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“in fact the reply of true believers is when they are called to Allah and his Messen-

ger to judge between them is only that they say: we hear and we obey. and those

are the successful .”

Quran 24:51



Abstract

Internet of Things (IoT) is the new prototype that is shaping Information and

Communication Technologies (ICT) in a new direction. The rate of adaptability,

ingenuity, and expansion is promising to bring connectivity to all things in homes,

offices, vehicles, etc. This paradigm is causing researchers to find new ways to

connect things efficiently, improve processing power of devices, create value for

data collected from IoTs, and ensure the security of the data. Although numer-

ous data-intensive applications (self-parking cars, trackers, domestic appliances,

smartphones, etc.) have been developed to employ the use of smart devices they

are small in size, battery-powered, and limited in processing, storage, and memory

supplies. Their size and nature of applications act as a bottleneck to implement

powerful applications on them. Moreover, the amount of data generated by IoT de-

vices collectively surge the network. Therefore, it is necessary to utilize the Cloud

of Things (CoT) infrastructure. A CoT provides extensive processing power and

unlimited storage that permits fast processing, and bulk storage of data produced

by the new cloud infrastructure. It works well in situations that are not delay-

sensitive, and require no immediate responsiveness. However, the use of CoTs

exclusively is not effective in applications that require immediate processing, high

responsiveness, and real-time analysis of client’s requests because of the distance

between the CoTs and IoTs. To this purpose, fog computing has been designed.

Fogging enables computational offloading, data aggregation, and storage. The

offloading process enables smart objects to realize the full potential of the IoT-

Fog-cloud infrastructure by sending part of its computation routines to remote

sites for processing. This permit saving computational resources such as proces-

sors, storage, memory, and energy. Nonetheless, the question of when, what, and

how to offload has not been fully resolved. Moreover, new challenges keep emerg-

ing such as finding the better offloading point given mobility, heterogeneity in IoT

devices, and dynamic communication environment. Further, dealing with offload-

ing that is constrained by location and latency-sensitive submissions remain hard

to solve. This study is intended to solve an IoT-Fog infrastructure performance

problem in which each of the IoT devices may contain computation-intensive, or

security-sensitive, or delay-sensitive tasks to offload. If the IoT device finds that it

cannot execute the tasks, an offload to an optimal Fog is initiated through a Smart



gateway (SG). The Fog either performs the tasks or sends it to the cloud. The in-

tension of the study is to perform dynamic offloading while maintaining the user’s

sensitive tasks in the Fog during offloading. The study is expected to achieve high

performance in terms of throughput, delay, energy consumption, resource utiliza-

tion rate and response time. For this purpose, a computation offloading framework

is proposed with the engagement of a four-tier cloud infrastructure using a pipeline

of machine learning (ML) strategies. This pipeline consists of a set of ML models

connected in series to facilitate the offloading efficiently. The study is intended to

design a fast, efficient and robust algorithm that enables the selection of optimal

fog and cloud when the need arises, while providing mobility when network con-

ditions fluctuate.
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Chapter 1

Introduction

Internet of Things (IoT) is the new archetype that is shaping information and

communication technologies in a new direction. The rate of adaptability, ingenuity,

and expansion is promising to bring connectivity to all things in homes, offices,

vehicles etc. [3–5]. This paradigm is causing companies and research bodies to

find new ways to connect things efficiently, create value from data harvested from

abundant sensors and actuators, and ensure security of the data harvested from

the IoT devices. Further, the massive amounts of data harvested from the IoT

devices require new ways of analytics to create insights from them. To realize

reasonable insight from data harvested from IoT devices powerful mechanisms to

process the data is required. For the aforementioned motive, many research areas

have been developed in the areas of Internet of Things related systems [6, 7].

The challenges faced in IoT research are still enormous. The first is how to support

billions of IoT devices through stable network infrastructure. The second challenge

is how to ensure security and privacy of massive data generated by IoT devices.

The third challenge is how can IoT devices perform complex operations within

their small processing power, and still achieve limitless potential of IoT platforms.

Lastly, how to incorporate the endless list of use cases that finds the applications of

IoT devices suitable for their operation without disrupting the status quo. To this

regard, issues related to improving system performance, standards and policies,

increasing capacity of smart devices to process complex applications, designing

methods to handle big data and its analysis creates new areas of research in IoT

ecosystems [8].

1
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Amidst all the above challenges, the use of smart devices (smart phones, tablets,

smart locks, smart cars etc.) by public to realize multitude of applications is

limitless in real life [9]. The use of smart applications has the biggest impact

on how things are done. This is visible in our homes, smart cities, smart health

industry, smart factories, and smart transport industry [5]. These applications

may be relatively simple like sending an alerts to your mobile about the status of a

smart home, or relatively complex such as synchronizing data coming from all IoT

devices using data analytics to predict future events, or very complex such as in real

time identification of tourist sites using augmented reality. IoT systems present

unlimited use of sensors to accomplish endless use cases in artificial intelligence,

medical engineering, crowd sourcing etc. that are complex.

In the past, complexity of application was handled by increasing the capabili-

ties of hardware, but in recent past, complexity of applications is growing more

faster than hardware. To catch up with application complexity and big data

produced in computing environment, paradigms such as client-server computing,

Cloud computing, Edge computing, Lambda etc. have been recognized. In the

recent, cloud computing paradigm has enabled IoT users and enterprises to gain

flexibility with re-provisioning. Re-provisioning allows users to expand technology

infrastructure resources, perform complex applications, reduce on cost of process-

ing, provide remote access without worrying of location of the processing machine,

reduce maintenance costs, and improve performance of systems [3].

The cloud paradigm has made computing resources distributed, and no longer de-

pendent on single infrastructure owned by a single organization [10]. It is becoming

increasingly easy to migrate data, processing, and applications to high performance

machines located a distance [11]. This process of migrating data, processes and

applications to a more powerful infrastructure gives the users enhanced perfor-

mance and Quality of Experience(QoE). So far, cloud computing procedures are

adopting integration of the use of information supplying applications across the

cloud and on-premise systems. This creates hybrid cloud that gives the ability to

integrate big data from the Internet of Things(IoT), Machine learning(ML), con-

tainer management platforms, Artificial Intelligence (AI), Blockchain, and cloud

security.

In this thesis, we explore areas in which the cloud computing paradigm can be

improved to offset its limitations. Particular to this study, we develop compu-

tational offloading to the Fog-Cloud of things framework using machine learning
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mechanisms. We continue to illustrate the use of machine learning at the IoT layer

to select Fog devices to which they can offload their computation. At the network

layer we implement and demonstrate how security can be achieved through neural

fuzzy systems, and at the Fog layer we show how offloading is done to hybrid

cloud. All the above is done in efforts to overwhelm the issues of performance and

security that form major drawback in the cloud computing paradigm.

1.1 Motivation

Internet of Things (IoT) devices are continuously developing into powerful mech-

anisms to achieve smart applications in health, cities, utilities etc. Although IoT

devices have found use in many applications, they are limited by their size in

terms of processing power, memory and energy supplies. To overcome these chal-

lenges caused by their structural limitation, cloud computing has been employed.

[4, 12–14].

Computational offloading to the cloud enable users to outsource computational

intensive tasks to the cloud. Also, big data generated by IoT devices that cannot

effectively be stored on user equipment is relocated to the cloud for cheap storage.

It is generally understood that computational offloading to the cloud can improve

performance of IoT systems, because computationally hungry part of a process is

transferred to the cloud for processing, and results are sent back to the IoT device.

This in one way enables the IoT devices to save energy. Some systems include

energy harvesting mechanisms to mitigate battery consumption [12, 15, 16].

However, the biggest challenge facing IoT applications such as in tele—medicine

and connected vehicles is how to reduce latency for time sensitive applications. In

such kind of use cases the cloud ceases to be the right choice for computational

offloading, because of loss of end-to-end control and visibility over the network.

Secondly, in real-time applications such as Artificial intelligence, Data Analytics,

Augmented Realities(AR), online gaming etc., there is increased demand for qual-

ity connectivity and bandwidth which the cloud may not provide [17]. Thirdly,

issues of security and privacy raise a number of concerns ranging from loss of

control, and trust. Lastly, network coverage in especially rural areas tend to be

sparse and have less speed as compared to more urban places. Connectivity may

be unstable, in addition, IoT devices are sometimes mobile. Therefore, leveraging
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new paradigms such as MEC, cloudlets, and the Fog have been found to improve

performance, uplift security, privacy and latency issues. [9, 18, 19].

As of yet, more investigations are required to continuously improve performance of

IoT-Fog-Cloud offloading ecosystems. Applying variety of machine learning strate-

gies at all levels of continuum i.e. IoT layer, network layer, and the Fog layer may

improve performance, and elevate weakness in offloading to better accommodate

new use cases in the IoT ecosystem. With the above we find a motivation to further

investigate secure computational offloading using machine learning models.

1.2 Problem Statement

The inability of IoT devices to execute complex application due to structural

inefficiency creates a computational problem that has not been fully resolved yet.

Efforts have been made to develop solutions to transfer services that can not be

handled at the IoT devices to cloud, but more service application that require more

resources have appeared. Hence a requirement to transfer traditional services that

are provided by the traditional cloud closer to the user at the network edge has

emerged.

A set of frameworks to achieve computational offloading at the edge, assess suit-

ability of the fog paradigm, study the dynamic resource estimation and pricing,

security management in ubiquitous environment have been proposed in the liter-

ature [17, 18, 20, 21]. The current limitation of most of the solutions proposed

is that they assume that resources are often available and secure. In an ideal

environment, resources are dynamic, flexible, and prone to attack. Neglecting the

nature of applications, security, and fluctuating connectivity present a limitation

to many of the existing frameworks.

The task at hand is to device a novel approach that is efficient, secure and dynamic

to overcome the existing limitations of the existing approaches. At the same

time, loosen the coherence with the local infrastructure during processing. Moving

forward, given a network of IoT devices connected to the Internet and to the

cloud infrastructure, if a given IoT has a task to execute, it can either perform

the computation locally on the devices if it has enough resources; otherwise, it

offloads the task to a remote device.
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If a device chooses to offload the task for execution to remote device, then it must

choose from a set of powerful devices in neighbourhood, where computational

resources are in abundance. The question at hand is, which device within network

range can accept to perform the workload at cheapest price in terms of latency,

memory, storage etc. Examples of nearest neighbor devices include switches and

routers, data centers and clouds.

The problem can be viewed in the following way where

i) ω represents the workload to be offloaded

ii) η represents the a set of devices on the network that accept offloadable

workload

iii) ψ(µϵη, ω) represents the function that evaluates the cost of executing the

workload ω in either whole or part on a device µ

Then the formal definition is to Minimize ψ(µϵη, ω) for all values µϵη.

