfamiliar buoys, although with a marginal decline in performance between the 

validation and test sets and the known unknown buoys. This drop in performance may be an 

indication of overfitting. To evaluate the performance of LightGBM on known and unknown 

stations, line plots have been depicted in Figure 4-7 and Figure 4-8. The output of the model 

exhibits a high degree of conformity with the means and trends; however, it falls short in 

accurately representing the occurrence of spikes or extreme values.The model output appears 

to align with the actual values, even for the outliers. For the known stations, the performance 

of the model is satisfactory as it replicates the trend both on mean values and spikes quite 

correctly, however for the unknown stations, the performance on station 46035 and 46066 

could have been improved for the sudden spike values. It should be still acceptable considering 

the huge range that is being covered with a single generalized model.  
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For further evaluation of the model, scatter plot on known and unknown buoys are illustrated 

in Figure 4-9 and Figure 4-10 respectively to measure the extent to which the model fit to the 

actual value. From the figures, it is evident that The LightGBM model exhibits an increase in 

error magnitude at the extreme values near the tails and the small values, with the exception of 

those cases the model demonstrates a good fit. For the known buoys, the performance is quite 

impressive for all of the stations for wave height below 3m, however for the extreme values of 

significant wave height, there is a room for improvement both for the known and unknown 

buoys. There could have been several reasons behind these errors on unknown stations like 

overfitting to the known stations while training the model, some localized factors that 

significantly affect the overall performance of the model, removal of null values which caused 

some valuable information loss, accuracy of the measurement of actual dataset and also the 

complexity of the model. As the complexity of the model is avoided to provide dataset with a 

least computational cost and time, these limitations should be acceptable considering the extent 

to which this single model operates and provides both high spatial resolution and high time 

resolution data. 

 

Figure 4-7: Line plot of actual values and LightGBM prediction on known buoys 
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Figure 4-8: Line plot of actual values and LightGBM prediction on unknown buoys 

 

Figure 4-9: Scatter plot of Wave Height against LightGBM prediction on known buoys 
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Figure 4-10: Scatter plot of Wave Height against LightGBM prediction on unknown buoys 

4.3 Artificial Neural Network (ANN) 

The performance of the Artificial Neural Network model is satisfactory as it demonstrates a 

good fit with both the validation and testing datasets as listed in Table 4-9. The value of the 

mean squared error is negligible, while the mean absolute error exhibits a relatively low 

magnitude. The model's coefficient of determination (R-squared) exceeds 0.95, indicating that 

the model explains over 95% of the variance in the output. The comparison of the actual and 

anticipated means and deviation in Table 4-10 further demonstrates this. The predicted mean 

and predicted standard deviation nearly match the actual mean and deviation, respectively. 

Table 4-9: Model evaluation of ANN on test and validation data 

 MSE MAE R2 
Valid Set 0.046 0.153 0.954 
Test Set 0.047 0.153 0.953 
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Table 4-10: Comparison of means and standard deviation of ANN predicted value with 
actual value 

 Actual Mean Predicted Mean Actual Standard 
Deviation 

Predicted 
Standard 
Deviation 

Valid Set 1.434 1.438 1.003 0.998 
Test Set 1.441 1.445 1.010 1.006 

 

 

Figure 4-11: Scatter plot of Wave Height against ANN prediction on test and validation data 

The scatterplot illustrated in Figure 4-11 exhibits a high degree of consistency between the 

predicted and actual values, indicating a high degree of accuracy and precision in the model. 

Nevertheless, the model exhibits a significant decline in its performance when applied to both 

unknown and known buoy data which is enlisted in Table 4-11 and Table 4-12  respectively, 

with the model demonstrating superior performance when applied only to the known buoy data. 

This observation suggests the presence of an overfitting issue in the model. 

Table 4-11: Model evaluation of ANN on unknown buoys 

Buoy number ANN MAE ANN MSE ANN R2 
46035 0.540105 0.578674 0.774283 
46066 0.549995 0.56601 0.718561 
42058 0.311971 0.16119 0.690781 
42057 0.231311 0.08992 0.656617 
42001 0.245369 0.11166 0.743209 
44025 0.246579 0.118135 0.77612 
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Table 4-12: Model evaluation of ANN on known buoys 

Buoy number ANN MAE ANN MSE ANN R2 
41013 0.235422 0.096828 0.755602 
42002 0.288798 0.157617 0.733082 
42040 0.211426 0.099419 0.754677 
46080 0.357746 0.233546 0.813492 
46082 0.519712 0.507427 0.701482 
44034 0.288438 0.154875 0.699337 

 

From the observation of the line plots depicted in Figure 4-12 and Figure 4-13, it is evident that 

the ANN model conforms to the mean and trend satisfactorily, but it is inadequate in capturing 

the variability of the observed values, particularly for the unknown buoys. Consequently, the 

model exhibits a higher degree of inaccuracy in predicting those particular data points both for 

known and unknown buoys. 

The degree of dispersion in predicted values for both known and unknown buoys is observed 

in Figure 4-14 and Figure 4-15 are considerably higher when compared with the results of the 

validation and testing data. This implies inferior predictive capabilities, inadequate 

generalization, and overfitting. 
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Figure 4-12: Line plot of actual values and ANN prediction on known buoys 

 

Figure 4-13: Line plot of actual values and ANN prediction on unknown buoys 
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Figure 4-14: Scatter plot of Wave Height against ANN prediction on known buoys 

 

Figure 4-15: Scatter plot of Wave Height against ANN prediction on unknown buoys 
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4.4 Self-Normalizing Neural Network (SNN) 

The Self Normalizing Neural Network exhibits a remarkable level of accuracy on both the 

testing and validation datasets enlisted in Table 4-13 .The regression coefficient exceeds 0.90, 

indicating that 90% of the variance has been accounted for. Moreover, the relative 

insignificance of the mean squared error and mean average error should be noted. The mean 

squared error exhibits a significantly lower value in comparison to the mean absolute error. 

Table 4-13: Model evaluation of SNN on test and validation data 

 MSE MAE R2 
Valid Set 0.063 0.182 0.938 
Test Set 0.063 0.180 0.937 

 

Table 4-14: Comparison of means and standard deviation of SNN predicted value with actual 
value 

 Actual Mean Predicted Mean Actual Standard 
Deviation 

Predicted 
Standard 
Deviation 

Valid Set 1.441 1.429 1.010 0.981 
Test Set 1.434 1.423 1.003 0.937 

 

The statistical analysis enlisted in Table 4-14 indicates that the mean of the predicted value is 

marginally lower; however, it is extremely similar and closely follows to the actual mean. The 

model's predicted values exhibit a slightly lower deviation than the actual deviation, with the 

magnitude of the difference increasing for the test set in comparison to the validation set.  

The regression model exhibits a low degree of dispersion between the predicted and actual 

values, resulting in a narrow and tidy scatter plot for Test and Validation dataset which is 

depicted in Figure 4-16. Furthermore, the residual error appears to remain fairly constant 

despite the increase in wave height. 
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Figure 4-16: Scatter plot of Wave Height against SNN prediction on test and validation data 

Table 4-15: Model evaluation of SNN on unknown buoys 

Buoy number SNN MAE SNN MSE SNN R2 
46035 0.538552 0.57411 0.776062 
46066 0.56178 0.605564 0.698893 
42058 0.307767 0.156215 0.700326 
42057 0.223573 0.083056 0.682827 
42001 0.237079 0.105712 0.756888 
44025 0.254127 0.124277 0.764479 

 

Table 4-16: Model evaluation of SNN on known buoys 

Buoy number SNN MAE SNN MSE SNN R2 
41013 0.239485 0.107099 0.729678 
42002 0.283563 0.165317 0.720043 
42040 0.213917 0.112283 0.722933 
46080 0.345 0.219518 0.824695 
46082 0.546505 0.569457 0.66499 
44034 0.287519 0.152976 0.703024 

 