1.3 Objectives of the study

This study was aimed at achieving a computational offloading framework with

engagement of four tier fog-cloud using a pipeline of ML strategies that include the

particle swarm optimization at the lower tier, Neural fuzzy in the smart gateway

and reinforcement learning at the fog tier; the thesis shall focus on the following

objectives:

i) Design and develop an efficient offloading strategy that exploits a pipeline

of machine learning strategies across the IoT-Fog-Cloud platform.

ii) Improve robustness of the system by implementing surrogate entities and

Task classifiers in the Fog.

iii) Design and implement a Neuro-fuzzy model to isolate nodes that exhibit low

trust.
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1.4 Outcomes of the study

This study aimed at the following outcomes

(i) An efficient offloading algorithm that leverages the 4-tier IoT-SG-Fog-cloud

framework.

(ii) A surrogate entity that enables stability by providing mobility in network

fluctuations.

(iii) A classifier based on Load input ratio that categorizes data in terms of

complexity and sensitivity in the Fog layer.

(iv) A robust procedure that mitigates the risk of flooding the Fog with unnec-

essary big data which may result in an attack.

1.5 Methodology

In this thesis, we propose two machine learning based secure offloading herein

referred to as SecOFF-FCIoT and NiCO-FCIoT frameworks. Our proposals are a

software solutions that approaches offloading computations to the Fog or the cloud

using machine learning and nature inspired approaches. Our dynamic and secure

offloading is hoped to reduce offloading latency and minimize energy consumption.

Machine learning based approaches have been chosen because, Machine learning

has demonstrated latent power in solving complex problems in science, engineer-

ing, industrial and professional practices [22–26]. For example, in banking and

finance machine learning can be used by executive managers to make informed de-

cision. Machine learning can help banks spot potential business partners and their

expenditure. Using Machine learning algorithm smart machines can be trained to

monitor trends in the market and react in real time [27] .

In medicine, machine learning has been used in diagnosis of complicated diseases.

Moreover, it has been used in analysis of clinical parameters and their combination

of the prognosis [28]. It can help in integrating computer based systems in health

care industry. Additionally, machine learning has demonstrated ability to assist

in solving complex problems in aerospace engineering. In [29], machine learning



7

has been used to recognize specific defects of aerospace structures, decrease ap-

proximation errors and compute the closest possible outcome. The limits due to

the great amount of data and the complexity of data processing make machine

learning as defect classifier in aerospace structures very useful [29, 30]. Machine

learning has also been used to optimize parameters so as to find best options

that maximize use of resources in logistic and supply management. Here, machine

learning allows improved planning for unexpected events and help predict orders

along the supply chain with at most accuracy [31].

In this thesis, therefore, we propose a pipeline of Machine learning based method-

ologies in Fog Cloud of thing environment as shown in figure 1.1, to improve

performance and secure data coming from abundant IoT devices.

In general, The IoT devices generate workload that may have offloadable content.

The IoT device select a most suitable Fog node that can process the request, and

send back the results with in the required threshold. PSO is used at this level

to choose an optimal Fog node. The offloadable content is forwarded through a

smart gateway to the Fog. The smart gateway secures the data using Nuero-Fuzzy

model. The Fog may offload the workload coming from the IoT to the cloud using

reinforcement learning mechanism. After processing, the cloud sends back the

results to the IoT through the Fog, and Smart gateway.

Figure 1.1: The General Pipeline of Proposed Secure Offloading Scheme
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1.6 Thesis contribution

This thesis focused on solving the problem of secure offloading of sensitive data

using nature-inspired algorithms, surrogate entities, and a Neuro-fuzzy model.

These approaches improve latency and optimize resource utilization.

The thesis addresses several challenges related to secure offloading in the Fog Cloud

ecosystem, making the following three main contributions:

• A secure offloading framework is proposed that utilizes Particle Swarm Op-

timization (PSO) and Reinforcement Learning (RL) for efficient offloading

in the Fog-IoT environment. PSO is employed at the IoT level to select the

optimal node for offloading, while RL is used at the fog level to select the

appropriate cloud.

• The use of a Neuro-fuzzy model is introduced to identify IoT nodes at-

tempting to congest the network by sending invalid data. If an IoT device

is detected sending invalid data for offloading, the data is dropped. This

prevents nodes with low trust from engaging in malicious transactions on

the network.

• An improved version of SecOFF-FCIoT, named modified NiCO-FCIoT, is

proposed in Chapter 4.

1.7 Thesis outline

Chapter 1 of this thesis serves as the foundation, covering various aspects necessary

to understand the research. It begins with an introduction to the topic, followed

by a discussion on the motivation behind the work in 1.1. The problem statement

is clearly stated in 1.2, whereas objectives are in 1.3. The outcomes are stated

in 1.4, and the general methodology is outlined in 1.5. The contributions of the

thesis are highlighted in 1.6. Finally, subsection 1.7 summarises the chapter by

presenting an overview of the thesis organization.

The remaining chapters of the thesis are structured as follows: In chapter 2, We

delve into the fog—cloud of things concept, covering architectures, standards,
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tools, and applications. This literature review serves as a foundation for the tech-

nical solutions proposed in Chapter 3 and Chapter 4.

Chapter 3 introduces our proposed solution Secure offloading in Fog-cloud of

Things (SecOFF-FCIoT), which leverages machine learning to enhance the of-

floading of IoT-Fog-cloud ecosystems. The chapter focuses on the computational

offloading framework and the associated pipeline of machine learning mechanisms,

all aimed at achieving improved performance.

In Chapter 4, NICO-FCIoT, an enhanced mechanism for initiating the offload-

ing process at the smart gateway in a clustered IoT-Fog-cloud environment is

presented. This proposal utilizes modified dynamic particle optimization. Our

simulations demonstrate the resulting improved performance.

Chapter 5 serves as the conclusion, summarizing the research contribution and

discussing future directions for the research.



Chapter 2

Literature Review

2.1 Introduction

Internet of things(IoT) is becoming a primary enabler of powerful technologies in

our society that are poised to change our perception about devices and our environ-

ment. The intersection of the internet of things, Big data, Artificial intelligence,

cloud computing, software-defined networks, and invention of more powerful and

intelligent edge devices (Switches, routers, mobile terminals, etc.) have not only

resulted into an explosion in the number of connected devices and data over the

internet infrastructure, but links between machines and the human world.

According to IoT analytics [32], the number of connected devices that are in use

worldwide in 2018 surpasses 17 billion of which 7 billion are IoT devices, if this

trend continues the number of active connected IoT devices is likely to surpass

22 billion in 2025. However, compared to traditional devices such as laptops, and

desktops, IoT devices are limited not only in terms of computing power, storage

capacity and battery life [33], but also limited by their heterogeneous nature. The

heterogeneity of IoT devices restricts the promotion of unifying one size fits all

solution. Currently, there are hundreds of competing standards, chipsets, and

backend products to choose from if one wants to develop an IoT application.

Moreover, there are tens of viable standards before one starts thinking of thousands

of tools which can be used to realize competing IoT invention. The sphere of the

internet of things architectures, standards, and tools provide prospects to progress

new kind of services, and application facilities in Cloud-of-Things environment[10,

11, 33, 34].

10
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The cloud delivers exciting opportunities for nonprofit of all sizes. Many organi-

zations using the cloud services are able to cut down Information communication

operational cost, leverage cloud tools and infrastructure for their IT services , and

enable new levels of collaboration between users of all kinds[10, 15]. The variety of

services provided by Cloud Service Providers(CSP) are incredible, hence making

its adoption for organizations a rational decision. However, the drawbacks asso-

ciated with the use of cloud such as downtime due to overload caused by various

clients, or the unavailability of internet connection may cause short-lived interrup-

tion. Moreover, security concerns, vendor deadlocks, and limited access make the

exclusive use of cloud paradigm less attractive. [3–6].

Authors in [35], surveyed extended cloud technologies (fog and mobile Edge Com-

puting (MEC)), in their study they compared the cloud to the extended cloud tech-

nologies in terms of latency, location of service, geo-distribution, mobility, location

awareness, type of mile connectivity and distance from the clients. They pointed

out that allowing computing to happen closer to the user’s location provides op-

portunities to support applications that have constrained processing requirements.

In addition, they reviewed security challenges and they filed the need of resilience

as basic property that is required for availability of services, maintenance of the

confidentiality and integrity of the information. In the face of new use cases new

challenges continue to arise, among them is how to handle the flood of big data,

security and privacy of sensitive data. Also how to reduce the increasing cost of

implementing distributed fog systems.

In [36], a comprehensive survey of fundamental and recent advancement towards

fog computing-enabled network architecture was given. In addition to issues men-

tioned in [35], they surveyed the F-RAN and related critical issues that include

energy utilization, Spectral Efficiency, backhaul traffic management, user mode se-

lection and service allocation and selection , and resource management challenges.

Given the exponential growth of IoT devices and data across IoT-Fog-cloud ecosys-

tems it is not unique for backhaul traffic management challenges to shift to the

fog platform, also challenges of integrating new methodologies such as machine

learning, artificial intelligence and blockchain remain to be new phenomena that

need to be surveyed.

C. Puliafito et al. in [37], presented a survey on employment of fog cloud to

support IoT devices and services. They highlight six application domains that

might benefit from the Fog-cloud ecosystems, then they elaborated on the new
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challenges that arise as a result of the new fog-cloud formations along with soft-

ware, hardware platforms and standardization effort. Authors in [38] performed a

classification-based investigation into the requirements of fog infrastructure, plat-

form, and applications mapped to current research. In addition, they discuss

existing research works and gaps in resource allocation and scheduling, fault toler-

ance, simulation tools, and Fog-based microservices. They also present some open

issues, which will determine the future research direction for the Fog computing

paradigm. Furthermore, they described some simulation tools used to accomplish

fog research, nonetheless a number of issues have come to light in the IoT-fog

ecosystems that need to be filed. These include real-time analytics , resource

management, methods of fog−to−fog communication, supporting crowdsourcing

applications, new challenges in trust and security etc. To this end, we expand on

surveys in [35–38] by providing more insight of research aspects filed , the state of

art, future development trends and open issues.

In this chapter therefore, we provide extensive exploration on the fog cloud of

things to give a foundation to solutions proposed in this thesis. We investigated

the building blocks in IoT-Fog-cloud computing specifically the concepts, archi-

tectures, standards and tools. This survey enabled us to gain insight into the re-

quirements for building fog−cloud solutions proposed in this thesis with a better

understanding of computing infrastructure created by the IoT−Fog−ecosystems

and the current trends of research filed.

Thus, this chapter is organized as follows: section 2.2 provides an overview of

fog architecture, ecosystems, and fog standards (IEEE 1934 and ETSI 2016). In

section 2.3, we present Emerging trends, issues, and challenges in fog cloud of

things and ideal solutions. Section 2.4 presents a taxonomy based on emerging

issues in the fog−cloud of things environment. In section 2.5, we present key

applications driving fog computing paradigms. Section 2.6 presents the fog cloud

of things tools including selection considerations and examples of tools commonly

used in developing concepts in fog research domain. Further, the tools that can be

used to model and develop proof of concepts, test and implement Fog experiments.

In section 2.7, we present Open issues in fog−cloud of thing ecosystems, and we

present a summary of the survey in section 2.8.
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2.2 Overview of fog architecture, ecosystems, and

standards

2.2.1 The Fog cloud of things architectures

In principle, the Fog computing framework is a N- tier hierarchical with distinct

layers. At the bottom of the framework are the end devices, a collection of IoT

devices, (sensors, actuators and smart devices such as smart phones). The next

layer is Fog layer which forms the middle tier and the cloud layer which forms the

upper layer. We provide discussion on the components of Fog framework based on

Fig. 2.1.

Figure 2.1: The hierarchical components of Fog Computing Paradigm and
services at each layer.

i) The IoT Nodes : Depending on the size and purpose, IoT serve the purpose

of sensing the environment, collect data inform of observation, transform and
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process data in real time when supported. Even though they have limited

computational power, they can be used to accomplish processes that need

real-time responsiveness. Moreover, they are used in transmitting data to the

next level of the hierarchy. IoT devices consist of digital sensor component

for sensing the the external conditions, digital converter, data storage unit

used to store data, connectivity used to ensure network function and power

unit [39]. IoT nodes are equipped with some security mechanism. Security

is critical for helping the micro controller perform a secure boot, insuring

that the core is running the code is meant to run [40]. Some IoT may be

used to ensure security by tagging counterpart IoT’s that exhibit suspicious

behaviour. The IoT’s make the front end of IoT-fog-cloud infrastructure.

ii) The Fog Nodes: The fog is positioned in between the cloud and IoT devices

in the IoT−Fog−cloud hierarchy. The fog undertakes processing, storage,

secures the IoT devices and supports the cloud. When supported they per-

form transactions analytics, which may include cleaning data, dimension

reduction, and perform automatic handing over of handful of data for pro-

cessing to the cloud (near end real−time data analysis). The fog supplies the

infrastructure with intelligence that the IoT nodes cannot offer due to lack

of sufficient compute power. They may adopt cognitive abilities that allow

them to monitor and control IoT devices, perform traffic migration in situ-

ation where traffic concentrates on the server platform, and balance server

workload. The fog make the middle tier of the IoT-fog-cloud infrastructure

[41].

iii) The cloud: The cloud provides reliable services to the IoT-Fog-cloud infras-

tructure. These services can be accessed anywhere at anytime through the

Internet. They provide support to both IoT and Fog node where necessary,

specially for those tasks that need abundant resources that is not available

at the lower levels of the infrastructure. The cloud avails services inform of

infrastructure, platforms and software. examples of cloud services include

Amazon EC2 for virtual IT, Google App Engine for Application hosting,

Apple iCloud for Network storage, DigitalOcean for Servers hosting which

involves Iaas and PaaS, etc. [42].
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2.2.2 Fog related ecosystems

The Fog computing paradigm is poised to seamlessly lift the burden posed by IoT

on the current Internet and data center infrastructure through increased agile ex-

tension of cloud services over distributed infrastructure that allow quick access and

processing [43]. Extended cloud include the fog, and variation of edge computing

( Multi-access Edge Computing (MEC), dew, and Mist computing) [36].

From a general perspective, the fog is super set of extended cloud technologies that

is about spreading computing resources and services along the network continuum

starting from the IoT nodes, the edge and the cloud [44]. Services and resources

include computing, storage, control, and networking. The resources may be lo-

cated within the organizational premises or in the cloud. The fog creates a middle

layer between the IoT-Fog-cloud ecosystem that allow handling processing of data

locally closer to the edge especially for complex and latency sensitive computing

jobs. The fog also forwards process intensive tasks to the cloud and received the

results before sending them to IoT device. Moreover, they may serve as gateways

[41].

The Fog is defined around a network structure in which resources including data

and application are strategically positioned between the data source and the cloud.

Fog computing has been designed for applications that require at most latency,

faster processing and quick response [6, 44, 45]. Examples of such applications

are found in telemedicine, here response to patient requires at most response and

available bandwidth for the medical works to keep in touch when solving emergency

[46]. In health care, patients may require immediate attention from the doctor

[47]. Other cases are found in machine to machine communication in industries

(industrial Internet of Things (IIoT)), where reports on a component is required

more often, since its failure may result in breakdown of the whole system [48].

Fog nodes are classified according to proximity, size of computing power, purpose

of deployment, memory, and other computing resources. Some are deployed more

closer to the IoT devices than others depending on the purpose of deployment,

and some may be mobile [33]. For example, if the purpose of the fog is to combat

latency issues, then the node must be deployed as close to IoT nodes as possible,

in addition to possession of considerable compute property. If the fog node is

meant for data storage then it should have sufficient storage property and may be

deployed away from the IoT nodes. The fog Nodes are connected to the cloud and
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IoT devices using communication technologies that define the topology and other

communication requirements.

They are formed by at least a physical device on which some functionality of the

cloud may be installed. They may include, switches, routers, min servers, desktops

etc. Each of these fog nodes have capacity to provide compute, storage as well as

a continuum to the cloud. The fog brings closer to the edge the services of the

cloud, and provide physical services where fog computing is deployed.

The fog and edge computing paradigms are often based on similar architecture and

standards. They provide distributed cloud environment and are location aware ex-

cept edge computing focuses on executing computing processes at the edge of the

network. Moreover, the edge may operate without a devoted cloud or fog. They

are limited to a small number of peripherals through which intelligence, processing

and communication is pushed to switches, routers, Radio Access network(RAN),

or programmable automation controllers [49]. The edge simplifies internal com-

munication and may use computational capabilities to make store and forward

decisions to the cloud for further analysis, inopportunely they are less scaleable,

built based on proprietary corporate networks with stringent conditions with less

interoperability. Most often resource pooling and cloud awareness is not a design

strategy in the edge.

The middle ground between the cloud, fog and the edge is the mist computing

that powers light weight computing residing on network using microcontrollers

and microchips. The Mist is capable of making local decision on the data and

work with the cloud and the fog computing systems. Similar to edge the mist may

not need to devote to the cloud infrastructure [50].

In table 2.1 we present a summary of relationships between the fog and other edge

computing technologies. We consider Common edge computing technologies to

include the MEC, Dew, and Cloudlets.



17

Table 2.1: Relationship among the fog and other edge technologies

Relationship parameters The Fog The Edge Mist

Transfers processing of data
closer to the user

Yes Yes Yes

Reduce the amount of data
flooding the cloud

Yes Yes Yes

Decreases latency Yes Yes Yes

Improves system response
time

Yes Yes Yes

Improves security and Trust Yes Yes Yes

Location awareness Yes Yes Yes

Related to IoT and 5G Yes Yes Yes

Architecture Distributing resources along
the network

Proprietary designed to
serve base stations cell
tower etc.

Design strategy is between
the Fog and Edge
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Relationship parameters The Fog The Edge Mist

Configuration Fairly complex, hierarchical Simple one hop configura-
tion

Moderate

Processing Scaleable, handle both light
weight & slightly heavy pro-
cessing

Handles mostly computa-
tional processes

To larger extend handle
light weight

Appropriate standards used IEEE 1934 – IEEE Stan-
dard

ETSI GS MEC 003 —

Relevance Evolution of local Area net-
work, network is viewed to
have multiple data points
that feed the network

Evolution of telecommu-
nication networking, de-
vices work independently to
avoid single point of failure

—

Intelligence realized at the local area
network

realized at edge gateway
or appliance(devices e.g
programmable automation
controllers

—
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2.2.3 The Fog cloud of things standards

Computing standards refer to mechanisms that enable vendors, developers and

businesses resolve issues that concern homogeneity, uniformity in computing en-

vironment, interaction between heterogeneous platforms and performance. Stan-

dards are important because they permit transparency in the systems so as to

support all forms of computations that happen in the ecosystem.

The fog cloud of things ecosystem supports three types of computation; a) Lo-

calized computation, b) Fog-edge computing and c) remote computing. Localized

processing occurs at the local devices residing in the local area network or cel-

lular network. They use resident resources to accomplish tasks. These resources

include CPU of the IoT, memory, storage etc. Whereas, Edge, and remote com-

puting occurs at the Edge or the cloud. The edge cloud consists of localized data

center solutions that abstracts and virtualizes compute, storage and networking re-

sources. Computational solutions at the edge must be light weight to fit the small

infrastructure at central office, base stations, routers and switches. In addition,

Edge solutions are required to preserve some functionality of the cloud, achieve

low-latency, be simple, support automated delivery, and be relatively secure as the

cloud. Examples of such solution is Contrail Edge Cloud 1 and Cisco Fog Data

Services 2. Edge computing is supported by wireless technologies such as WiFi as

means of communication. Lastly, remote computation occurs in the remote data

center or the cloud, remote computation is supported by powerful heavy weight

systems that bare infinite resources. Communication between the cloud clients

and cloud infrastructure is made possible through Internet connection [51].

The Fog cloud of things involves infrastructure setting that consist of devices

and hardware from different vendors. To ensure computational efficiency and

interoperability among devices and software developers, a set of standards must be

established. Standards address a range of issues that include fueling compatibility,

simplifying product development, and speeding up market adoption of products.

They also make it easier to identify competing products in market place.

1https://www.juniper.net/uk/en/products-services/sdn/contrail/contrail-edge-cloud/
2https://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-

services/index.html
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Figure 2.2: Types of computation that are supported in the fog cloud of
things infrastructure.

In the following subsections we describe two competing standards a) the OpenFog

Reference model based on IEEE 1934 [52], and b) the MEC reference Model based

on ETSI 2016 [1]

The OpenFog Reference Model

IEEE 1934, is a newly approved IEEE standard that adopts the OpenFog techni-

cal framework to enable data-intensive requirement of Internet of Things, 5G and

artificial intelligence applications. This standard is a blue print that will acceler-

ate the development of new applications and business models in Fog computing

environment. Moreover, the standard forms the building block for constructing

solutions through consistent protocols that is understood across the board.

The OpenFog Reference model is intended to distribute compute, networking etc

horizontally along the network continuum. In the same regards, it is used to

define the means of extending the cloud services along multiple layers on the net-

work topology. This yields hierarchical IoT-fog ecosystem that preserve important

features of the cloud that include resource pooling, easy maintenance, availabil-

ity, containerization, virtualization, orchestration, etc. These model are organized

in three dimensions that describes the whole IoT-Fog-Cloud ecosystem. The di-

mensions are Pillars, perspectives and views. Pillars represent the theme upon

which an IoT product that fulfills the demand of Vendors, users, and developers.