The model exhibits similar performance on both unknown and known buoys as enlisted in 

Table 4-15 and Table 4-16 respectively. There is a marginal improvement in the prediction 

performance of known buoys. Nonetheless, the model's efficacy experiences a substantial drop 

in comparison to that of the testing and validation data. 
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Figure 4-17: Line plot of actual values and SNN prediction on known buoys 

 

 

Figure 4-18: Line plot of actual values and SNN prediction on unknown buoys 
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The line plot presented in Figure 4-17 on known buoys and in Figure 4-18 on unknown buoys 

exhibits that The SNN model is capable of capturing both the primary trend and the patterns 

exhibited in the data. But it does not fluctuate or increase like the actual wave height; this issue 

is more apparent in unknown buoys compared to known buoys. For the six distinct known 

buoys, the performance of the model is satisfactory, replicating both the mean values and 

sudden spikes with insignificant error. The performance deteriorates slightly as expected for 

the unknown buoys particularly for Station 46035 and Station 46066. However, the 

performance is excellent in the other four unknown buoys both in prediction of mean properties 

and sudden spikes of wave height. 

To evaluate the extent to which the SNN model output is correlated to the actual value, scatter 

plot for six known buoys and six unknown buoys are illustrated in Figure 4-19  and Figure 

4-20. The models' predicted values exhibit a deviation from the actual values at both the lower 

and upper ends of the distribution, resulting in an increase in error for data points of both lower 

and higher magnitudes. The dispersion of data points in the scatter plot appears to be 

significantly larger than that of the validation and testing datasets, suggesting insufficient 

generalization and overfitting. Although there remains a significant room for improvement for 

this model, considering the minimum computational requirements while providing a huge 

operational range, high spatial and high time resolution dataset, the performance of this model 

should be acceptable for the generalization purpose. The performance can be improved further 

by increasing the complexity of the model, considering the localized factors that affect the 

target variable for each of the station, hyper parameter tuning with a large search space.  
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      Figure 4-19: Scatter plot of Wave Height against SNN prediction on known buoys 

 

 

    Figure 4-20: Scatter plot of Wave Height against SNN prediction on unknown buoys 
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4.5 Model Comparison: 

This section presents a comparative analysis of the performance of all four models, in regard 

to both adequateness of fit and generalization. The evaluation of performance was based on 

both testing, validation datasets and known, unknown buoys which are enlisted in Table 4-17 

and Table 4-18 respectively. 

It is evident from the illustration in Figure 4-21 for known-unknown buoys and in Figure 4-22 

for Test-Validation dataset that the performance of tree models and deep learning models is 

comparable across all datasets. Although all models perform above an acceptable level of 

accuracy, the deep learning models do not generalize well on external data (known and 

unknown buoy data) in comparison to the gradient boosting models. The deep learning models, 

on the other hand, provide a superior fit on validation and testing data and converge well.  

Table 4-17: Error evaluation of all four models on validation and test data 

 XGBoost LightGBM ANN SNN 
 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 

Valid 
Set 0.227 0.106 0.896 0.108 0.225 0.893 0.046 0.153 0.954 0.063 0.182 0.938 

Test 
Set 0.226 0.106 0.894 0.108 0.224 0.892 0.047 0.153 0.953 0.063 0.180 0.937 

 

Table 4-18: Error evaluation of all four models on known and unknown buoy data 

 Buoy 
Number 

XGBoost LightGBM ANN SNN 
MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 

 
 

Known 
Buoys 

41013 0.07 0.21 0.81 0.07 0.21 0.82 0.10 0.24 0.76 0.11 0.24 0.73 
42002 0.11 0.25 0.81 0.11 0.24 0.81 0.16 0.29 0.73 0.17 0.28 0.72 
42040 0.08 0.20 0.81 0.08 0.19 0.81 0.10 0.21 0.75 0.11 0.21 0.72 
46080 0.18 0.32 0.86 0.19 0.33 0.85 0.23 0.36 0.81 0.22 0.35 0.82 
46082 0.38 0.48 0.78 0.44 0.51 0.74 0.51 0.52 0.70 0.57 0.55 0.66 
44034 0.13 0.27 0.75 0.12 0.26 0.76 0.15 0.29 0.70 0.15 0.29 0.70 

 
 

Unknown 
Buoys 

46035 0.42 0.46 0.84 0.45 0.49 0.82 0.58 0.54 0.77 0.57 0.54 0.78 
46066 0.82 0.66 0.53 0.55 0.53 0.73 0.57 0.55 0.72 0.61 0.56 0.70 
42058 0.14 0.30 0.29 0.13 0.29 0.74 0.16 0.31 0.69 0.16 0.31 0.70 
42057 0.07 0.20 0.21 0.07 0.21 0.72 0.09 0.23 0.66 0.08 0.22 0.68 
42001 0.09 0.24 0.24 0.10 0.24 0.78 0.11 0.25 0.74 0.11 0.24 0.76 
44025 0.13 0.27 0.25 0.11 0.25 0.79 0.12 0.25 0.78 0.12 0.25 0.76 
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Figure 4-21: Bar plot of error metrics for all the models on different stations 
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Figure 4-22: Bar plot of error metrics on testing and validation data for all four models 
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Figure 4-23: Line plot of actual values and prediction of all four models on known buoys 

 

Figure 4-24: Line plot of actual values and prediction of all four models on unknown buoys 
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The overall performance for the four models is illustrated for known and unknown stations in 

Figure 4-23 and Figure 4-24 respectively. The four models exhibit comparable trends and 

means in their predictions. All the models give superior performance on known buoys 

compared to unknown buoys as expected. Although the mean values can be predicted quite 

accurately by all of the models, prediction of sudden spike of significant wave height become 

difficult for all of the models and there are significant errors for these types of values. Both of 

the tree-based models have shown better performance on known, unknown buoys compared to 

deep learning models while deep learning models perform better on test and validation dataset.  

Collectively, they account for a substantial portion of the wave height range. Under these 

circumstances, it is expected that an ensemble model would exhibit outstanding results, with 

the individual models demonstrating similar behavior. 

In Figure 4-25 and Figure 4-26, scatter plot for all the four models have been illustrated to 

compare the performances of each model. Both the trend and distribution of the model 

dispersion are comparable for all known and unknown buoys. The difference in model 

performance is determined by both the dispersion of the scatter and the behavior of the outlier. 

In addition, the dispersion of the two gradient boosting models and the two deep learning 

models are comparable. All the models perform poorly on larger significant wave height values 

both on known buoys and unknown buoys. 
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Figure 4-25: Scatter plot of actual values and predicted values of all four models on known 
buoys 
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Figure 4-26: Scatter plot of actual values and predicted values of all four models on 
unknown buoys 
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Figure 4-27: Box plot of actual wave height and predicted wave height on known buoys 

 

Figure 4-28: Box plot of actual wave height and predicted wave height on unknown buoys 
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Figure 4-29: Box plot of actual wave height and predicted wave height on test and validation 
data 

The box plot serves as a visual representation of the data distribution, where the box enclosed 

within the plot corresponds to the Interquartile range (IQR). The two whiskers in a box plot 

represent a distance of 1.5 times the interquartile range (IQR), and any data points that fall 

beyond this range are typically classified as outliers. 

The distribution of significant wave height both for actual value and predicted values are 

illustrated in Figure 4-27 for known buoys, Figure 4-28 for unknown buoys and Figure 4-29 

for test and validation set. The models exhibit a tendency to be fairly close to the interquartile 

range (IQR), albeit with a marginal deviation or contraction in the overall span. The models, 

nevertheless, encounter difficulties in following to the outlier values. The box exhibits a 

consistent shape across various models, with variations in tail length observed.  
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Figure 4-30: Violin plot of residual error of all four models on known buoys 

 

Figure 4-31: Violin plot of residual error of all four models on unknown buoys 
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Figure 4-32: Violin plot of residual error of all four models on test and validation data 

The error distribution illustrated by violin plot in Figure 4-30, Figure 4-31, Figure 4-32  which 

exhibit a concentration of error values around zero, with a minor proportion of values 

increasing towards larger magnitudes. This phenomenon can be ascribed to the influence of 

outliers and other extraneous factors, and may be considered anomalous and therefore 

negligible. Moreover, the violin plots exhibit a flat distribution, which suggests a comparatively 

smaller interquartile range and, thus, a reduced range of values. 