Perspectives, represent the viewpoint of the architectures, whereas views deals
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with interpretation in terms of the systems, hardware and software. There are

seven(7) pillars, described by the OpenFog standard, Five(5) perspectives and

three(3) views. The pillars include Openness pillar, security pillar, Scalability,

RAS, Agility pillar, Hierarchical pillar,and programability pillar. Similarly, the

five perspective are performance, security, manageability, data analytics and con-

trol, and IT business and cross fog applications. In addition to the pillars and

perspectives, the reference model includes a layered structure which is categorized

into software view, system view and node view.

Using the themes described as pillars, the OpenFog reference model outlines mech-

anisms of resolving issues of taxonomy in terms of homogeneity, market place, and

uniformity in computing environments. Moreover, standards determines matters

of open API’s that enables interactions between heterogeneous platforms. In par-

ticular;

The Open pillar enables all players i.e. the proprietors, single vendor solution

providers and individuals technical groups alike to have similar access to tech-

nology. Through this pillar vendors can afford to build technology products at

the same pace. This creates competitive advantage and cultivates a successful

ubiquitous fog computing ecosystem for IoT platforms. The open pillar facili-

tates inclusion of all parties in an open form to ensure quality, reduced cost of

production, and speeds up innovation in products formed in the IoT cycles. The

open pillar is mainly concerned with matters of resource visibility and control,

interoperability, white box decision making, data normalization etc.

Security pillar: This pillar is concerned with issues of cyber and physical se-

curity in the Fog ecosystem to deliver operational benefits, such as attestation,

authentication and authorization. The ability of the Fog architecture to enforce

trust, attestation and privacy is positioned in this pillar. Therefore, all means

that ensure security of all the processes, data and means of transporting data are

bundled under the security pillar.

The Scalability pillar deals with issues of localized command, control and pro-

cessing, orchestration and analytics, etc. This pillar relates closely to system cost

and performance. scalability allows implementations to adapt to business process.

The RAS pillar, deals with aspects of reliability, availability, and serviceability.

This pillar embraces orchestration of existing and new resources in such a way

that if a new object recognition models are trained for visual analytics, these
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inference engine models should be updated on near edge devices without impacting

availability of the solution.

The Agility pillar is about tactical and strategic decision making, and data to

wisdom processing.

The Hierarchy pillar deals with incorporating the fully functional cloud compu-

tations at all levels though at different scale at the lower of the hierarchy, real-time

computations/analytics, in the middle of the hierarchy transactions analytics and

at the top business analytics. in addition to computation, it caters for autonomy

at all levels.

The Programmability pillar deals with programmable hardware and software,

virtualization and multi-tenant and application fluidity. Visual analytics is utilized

to facilitate this scenario.

The perspective of the reference model is organized in five areas as seen enumerated

below

i) Performance It is a cross cutting concern because it has system and deploy-

ment scenario impacts time critical computing, time sensitive networking,

network time protocols.

ii) Security: Data integrity is a special aspect of security for devices that

currently lack adequate security. End-to-end security is critical to the success

of all fog computing deployment scenarios.

iii) Manageability: Managing all aspects of fog deployments, which include

RAS, DevOps, etc. Managebility is a critical aspect across all layers of a fog

computing hierarchy.

iv) Data Analytics and Control: The ability for fog nodes to be autonomous

requires localized data analytics coupled with control. The actuation/control

needs to occur at the correct tier or location in the hierarchy as dictated by

the given scenario. It is not always at the physical edge, but may be at a

higher tier. The data analytics component is important for processing big

data, Big data is the trend that is defining characteristics of many networks

built today.

v) IT Business and Cross Fog Applications: In a multi-vendor ecosystem

applications need the ability to migrate and properly operate at any level
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of a fog deployment’s hierarchy. Applications should also have the ability

to span all levels of a deployment to maximize their value. This pillar is

important in bringing together businesses, and IoT-fog products.

In another dimension reference model provides three views listed below

i) Software View: The software view consists of the first three top layers. The

Application Services, Application Support, and Node Management (IB) and

Software Back plane.

ii) System view: forms the middle layers in architecture description, that

include Hardware Virtualization, open fog Node management, open node

security, Fog Node platform(network, accelerators, compute, storage etc),

and Hardware Platform Infrastructure.

iii) Node view: is represented in the bottom two layers shown in the reference

descriptor. This is mainly applicable in the IoT device the layers includes

the Protocol Abstraction Layer and Sensors, Actuators, and Control.

Multi-Edge Computing reference Architecture

Mobile Edge Computing (MEC) is a reference architecture that brings computa-

tional capabilities and services closer to mobile network users by deploying com-

puting resources at the edge of the mobile network. The MEC system level refers

to the overall architecture and components involved in delivering MEC services.

MEC computing reference Architecture uses a similar framework like that used in

the OpenFog. The IoT devices, the Edge devices and the cloud are organized in a

hierarchy. The IoT devices form the lower layer, the MEC devices form the middle

layer and the cloud forms the upper layer. Unlike the OpenFog Standard that is

structured according to pillars, perspectives and views, the MEC is arranged into

two levels (the Mobile Edge system level and the Mobile Edge host level). Each

of the levels is composed of components that communicate with each other using

reference points [53].
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Figure 2.3: The MEC System architecture, adopted from [1] [2]

The Mobile Edge system level

This level consists of five (5) components; Customer Facing Services(CFS) portal,

operational support system(OSS), Mobile Edge(ME) orchestrator, User App LCM

proxy, and User Equipment App.

a) The CFS portal

The CFS portal is an entry point for third parties. Third parties include devel-

opers, enterprises and business clients. Developers may use this component to

make applications available in the mobile operator, whereas enterprise may use

the same portal to select applications of interest to them and give instructions of

use of some selected applications. In addition, this portal is used to relay business

related information which may include what services are available, billing, and

service level agreements. Moreover, this portal is used by operations to manage

provisioning, and other related services of the ME application. The CFS portal

communicates to operations support system through reference point Mx1.

b) User Equipment Application (UE app)

User Equipment Application is an entity of MEC architecture at the mobile system

level, UE app define applications in the User Equipment that have the capability
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to interact with the mobile edge system via a user application management proxy.

The user application is a mobile edge application that is instantiated in the mobile

edge system in response to a request of a user via an application running in the UE.

UE connects to the user application lifecycle management proxy through reference

point Mx2. Mx2 is used by a UE app to request the mobile edge system to run

an application in the mobile edge system, or to move an application in or out of

the mobile edge system. This reference point is only accessible within the mobile

network. It is only available when supported by the mobile edge system.

c) The Operations Support System (OSS)

OSS is the highest management system entity of the MEC architecture that pro-

mote mobile system to run in a desired location on a network. OSS receives

instructions to instantiate or terminate mobile services from both CFS portal and

user equipment. Moreover, it acts as a bridge between the operator and external

world, checks integrity and authenticity of application packages. It also authorizes

and forwards request to ME orchestrator for further processing. The OSS receives

requests via the CFS portal and from UE app using reference points Mx1 and

Mm8 respectively. Reference Mx1 is used by the third-parties to request the mo-

bile edge system to run applications in the mobile edge system and Mm8 is used

to handle UE applications requests for running applications in the mobile edge

system. OSS may have capacity to relocate applications between servers.

d) User Application Life cycle Management (LCM) proxy, The User Application

Life Cycle Management (LCM) proxy facilitates UE applications in requesting

on-boarding, instantiation, termination, and, if applicable, relocation of user ap-

plications within the mobile edge system. It also stores information about the

status of user applications. This proxy authorizes requests from UE applications,

interacts with the OSS and mobile edge orchestrator for processing, and is acces-

sible exclusively within the mobile network, provided that the mobile edge system

supports it.

e) Mobile Edge Orchestrator (MEO) MEO is an entity in the mobile system level

which maintains an overall view of the mobile edge system based on deployed

mobile edge hosts, available resources, available mobile edge services, and topology.

It is responsible for on-boarding of application packages, checking the integrity

and authenticity of the packages, and validating application rules. It may adjust

requirements to comply with operator policies, and keeping a record of on-boarded
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packages. In addition, it prepares the virtualization infrastructure manager(s) to

handle the applications. The MEO is tasked with the selection of appropriate

mobile edge host(s) for application instantiation based on constraints, such as

latency, available resources, and available services. Further, it triggers application

instantiation and termination, application relocation as needed when supported.

Reference point Mm1 connects the orchestrator to operation support system and

Mm9 connects the orchestrator with user application life cycle management (LCM)

proxy. Mm1 is used for triggering the instantiation and the termination of mobile

edge applications in the mobile edge systems, whereas Mm9 is used to manage

mobile edge applications requested by User Equipment app.

Mobile edge Host level

This level consists of three major components in addition to other MEC platforms.

These components include the mobile edge host, mobile edge platform manager,

and virtualization manager [54]. The mobile edge host is portioned into three

units; the mobile Edge platform, MEC App, and virtualization platform, whereas

the mobile edge platform manager is portioned in Mobile Edge platform element

management unit, Mobile Edge applications and rules management, and Mobile

Edge life cycle management Fig 2.3.

a) Mobile edge host Inside the Mobile edge host, the Mobile edge platform com-

municates with the MEC app, the virtualization infrastructure, and other MEC

platforms through reference mp1, mp2, and mp3 respectively. At the same time,

it communicates to ME platform manager through reference point mm5. The

purpose of Mobile edge platform is to create an environment in which the mobile

edge applications can discover, advertise, consume and offer mobile edge services.

This services may include services available via other platforms. Normally the

services are registered in the service registry. In addition, using the traffic rules

received from the mobile edge platform manager the Mobile edge platform can

control traffic using the traffic control module. When supported, this includes the

translation of tokens representing UEs in the traffic rules into specific IP addresses.

Lastly, the Mobile edge host receives DNS records from the mobile edge platform

manager and configuring DNS proxy/servers. Moreover, it hosts services, provide

access to persistent storage, and time of the day information using the mobile edge

app service and the virtualization information platform.
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The mobile edge app module is a service provider. The service provided are

consumed by either the mobile edge platform, or the mobile edge applications.

Applications may be registered in the list of services to the mobile edge platform

over the Mp1 reference point. The MEC app services avails compute, storage,

network resources and services in MEC ecosystem.

Virtualization infrastructure module; This module contains the data plane whose

responsibility is to provide information about traffic, routing and forwarding pro-

tocols between the applications and services on the network.

b) The Mobile Edge platform manager(MEPM) The Mobile Edge platform man-

ager(MEPM); this is an entity of MEC host level that is used to perform the

management utilities. Using ME life cycle module, MEPM starts and terminates

applications based on instantiation and termination procedures. Further, it pro-

vides indication to the orchestrator about the application events as well as perform

authorization and system conflict resolution.