4.6 Outlier Evaluation 

To compare the effectiveness of the outlier removal algorithm, two models were trained on a 

dataset with outliers removed and then compared with models trained on conventional data. 

The identical models were hyper-parameter tuned and trained until convergence. Early 

stopping was used to prevent overfitting.  

The error results for ANN & SNN model after outlier removal are enlisted in Table 4-19 and 

Table 4-20, it is observed that removing outliers marginally enhances the performance of the 

ANN model as evidenced by a slight decrease in the Mean Absolute Error. The Mean Squared 

Error and R-Squared error, however, increase. This may be due to the fact that Mean Squared 
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Error penalizes outliers severely. The model trained on outlier-removed data augmented its 

performance on non-outlier data, but performed poorly on outliers in the test set. The outlier 

removal technique didn’t cause any substantial improvement in the SNN model. 

Table 4-19: Error evaluation of ANN and SNN models on validation and test data after 
outlier removal 

  ANN SNN 
  MSE MAE R2 MSE MAE R2 

Valid Data Before 
Outlier 
removal 

0.046 0.153 0.954 0.063 0.182 0.938 

After Outlier 
removal 

0.049 0.148 0.951 0.072 0.188 0.929 

Test Data Before 
Outlier 
removal 

0.047 0.153 0.953 0.063 0.180 0.937 

After Outlier 
removal 

0.048 0.146 0.951 0.072 0.187 0.928 

 

Table 4-20: Error evaluation of ANN and SNN models on known and unknown buoy data 
after outlier removal 

 Buoy Number ANN SNN 
MSE MAE R2 MSE MAE R2 

 
 

Known 
Buoys 

41013 0.235 0.097 0.756 0.239 0.107 0.730 
42002 0.289 0.158 0.733 0.284 0.165 0.720 
42040 0.211 0.099 0.755 0.214 0.112 0.723 
46080 0.358 0.234 0.813 0.345 0.220 0.825 
46082 0.520 0.507 0.701 0.547 0.569 0.665 
44034 0.288 0.155 0.699 0.288 0.153 0.703 

 
 

Unknown 
Buoys 

46035 0.540 0.579 0.774 0.539 0.574 0.776 
46066 0.550 0.566 0.719 0.562 0.606 0.699 
42058 0.312 0.161 0.691 0.308 0.156 0.700 
42057 0.231 0.090 0.657 0.224 0.083 0.683 
42001 0.245 0.112 0.743 0.237 0.106 0.757 
44025 0.247 0.118 0.776 0.254 0.124 0.764 
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Figure 4-33: Line plot of actual wave height and ANN, SNN model outputs on known buoys 
after outlier removal 

 

Figure 4-34: Line plot of actual wave height and ANN, SNN model outputs on unknown 
buoys after outlier removal 
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Figure 4-35: Line plot of actual wave height and ANN model outputs on unknown buoys 
after outlier removal 

 

Figure 4-36: Line plot of actual wave height and SNN model outputs on unknown buoys 
after outlier removal 
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To assess the impact of outlier removal on model performance for both ANN & SNN model , 

line plots have been illustrated in Figure 4-33 and Figure 4-34 for known and unknown buoys 

respectively. If compared with the performance of these two models (ANN & SNN) before 

outlier removal and after outlier removal, it is evident that the models provide a reasonable fit 

for the median data but don’t improve model performance overall. The model's performance is 

nearly identical to that of the model trained on the unfiltered dataset, albeit marginally worse, 

which may be attributable to outlier values or noise in the actual data. 