MEPM uses reference point Mm5 for policy and platform configuration so as to

manage reallocation of application, perform traffic filtering and support appli-

cation life cycle procedures. MEPM uses reference point Mm2 for performance

management of MEC platform and other configurations that may include Fault

recovery. Similarly, reference point Mm3 is used to maintain up-to-date informa-

tion on available ME services, provision application related policies and life cycle

supervision [1].

c) Virtualization Infrastructure Manager(VIM) Virtualization Infrastructure Man-

ager(VIM) is an entity of MEC infrastructure at the mobile host level. The pur-

pose of VIM is to manage the virtualized resources for the ME applications. This

includes allocating and releasing virtualized computing, storage, and network re-

sources provided by the virtualization infrastructure, in addition the VIM also

prepares the virtualization infrastructure to run software images. The VIM is

also used to sustain faults and monitor performance. Performance monitoring is

completed by collecting and reporting information on virtualized resources and

providing the information further to server and system level management enti-

ties. The VIM uses reference points Mm7 to manage the virtualized resources.

Reference point Mm4 is used for management of the application images and the

virtualized resources as well as for monitoring the availability of the resources.
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Reference point Mm6 is used to manage the virtualized resources for the ME

applications during their life cycle.

In general the framework presented in fig. 2.3 describes both the hardware and

software components of multi-access edge computing facility. Each of the com-

ponents are connected to each other through reference points. Reference points

Mp1-Mp3 are related to mobile edge platform, whereas reference Mm1-Mm9 are

related to mobile Edge management, while Mx1 and Mx2 are related to external

entities.

2.3 Emerging trends, issues, and challenges in

fog cloud of things and ideal solutions

Increasing digitization and government initiatives ranging from low income to high

income countries is likely to increase the use of fog computing in their smart inno-

vations, health care, crowdsourcing, smart energy, smart utility and environmental

monitoring significantly. Smart cities are potential candidates for fog computing

because they enable control, monitoring, security and surveillance systems [55].

Whereas, In health industry adoption of fog computing and related health ap-

plications using IoT is becoming acceptable as means of improving the overall

performance of the health industry. Subsequently fogging encourages better oper-

ation efficiency, reduce operational cost and optimize power consumption [56]. On

the other hand, Crowdsourcing is a visible future prospect of fog computing given

that crowdsourcing involves individuals using their smart devices to participate in

tasks related to some locations in the physical world [57, 58].

In this section we discuss the emerging trends, issues, challenges and ideal solutions

in the fog cloud of things ecosystems. After careful review of papers related to

fog computing domain, 20 papers were selected to position literature in relation to

novelty of the current fog models. We categorized the papers in three categories.

Seven in the smart city innovation category, seven in the smart healthcare , and

the remaining papers were categorized in the crowdsourcing category.

In the smart city domain, there is increased need to manage the vast information

communication resources (IoT, and Fog devices), perform real-time analytics of

big data closer to users, and ensuring security of both the infrastructure and
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information generated by the smart city systems. Issues of node failure due to slow

convergence or malicious attack, reliability and availability of services due to traffic

congestion, processing massive amounts of data in real-time at the edge of network

so as to improve quality of services, performance of smart city infrastructure in

terms of reliability, robustness and endurance are yet to be completely resolved.

In [59] a multi-tier fog computing model based analytics service for smart city

applications was proposed. In the study, the authors explain how their multi-tier

fog computing paradigm provide a fertile platform for analytics of both light weight

and heavy workloads. From their experimental results it was concluded that heavy

workloads required dedicated computing resource. Moreover, it was noted that

large scale analytics can be achieved with multi-tier fog architecture. In a similar

study [34] the author highlighted the fact that different IoT applications need

different levels of intelligence and efficiency in processing data. They presented a

case study SLAM(Simultaneous localization and Mapping) which involves delay

sensitive processing of large amounts of data from heterogeneous sensors in real

time. Such future internet of things could be deployed widely in many places in

the real world. This therefore, calls for multi-tier framework which are not only

hierarchical but can support fog-to-fog communication across the fog ecosystem

that are applicable not only to smart city applications but also to health, and

other related use cases.

Authors in [33] presented machine learning based computational offloading frame-

work involving neural-fuzzy model to improve robustness of fog system and achieve

offloading by incorporating PSO and reinforcement learning. From their results

better performance and robustness in fog system can be achieved using machine

learning at all levels of the fog hierarchy.

Authors in [60] proposed multi-level system of fog computing services for end-to-

end support of IoT applications framework, their work is motivated by services

that need a vast range of end devices and the tremendous amount of data. This

framework is visualized to wrap all fog resources(hardware, software and applica-

tion functionalities) as micro services. Results from their experiment show that

FA2ST responds dynamically to end users’ demands based on available services.

Models such as FA2ST are seen to be applicable to smart city innovation to im-

prove quality of service and experience.
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It is challenging in smart city innovation to obtain and batch process data with

multiple dimension from heterogeneous sources, which may need different levels

of intelligence[61]. In addition, social media is becoming more acceptable means

of acquiring data to analyse citizen engagement, behavior, and sentiments about

services provided by city authorities [62].

To improve performance of smart city fog related infrastructure, applications of

machine learning, artificial intelligence, software defined networking etc. in the

fog cloud ecosystem is indispensable. Zhang et al. in [63] proposed fog based

cognitive computing framework which derives its intelligence from collaborative

sensing, cognitive services, and applications. Similar works is found in [64], in their

work they introduce the overall framework for intelligence in smart cities consisting

of three levels of intelligence: smart city and IoT infrastructure, fog computing,

and cloud computing. From their framework they illustrate the overall position

of machine learning approaches within the hierarchy of smart city infrastructure.

Machine learning, AI, and cognitive models are likely to bring efficient computing,

storage and reliability and robustness in the fog cloud ecosystem especially in

smart city innovations.

In health industry adoption of fog computing and related health applications us-

ing IoT is becoming acceptable as means of improving the overall performance of

the industry. Fog and IoT systems encourages better operation efficiency, reduce

operational cost and optimize power consumption [56]. The nature of health care

applications and data in terms of privacy, delay, sensitivity, real time analytics,

and permitting immediate action are drivers that encourage increased use of fog

computing. Studies in [56] show that substantial solutions for health purposes can

be developed to use the fog. Consequently the future is going to see complex so-

lutions to improve health care services develop at the fog. For example authors in

[65] developed a framework for health and wellness applications. In their work they

considered a three layer fog architecture with the lower layer representing hospitals

and clinical organisations, smart homes and individual patients equipped with sen-

sors and actuators. The second layer consists of the fog and the components that

collect process, and secure data. Whereas, the top layer consist of the cloud and

end user service providers (medical institutions, insurance companies etc.). The

proposed framework enables data outsourcing, querying, searching and extraction

of responses etc. From their results better performance was observed. Moreover,

the framework provides a platform that may handle complex security issues.
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To achieve precise processing of health data and make real-time decision across

wide geographical coverage without compromising the sensitivity of the data for

future health applications is difficult. It is challenging to efficiently deliver sen-

sitive data over the network infrastructure, difficulty in managing system failure,

security, multiple system configurations, and heterogeneous systems with multi-

ple dimension. Authors in [66] proposed a framework to improve throughput and

latency for efficient analysis and transmission of geo-health data, they laid an anal-

ysis of energy saving and computational cost of their proposed architecture. Their

result demonstrate autonomous operation even in absence of Internet connectiv-

ity, easy to deploy and distributed fog nodes are seen to improve performance,

throughput utilization, manageability of the system with less expertise. Utiliza-

tion and load balancing have been considered in [67], while energy efficiency in

health system has been explored in [68] and performance issues have been delib-

erated in [69]. From these works there is a considerable effort in improving fog

computing in health industry so that sensitive and bulky data from clients and

service providers can be managed effectively. It is feasible for the future fog health

systems to solicit the use of crowd sources and social media data to predict wellness

of patients in real-time.

Crowdsourcing is another visible future prospects of fog computing since it involves

individuals to participate in tasks related to some locations in the physical world.

Although there is still a challenge in allocating resources for crowd sourcing with

at most precision there has been tremendous acceptance of crowd sourced services

amongst users. In addition to the vision of autonomous vehicles and drones, the

future use of fog in refining crowd sourcing applications cannot be under estimated.

In [58] crowdsourcing-based disaster management (DMFC) was presented. Their

model is hoped to help authorities to plan efficient rescue protocol for disaster

struck places and takes advantage of crowdsourced data by performing real-time

analytics at the fog so as to relay immediate feedback to save lives in disaster

struck locations. Their model is seen to minimize latency. Moreover, they propose

blockchain mechanism to offload disaster data. In similar study [70] a frame-

work known as SAFER that concentrates on instances of data classification and

analysis to find emergency instances was proposed. They used Software Defined

Network(SDN) technology to build efficient and dynamic network. Crowdsourcing

based fog of things is likely to dominate future smart cities. smart health, smart

agriculture etc.
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In fog based crowdsourcing applications it is challenging to rely on the data col-

lected from individual persons than sensed data. In the same vein, issues related to

social mining at the fog and quality of the overall information collected arises [71].

The quality of information can be improved through application of approaches that

encourage autonomous learning based on context learning, reinforcement learning,

artificial intelligence, knowledge discovery, self healing, etc.

Generally, overtime there is steady increase in the research interest in discovering

the use of fog computing in smart energy systems, smart farming and agricul-

ture, transportation and autonomous vehicles, environmental monitoring, etc. The

many challenges fog inherits from its distributed nature, which include difficulty

in managing system failure, security, multiple system configurations, and hetero-

geneous systems with multiple hardware and software requirements still hold fog

computing one step from maturity.

2.4 Taxonomy for fog cloud of things

Table 2.2 presents our taxonomy for fog cloud of things based on emerging novel

issues of the existing works. We highlight the five major aspects of fog-cloud of

things that allows us to view holistically fog computing in terms of their applica-

tions, management, security and privacy, collaboration and communication, and

architectures and systems as follows:

i) Applications

A considerable number of applications that require fog as a service in terms

of fog platforms, fog infrastructure, or services have become common. This

requirement has grown exponentially because of increase in the number of

applications that require high latency, storage, and privacy requirements. As

a result new issues which require intelligence in balancing and scheduling ser-

vices, data distribution, content awareness enable applications of Fog-cloud

to be taxonomized in computational offloading, data analytics at the edge,

content aware delivery Fog systems, and intelligent crowdsourcing systems.

ii) Management

The distributed nature of fog-cloud of things require sophisticated manage-

ment of resources, and data so as to minimize long term resource utilization
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such as power consumption, memory and storage. In addition, data control

and service placement is becoming complicated as the number of devices

and service requirements for IoT increase. This enables us to recognise fog-

cloud of things management classes based on resource management, data

management and affinity management.

iii) Security and privacy The flexibility in deployment of fog-cloud of things,

coupled with massive amounts of data generated and mobility characteristics

of thing results into new security and privacy concerns that are not effectively

handled by the existing detection and trust mechanisms. For this reason,

the need to improve security control, and efficient monitoring of devices

behavior have risen in the new IoT ecosystem. In addition, extending the new

authentication mechanism to all thing across the the fog-cloud ecosystems is

important. The new breed of security and privacy concerns have enable us

to identify classes in the fog-cloud of things security falling into intelligent

detection, trust management and adoption of new mechanisms that may use

Fog-blockchain concept in achieving security in fog systems.

iv) Communication and collaboration

Most of the fog-cloud of things architectures have not resolved the issues

of communication and collaboration between Fog2Fog and Fog2Other IoT

devices completely. As a result many algorithms that are based on optimizing

resources for communication need to be improved especially in the context of

resource awareness and collaborative utilization of resources, therefore two

classes have been identified i.e Fog2fog, and Fog2cloud.

v) Architectures and systems

Architectures of Fog cloud of things illustrate the system components, and

explain their roles in the ecosystem. This enables experts to describe how

devices are capable to communicate amongst themselves. Through this ar-

chitectures the responsibility of Fog nodes and cloud in ensuring services,

service placements, service delegation between components of the ecosys-

tems are explained. Based on the purpose of the architecture two common

classes of architectures are identified i.e. single-tier and multi-tier architec-

tures.
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Table 2.2: Taxonomy for fog cloud of things

Articles Domain Sub domain Emerging issues Category of Problem

[33, 72–75] I) Application A) computational
offloading, B) data
analytics C) Content
Delivery Network D)
crowdsourcing

a) Load balancing and
scheduling, b) Intelligent
task and data distribution
algorithms c) Distributed
data processing at the edge
e) Content aware protocols
at the edge f) Content
localization

i) Resource (CPU, memory
and bandwidth) utilization
ii) Overall minimization of
response time, latency, en-
ergy etc. iii) Performance
improvement in terms of
fairness. iv) Throughput
and application delay v) Lo-
calized content delivery ser-
vices, vi) Content aware
Optimized Link State Rout-
ing

[76–79] II) Management A) Resource mgt B)
Data mgt C) Affinity
mgt

a) Intelligent decision aimed
at minimizing long term
power consumption b) Re-
solving resource coupling
problems c) Dynamic data
plane control d) Service
placement to maximize effi-
ciency

i) Designing more efficient
minimum cost scheduler
and maximum resource
utilization algorithms ii)
Using machine learning to
improve resource coupling
problem iii) Efficient data
plane control mechanism
iv) Service selection and
placement in the fog v)
Continuous improvement
of systems resources man-
agement to attain better
latency, resource utilisation
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Articles Domain Sub domain Emerging issues Category of Problem

[80–83] III) Security and
Privacy

A) Attack detection
B) Trust management
C) Blockchain driven
secure mechanisms

a) Cybersecurity control
in increased surface attack
b) Behaviour monitoring
d) Blockchain enabled user
authentication and secure
management

i) Improving machine learn-
ing attack detection mech-
anism ii) Detection of ma-
licious node iii) recover-
ing misjudgement based on
trust score iv) Evaluation
strategies based on service
records v) blockchain as a
service

[84–86] IV) Communica-
tion and collabo-
ration

A) Fog to fog B)
Fog2Cloud

a) Efficient algorithms to
permit fog2fog communica-
tion b) Information Centric
Fog to Fog communication

i) Communication tech-
nologies that allow fog2fog
ii) minimizing the overall
end to end latency iii) the
use of Information-Centric
Network specific protocols
over the MAC layer iv)
performance of adaptive
low-latency Medium Ac-
cess Control (MAC) layer
scheduling among IoT
devices.

[82, 87–91,
91, 92]

V) Architectures
and systems

A) Single Tier ii) N-
Tier

a) Reflection on architec-
tures and functional compo-
nents, b) applications, c) se-
curity and privacy

i) Connecting things that
seamless compute, route,
and communicate through
diverse ecosystems ii) Re-
flection on functional com-
ponents and applications,
security and privacy con-
cerns.
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2.5 Applications

The key applications driving fog computing paradigms include computational of-

floading, Big data analytics, distributed content delivery and caching, improved

web performance, smart city applications, crowd sourcing, etc.

2.5.1 Computational offloading

Computational offloading is a technique used by resource-constrained IoT de-

vices to reserve computational processing, battery life, storage, etc. Offloading

is achieved by partially or fully pushing the intensive task to resource sufficient

environment. The cloud has been the most significant environment to achieve

offloading until the upcoming of use cases that require better performance and

efficiency in terms of immediate reaction to the data generated by the sensed

environment.

Computational offloading is mostly encouraged to reduce latency, save energy,

prolong battery life at the same time improve user quality of experience. The

inability of IoT devices to execute heavy applications call for edge devices to

become computing resource power horse to enable execution of heavy tasks. They

run sophisticated applications offloaded by the IoT devices [93].

Computational offloading has attracted a series of research interest to solve chal-

lenges related to offloading. These challenges include (i) resolving issues of diver-

sity and heterogeneity in both applications and platforms (ii) finding factors that

impact offloading decisions and processes especially for new use cases (iii) design

strategies that are lightweight and can run on edge devices without being limited

by processing power and power supplies. All the above form new challenges that

require improvements in the current solutions available [33].

Authors in [4, 16, 33], have proposed offloading methods based on machine learning

strategies to further improve performance, energy harvesting, resource utilization,

etc. [94] explores dependence problem between individual parts of a task that

should be offloaded by developing a code profiler and decision engine responsible

for offloading, authors in [95] look at the optimization of energy and delay in fog

computing. Lastly, authors in [49] performed a comprehensive review on offloading



37

frameworks, analyze computation offloading technique and provides open issues in

computational offloading in the MCC environments.

2.5.2 Big data analytics

A new paradigm shift from a data consuming network to data producing network

has been created recently, thanks to IoT, Machine learning, AI and social media

platforms. The internet generates a massive amount of data in different dimen-

sions and having different formats causing us to enter a data-driven epoch [96].

IoT is a significant enabler of big data, for example on average 500 tweets, 300

billion emails, and close to 65 billion WhatsApp messages are sent every day us-

ing smartphones. If consideration is given to connected things, internet searches,

activity logs, surveillance and guiding tools over the internet, the amount of data

whose magnitude is very high is produced. In addition, the biggest portion of data

produced every day is unstructured. The remaining small portion is structured,

analyzed for decision making. Stack in [97] mentions that only 1% of structured

data produced over the internet is analyzed and used. IoT infrastructure has made

it possible to collect data from toys, fridges, cookers, security cameras, etc., mak-

ing reliance on the cloud, data centers and in-house data processing and storage

alone almost impossible.

The IoT view of connected devices to improve quality of life by consuming the re-

sult generated from intelligent analytics on the data produced by devices require

that intelligence be spread along with the network. Real-time analytics can be re-

alized in the device, transactional analytics at the Fog and business intelligence at

the cloud. Since most IoT devices are resource-constrained, it is quite challenging

to realize real-time analytics for a long time. The Fog creates an intermediary form

of analytics known as transaction analytics. This service can speed up processing

and data delivery requiring less network overhead as compared to the cloud [98].

Similarly, data filtering can occur at the edge to reduce data transaction burden

at the core.

Fogging introduces gateway servers, cloudlets, fog nodes and micro data centers

that act as negotiation points for data points along the IoT-Fog-cloud continuum.

Spreading data along multiple points on the network may create multiple chal-

lenges in creating analytics model in one location and executed in another location

or multiple locations. These challenges will see a rise in new Fog products such as
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Function as a service (FaaS), where Software developers can leverage serverless to

deploy an individual “function”, action, or piece of business logic pushed to the

edge [99]. FaaS may enable fast transaction on a high volume of data at the edge,

provide for Dynamic or burstable workloads in such a way that users can pay only

for services rendered at a specific instance of the function and enable codes to

be scheduled at a particular time. Further, Backend as a service (MBaaS) [100],

may be made available to facilitate IoT user authentication, data persistence, file

storage, messaging and custom business logic that is good enough to perform ana-

lytics at the edge without worrying about server infrastructure. Generally, as edge

computing matures the influence of IoT on Big Data will impact on the existing

framework of analytics. EveryThing-as-a-Service (ETaaS) may be pushed to the

edge and IoT devices at the leaf end.

2.5.3 Distributed content delivery and caching:

Millions of video content is transmitted over the internet per second in form of

Internet videos, IP videos on demand, video-stream gaming, online education video

content generated for education and entertainment, and video conferences etc.

These contents generated contain new file formats that vary in size, encoding

etc. The assorted nature of these file present needs to handle storage, caching,

and delivery of content generated using technologies that will enable distributed

designs and processing closer to the source of data.

The biggest part of content over the internet is video. Internet video delivered

over mobile video and television has taken a precedence [101]. This is mainly due

to Over-The-Top (OTT) applications. OTT enables users to deliver audio, video

and other media over the internet at reduced cost, with less skills, independent of

technology affiliations and permission from telecommunication operators. Cisco

systems in [7] predicted that by 2021, the total Internet traffic had approximated

35GB/person per month and as of 2018, In 2020, approximately 2.5 quintillion

bytes of data is generated every day, which is was estimated to be around 44

zettabytes. By 2025, the number will reach 463 exabytes globally.

Content Delivery Networks enable contents of any format to be stored in central

database, transcoded from the source format before final delivery. They are used to

distribute content through several streaming servers located on different locations

in diverse networks. Though enough efforts have been dedicated to improve the
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distribution of video content, users still experience service interruption caused

by network delays, buffering and jitters caused by absence of content in close

proximity to users.

A number of research efforts have confirmed that using the Fog to Extend the Con-

tent Delivery Network (CDN) services closer to the users is one way of improving

the user QoE, relieve the back haul and core network from heavy use. Particularly,

work in [102], proposed considerable flavors of architectures for accommodating

distributed parallel edges capable of performing video caching and streaming to

increase QoE for content delivery. Similarly, caching content may result in reduc-

ing the capacity requirements by up to 35% [103]. For example, Media Cloud3,

proposed an elastic virtual content delivery network at the edge pre-caching at

the edge popular content according to statistics and user/service forecasting intel-

ligence. Providers can take full advantage of this to provide services build upon

OTT applications. A context-aware network with edge cloud caching capabilities

based-on big data analytics is considered in work in [104], content placement and

delivery approach based on the prediction of content popularity and the charac-

teristics of the wireless environment has been looked at in[105].