Impact of outlier removal on the performance of ANN model is illustrated in Figure 4-35 for 

six unknown buoys and in Figure 4-36 for six known buoys. The model performance is quite 

similar to that of before outlier removal. The model is performing quite well on known stations 

for the mean values, but poor performance is observed for some specific unknown stations and 

sudden peak values of significant wave height for each of the station. Outlier removal process 

couldn’t provide significant improvement to the overall performance of the generalized model 

and so it can be avoided to reduce to complexity of the modelling procedure if the model is 

further employed on a large scale. 
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Chapter 5 Conclusions and Future Plan 

5.1 Conclusion 

The study demonstrated that all four models exhibited acceptable proficiency in predicting 

significant wave height. Although the models may exhibit inaccuracies in predicting extreme 

values, it is important to note that these values are considered anomalies and, as such, any 

associated errors should be deemed negligible. The models exhibit a reasonable level of 

accuracy in forecasting wave heights at both familiar and unfamiliar buoys, thereby 

demonstrating their ability to generalize. In this study, gradient boosting models performed 

better than deep learning models, but deep learning models were simpler to train. Additionally, 

these models are lightweight and appropriate for IoT applications. 

One of the distinctive difficulties in forecasting weather or atmospheric information is the 

presence of noise or uncertainty that is inherently associated with it. In the context of our study, 

the training data underwent quality control procedures. However, there was a lack of 

information pertaining to the collection method, sensor noise, weather anomalies, and other 

factors that could potentially impact the data collection process. In addition, relevant data 

regarding the vertical placement and alignment of the temperature, air speed, and air pressure 

sensors was not available. The presence of these factors introduced noise into the data we 

collected, resulting in the emergence of outliers and increased complexity in the modeling 

process. 

While the atmospheric data utilized in this investigation hold considerable influence over wave 

height, certain factors were not taken into account due to limitations in scope, unavailability of 

data, and implementation complexity. Tidal data, bathymetric data, and water level data are of 

paramount importance. 
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The present investigation involved the exclusion of data points with missing values, without 

any imputation technique applied. Significant amounts of information were lost through this 

method. The utilization of contemporary imputation techniques has the potential to 

substantially enhance the quality of the model. Additionally, a simple approach for eliminating 

outliers was employed. The implementation of complex and effective techniques for 

eliminating outliers has the potential to enhance the performance of the model. 

Ultimately, the enhancement of a model's performance can be achieved through the 

implementation of appropriate data acquisition and processing techniques. This includes the 

standardization of data to eliminate any additional noise that may have been introduced during 

the procurement, processing, imputation, and outlier removal stages. The investigation of 

complex deep learning, tree models, and hybrid models can serve as a means of enhancing 

performance. However, it is crucial to exercise caution against overfitting during such studies. 

The primary objective of a general model is to exhibit robustness in its ability to perform well 

on novel data, rather than simply memorizing the patterns inherent in the training data. 

5.2 Future Plan 

• In this work, for the outlier’s detection and removal task, a very primitive technique 

called Tukey’s Fence method have been implemented which couldn’t cause significant 

improvement in overall performance of the models both on known and unknown buoys. 

The next phase of our work will be to implement other modern methods of outlier 

removal techniques like Winsorization, Hampel Filter, One-Class Support Vector 

Machines (SVM). 

• In this work, all the null values have been excluded from the dataset prior to the training 

of the model which have caused significant information loss and ultimately deteriorated 

the overall performance. Instead of removing the null values, in the next phase of our 
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work, we will use imputation techniques like Iterative Imputation (Multiple 

Imputation), K-Nearest Neighbors (KNN) Imputation, Random Forest Imputation, 

Expectation-Maximization (EM) Algorithm, Gaussian Mixture Models (GMM) 

Imputation to fill out the missing values. 

• In this work, standard dataset from NDBC have been utilized without considering the 

errors of the sensors during measurement, any localized factor that has significant 

impact on a particular station. In our future work, these factors will be considered for 

individual stations to make the model a robust one.  
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