2.5.4 Improved web performance.

Web performance is mainly centered on three concepts; (a) content optimization,

(b) augmented browsing, and (c)web acceleration [106]. Web performance is a

trademark for web sites because it is about retaining users in a sea of content,

improving conversions and maintaining quality of experience. Every individual

who builds a website (personal blog or business sites) hopes that people visit it.

Every venture that is posted online requires to be visited. Slow sites are likely

to put off user resulting in a loss of viewership and hence the business. Heavy

websites with unnecessarily and not customized content attract costs that users

are not ready to bare. Using the Edge content localization and customization

it is possible to selectively send content to individuals who find them beneficial.

The Fog brings web performance utilities closer to the user. Web performance is

viewed in the following three dimensions

3(https://mediacloud.org/)
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i) Content Optimization: is an important component of web performance

as it allows a web page and its content to be useful, attractive, and ac-

tionable. Web optimization includes fixes and improvements on technical

performance but for web page speed. It provides improved performance and

better ranking. With the current drive of 10x content, content optimization

become a very competitive subject. Hosting content optimizer at the edge

provides a success path for both users and organizations by ensuring page-

level audits based on user experience, analyze what customers are doing for

each query/page based on geographical location, re-optimizing the web and

other assets

ii) Augmented Browsing: A typical web fetch cycle involve a request being

sent to the server, processing the information, before filtering and download-

ing the response to the device. Hardware-based augmented browsing can be

achieved by installing GPU at the edge closer to the user to help the IoT

devices in speeding the fetch cycles [107]. Solutions such as accelerated web

browsing proposed in [108] are more useful to achieve augmented browsing.

iii) Web acceleration: It is not uncommon today for websites to contain

large files, ranging from text, photos, video, and multimedia. The web usage

can be personal and fragmented. The size of content, the processing power

of the devices in addition challenged network environments greatly affect

the loading time of web content [109]. Content define network based at the

server provide a better alternative to achieve faster content loading. Web

acceleration at the Fog may be achieved through catching particular content

[106]. Once the content has been downloaded on the Fog after an initial

request, all the subsequent request are browsed using store and forward

mechanism.

2.5.5 Smart city applications

Cities are traditional places constructed around business, industries and other

commercial activities. Because of the services and infrastructure they become

powerful places where governments stage important activities that determine the

well-being of societies. There unique characteristics make it easy for them to adapt

and adopt changes very quickly. Recently, increase in city populations, change in
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life style driven by the use of technologies such as smart phones, arrival of big data

analytics and internet of things has resulted into concept of smart cities.

The concept of smart cities is hinged on adopting IoT applications and other tech-

nologies in efforts to increase efficient use of city infrastructure, improve reliability,

responsiveness, cut down cost, and increase innovation in city environment. In the

sphere of smart cities, many applications have appeared cutting across infrastruc-

ture, services, and communication technologies. Some of examples of applications

in smart cities are smart city lighting, smart waste management, smart infrastruc-

ture monitoring, smart water management, and smart energy management among

others [110].

Key drivers of smart city applications are is due to the integration of ICT’s infras-

tructures into a city to improve quality of life of citizens. Increase in the population

that calls for efficiency and optimization of city resources, availability of big data

that gives insight to many activities that are happening in cities, etc. [33].

2.5.6 Farm applications

Like any other aspects of life, The Internet of things and connected things have

found many applications in agriculture. These applications have provided a sig-

nificant face-lift on how farmers conduct their activities on farms. Among these

include achieving a better control over produce, maintain standards of farm pro-

duction, expand the market place and monitoring of crop and life stock health in

real time. Use cases in this area include monitoring and predicting climate con-

ditions, crop management, and life stock management among other applications

[41, 111].

2.6 The Fog cloud of things tools

Research and development in the IoT-Fog-cloud is required to produce tangible

products that leverages and exploits products manufacturer, industries and service

providers to create smart environment. Ideally, IoT-Fog-cloud research process

begins with development of ideas and ends with products deployment. Deployed

products contains both virtual and physical components. The virtual component
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of IoT products is achieved through proof of concept realized through simula-

tion, whereas physical components of the product is achieved through prototyping

realized by testbed experiments [112].

In this section we provide an overview of existing research tools that support

proof of concept and prototyping phases in the IoT-Fog-cloud. This is done by

examining some of the simulators, emulators and large scale open test beds in the

IoT-fog-cloud system.

2.6.1 Simulation tools

Simulation tools are used in Proof of Concept(PoC). During the PoC, assumptions

are tested so as to confirm that the idea is feasible, viable, and applicable in real

world. PoC helps to avoid possible technical problems in the future, and allow

developers obtain valuable feedback at an early stage of the development cycle,

thus reducing unnecessary risks.

Simulation tools should be able to handle heterogeneous situations, scalability,

computational efficiency, reiteration of experiment and reliability. There three

(3) kinds of simulation tools in IoT-Fog-cloud ecosystems a) those that simulate

the whole infrastructure in response to emerging situations and provide end-to-end

support. These simulators predict the behavior of a computer network and provide

an accurate understanding of system behavior in form of statistics, b) the second

form are those that are used to visualize the data generated from the infrastructure

and perform analytics, and c) and those that emulate the network. Simulations

offer two important advantages to researchers, the first is that researchers can

proof that their idea is really worth making the effort to implement, second is that

they can save money by avoiding to spend a budget on what is not viable. To

achieve successful simulation, researchers should consider the tools ease to use and

approachabilty, support, accuracy of simulation results, its robustness, and cost.

Below we discus examples of simulation tools used in simulating IoT-fog-cloud

ecosystems and present consideration for selecting simulation tools in table 2.3.

iFogSim

iFogSim4 is an open source simulation tool for fog, edge, and IoT modeling and

simulation. It integrates resource management techniques customizable based on

4https://github.com/Cloudslab/iFogSim.



43

research areas. Its connotation with cloudsim enables it to simulate cloud scenar-

ios. It is easy to install and use. iFogSim provides classes written in Java that

can simulate devices(Fogs, Sensors, actuators , etc), applications, tuples, resource

management, and monitor the edge [113].

MobIoTSim

MobIoTSim5 is an Android application for simulating an Internet of Things en-

vironment. Using MobIoTSim researchers can create and configure devices that

are simulated. This is done by setting the cloud and other devices along IoT-Fog-

cloud hierarchy. This simulation tool is easy to use, and has ability to simulate

hundreds of customizable devices, the cloud gateway and achieve services used to

gather real-world sensor data. It enables low level configurations, collect statis-

tics based on elapsed time during the execution of some functions. MobIoTSim

supports protocols such as MQTT for sending and receiving data [114].

ns−3 Network Simulator

ns-3 6 is a popular discrete-event network simulation tool publically available for

network research and development in the computer network domain. It provides

simulation core that are well documented and easy to use. ns−3 avails the entire

simulation work flow starting with configuration to trace collection and analysis.

ns−3 supports both IP and non-IP network simulation which are sufficiently re-

alistic involving models for wired and wireless networks systems at layer 1 and

2, moreover ns−3 can be used as real−time scheduler for interacting with real

systems. It may serve as an interconnecting framework that link between virtual

machines. Availability of vast amount of tools allow developers to create solutions

in C/C++, java and other programming platforms that simulate fully functional

IoT-fog-cloud environment. Although there exists no explicit ns−3 IoT-Fog-cloud

community as of yet, support can be solicited from all over other ns−3 communi-

ties in collaborative manner [115].

In general, there are myriads of simulation tools available that can be used to

simulate IoT-Fog-cloud systems. The choice of what tool to use in any research

depends on simplicity, reliability and reputability of simulation environment. The

researchers level of confidence, expertise, comfort and ingenuity in the use of sim-

ulation tool play an important role in the success of PoC.

5https://github.com/sed-szeged/MobIoTSim.
6https://www.nsnam.org/
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Table 2.3: Factors considered when selecting simulation tool

Considerations iFogsim MobIoT ns-3

Installation and
approachabilty

Open source
and easy to
install

Android
based

Open sources
discrete event

Online support
and tutorial

Comprehensive Available Very compre-
hensive

Support for de-
sign analysis

All except
Fog to fog

support many
customisable

Handle multi-
tudes of de-
sign analysis

Accuracy of re-
sults

accurate
results

Accurate Accurate re-
sults

Cost Free Free Free

Support for well
documented
models

supported Well sur-
ported

2.6.2 Emulators

The primary goal of network emulation is to create an environment whereby users

can connect the devices, applications, products and/or services being tested in

order to validate their performance, stability, or functionality against real-world

network scenario.

There are two categories of network emulators that are used in exploring Fog-

cloud ecosystems (a) hardware based emulators, and (b) software based emulators
7. Each category of emulators differ from the other based on performance and

precision [116]. In table 2.4 we shows factors considered when making a choice of

an emulator to use in research endeavours .

Hardware emulators are built from scratch to include field-programmable gate

array (FPGA) responsible for processing traffic. FPGAs isolate the CPU from

handling network packets. Including FPGAs in the hardware emulator guarantees

performance. Network processes in this situation is not affected by decrease in size

of packets and/or the increase in the number of peripherals attached to the hard-

ware. They allow researchers to perform experiments with required precision and

7in other literature referred to as appliance based emulators
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can allow reiterating experiments under the same condition to reach a conclusive

stand [117].

On the other hand, software based emulators are built based on personal computers

with emulation software installed on them. unlike the hardware based simulators,

in software based emulation environment the CPU is shared across all other ports

attached including those that are not meant for networking processes. Since the

CPU is responsible for managing all activities such as managing HW, interrupts

etc. the priorities of the emulator software may be differed causing deficiencies in

the results. In the same vein, it is difficult to separate defects caused by CPU from

those caused by Network activities. Moreover, repeating the experiment under

the same condition may be difficult to achieve. Without repeating the experiment

under a similar environment makes it difficult to troubleshoot and validate test

results [116].

Hardware based emulators may be expensive and may require more explicit knowl-

edge, but provide better experimental conditions with advanced features that ad-

dress issues of scalability, packet corruption, modification, loss of packets etc. in

addition they support multiple network protocols, provide real−time statistics and

detailed analysis and allow the researcher to set the same experiment under the

same condition. Hardware based emulators allow precise measurement of network

performance matrices such as throughput, delay, energy consumption, resource

utilization and response time.

Table 2.4: Factors considered when selecting emulation tool

Considerations Hardware emula-
tors

Software emulators

Processing network
traffic

Uses FGPA CPU

Accuracy of results Guaranted Estimated

Repeating experi-
ments

Occurs in same
conditions

may not in same con-
ditions

Cost Expensive Cheap

Robustness Restricted by
Hardware

Robust
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2.6.3 Test beds

Simulations provide an excellent environment to start thinking of a product, how-

ever the ideas thought over in proof of concept must be verified. To this purpose

test bed experiment must be implemented. Testbeds provide opportunities and

platform for innovation of new products in the IoT research. Through these fa-

cilities ideas can be nurtured and tested. The results of the testbeds are used as

feedback to guide and inform invention of better products in the market.

Some examples of open testbeds are (a) Asset efficiency testbed 8; this testbed

is supported by Bosch, IBM, Intel, etc. and led by Information technology con-

sulting company (Infosys). The testbed is formed to support HighTech industrial

in manufacturing. It is aimed at collecting assets information efficiently and run

analytics for rational decision making. (b) Connected care testbed 9 is another

testbed supported by PTC computer software and services company and led by

Infosys and other partners. It concentrates on open IoT ecosystem for clinical and

remote medical devices. It is aimed at IoT products that bring patients data into a

single data management platform. These two examples are drawn from industrial

consortium, which list a number of testbeds in the IIoT.

Universities in different parts of the world have created testbeds that are open

for use by researchers to further their ideas, examples of such testbeds include

National Chiao university Testbed and Shangai Tech Testbed described in [118].

2.6.4 Resource Hubs

Resource hubs provide libraries of knowledge, tools and good practice, which de-

velopers use to plan, develop, and manage their own IoT projects. They consist of

collaborative resources that have been tested and developed by both academia and

industry. These resources may be accessed through white papers, insight reports,

and models. Some resource hubs include methods for creating IoT-fog projects,

and modelling tools. Moreover, some resource hubs include directories of lead-

ing experts in the IoT domain such as engineers, project managers, programmers,

and product managers from whom help can be solicited during development of

8https://www.iiconsortium.org/asset-efficiency.htm
9https://www.iiconsortium.org/connected-care.htm
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ideas in IoT-fog research. Lastly, resource hubs may contain codes, tutorials, fre-

quently asked questions, and videos used as guidance for beginners. An example

of resource hub is the ICC resource hub 10

2.7 Open issues in fog cloud of thing ecosystems

As the use of fog cloud of things ecosystems is gaining substantial interest a num-

ber of frameworks have been developed and tested in the research community.

There is a clear roadmap to improve performance, robustness and security and

trust in many ways. In the same way efforts are being positioned to solve meth-

ods of Fog2Fog communication, boosting Fog based intelligence using Artificial

intelligence and machine learning, improving resource management among the fog

nodes, bringing real−time analytics of data including analytics of imbalanced data

at the edge, enhancing fog based learning, and handling trust and security using

mechanisms such as blockchain at all levels of the fog cloud ecosystem.

Most studies conducted so far have placed considerable efforts to solve IoT2Fog

and fog2cloud communication, examples of such studies are found in [119–121]. In

considering multi-tier fog paradigms it is necessary to discover efficient mechanisms

for Fog2Fog communication. Authors in [14] and [84] have presented analytical

insights into fog to fog scenarios. From their work, round trip delays are minimized.

As a result of the frameworks and formalising fog2fog communication, tuning the

frameworks such that more parameters such as Fog2Fog selection, task prediction

from historical data, Fog2fog resource utilization, Fog2fog scalability, robustness

and mobility of the fog nodes remains open issues. Moreover, validation of the

models through simulations and real life implementation of these F2F models is

requirement.

Achieving intelligence in in the IoT infrastructure that mimics cognitive mech-

anisms is another open area of research. In this respect issues that deal with

obtaining data that is effective and valuable for heuristic algorithms such as Parti-

cle swarm optimization, colony optimization, reinforcement learning, and genetic

algorithms remain open issues. Other upcoming open issues include support for so-

cial internet of things in the fog-cloud infrastructure, more specifically performing

10https://www.iiconsortium.org/resource-hub.htm
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real time analytics on crowdsourced data to realize sentiments, eliminate incon-

sistencies and dealing with imbalanced data at the fog for critical applications are

still open.

Other issues that have been explored but require further understanding include

performance of fog ecosystem, robustness, storage, energy conservation, handling

distributed fog through a combination of device to device (D2D) and cellular net-

work, mobility and node selection, trust and security issues using new technologies

at all level of fog paradigm are concerns to be handled at length by the researchers.

As researchers are looking forward to kickoff 6G to revolutionize the latest wireless

innovation, adoption of the fog cloud ecosystem using a wide range of Artificial

intelligence, machine learning, blockchain, heuristic and genetic algorithm is a

necessary trend in the IoT research.

2.8 Summary

In this article, we provide a survey on IoT Fog cloud ecosystems. We review con-

cepts, standards and tools that are used in exploring IoT and its infrastructure

setting. We continue to discuss the emerging trends, issues, challenges and ideal

solutions in the fog cloud of things ecosystems, and include a taxonomy based on

emerging issues. Besides, we present and described some applications that find

fogging attractive. From this survey, we conclude that fogging provides a richer

platform to provide services among resource-constrained and latency-sensitive con-

nected systems. Although the question of coexistence in standards still exists; it is

apparent that standards harmonize the development of IoT products and acceler-

ates development in the fog computing environment. The use of machine learning

and artificial intelligence in the fog will see the fog ecosystems perform better.

Thus, this survey positions our proposals in chapter 3. by presenting the gaps,

choice of tools to develop the proposal, and applications to which the proposal are

deemed fit. This chapter contributes a new taxonomy based on the fog standards

that is presented herein.



Chapter 3

Machine Learning Based Secure

Offloading in Fog-Cloud of Things

3.1 Introduction

The emergency of ubiquitous and pervasive things have resulted in production of

very extensive amount of data; as a result, data processing requirements in IoT

ecosystems is growing much more faster than processing power, memory, cache,

and battery life of the devices [122]. Cisco Global Cloud Index estimates that

nearly 85.0 ZB was generated and consumed by all people, machines, and things

by 2018 up from 22.0 ZB generated in 2016; of the 85.0ZB expected only 10%

was useful and the rest will be ephemeral in nature. Again, useful data will be

four times greater than the existing capacity of data centers of the time [7]. The

trends of data cited show 77.5 exabytes of data will be produced per month by

IoT devices in 2025, all the above present opportunities for the use of Edge and

Fog computing.

Fog computing environment enables computational offloading, data aggregation

and storage. This allows Internet of Things (IoT) devices to provide users with

satisfactory quality of service and quality of experience [16, 123, 124]. Numerous

data intensive applications have been developed to employ the use of smart devices.

Some examples of applications include self-parking cars, wearable devices, trackers

and domestic appliances [125]. Most of these devices are small in size, they are

battery powered, and house limited processing, storage, and memory supplies.

49
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Their size act as a bottleneck to implement and run powerful applications on

them. We also note that the amount of data generated by IoT devices is increasing

gradually, thereby increasing the network burden in terms of network congestion.

Hence, it is necessary to utilize on-demand resourceful cloud paradigm that enables

to process the data generated from IoT devices. This paradigm is often called

Cloud of Things (CoT) [126, 127] .

Cloud computing paradigm provides extensive processing power and infinite stor-

age that permits fast processing and bulk storage. It has been found useful in

many applications that are not delay sensitive and do not require immediate re-

sponsiveness. However, the use of cloud computing paradigm exclusively may not

be attractive in applications that require immediate processing, high responsive-

ness, and real-time analysis of IoT clients requests [128]. To this purpose, fog

computing has been designed to mitigate issues of latency, fast responsiveness,

provide real-time transactions, and bridge the network unreliability concerns.

Cloud computing extends the concept of fog computing for better utilization and

minimum energy consumption [7, 124]. Combining Cloud of Things to Fog Com-

puting minimizes the service delay for IoT applications. In the [129], a novel

service called Offload as a Service (OaaS) has been presented. OaaS provide the

capability to extend limitations of mobile resources such as GPU, CPU, storage

etc. However, the open issues in fog computing environment such as dynamic of-

floading, scalability, security , the use of minimum number of fog nodes to achieve

efficiency and effectiveness still remain open issues [130, 131].

To overwhelm all the aforesaid issues in the Cloud Integrated Fog-IoT paradigm,

machine learning based approaches have been proposed in [16, 132–134]. In our

study, we choose a pipeline of machine learning strategies to achieve better per-

formance. Machine learning has demonstrated latent power in solving complex

problems in science, engineering, industrial and professional practices [22–26]. For

example, in banking and finance machine learning can be used by executive man-

agers to make informed decision. Machine learning can help banks spot potential

business partners and their expenditure. Using Machine learning algorithm smart

machines can be trained to monitor trends in the market and react in real time

[27].

In medicine, machine learning has been used in diagnosis of complicated diseases.

Moreover, it has been used in analysis of clinical parameters and their combination
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of the prognosis [28]. It can help in integrating computer based systems in health

care industry. Additionally, machine learning has demonstrated ability to assist

in solving complex problems in aerospace engineering. In [29], machine learning

has been used to recognize specific defects of aerospace structures, decrease ap-

proximation errors and compute the closest possible outcome. The limits due to

the great amount of data and the complexity of data processing make machine

learning as defect classifier in aerospace structures very useful [29, 30]. Machine

learning has also been used to optimize parameters so as to find best options

that maximize use of resources in logistic and supply management. Here, machine

learning allows improved planning for unexpected events and help predict orders

along the supply chain with at most accuracy [31].

In this chapter, we propose a machine learning based secure offloading framework

herein referred to as Secure Offloading in Fog-Cloud in Internet of Things frame-

work. Our proposal is a software solution that approaches offloading data to the

Fog or the cloud using machine learning approaches. Our dynamic and secure

offloading reduces offloading latency and minimizes energy consumption.

Thus the rest of this chapter is organized as follows; preliminary studies related

to computation offloading and fog computing is presented in section 3.2. Other

related studies are reviewed in section 3.3. We present our proposed system in

section 3.4., in 3.5 a comparative study of our ML based framework and other

related work is presented and a summary of the chapter is presented in section 3.6

3.2 Preliminaries

3.2.1 Computational Offloading Mechanism

Secure Offloading is technically a challenging problem in Edge/cloud enabled IoT

environment, especially when dealing with wireless connected systems in which

resources required for communication are highly dynamic.

In an IoT related environment, a device (smart phones, surveillance cameras,

robot, smart-meter etc.) use applications installed on then to execute tasks. When

the resources used by the device get below threshold the task is dropped. For

instance, in a video chart, a call is placed through video application. During the
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call process the device continues to consume battery, memory, and storage space.

When any of the resources (battery level, space or processing power) to support

the call gets low, it is dropped. In this way the device is saved from dying out.

Instead of letting the device drop the process, a portion of data in the storage

space may be relocated to a remote device to create more space on the device, or a

part of the process which over utilizes the processor causing battery drainage can

be migrated to remote systems. This helps the device to save battery as opposed

to dropping the task. The above described process is known as computational

offloading.

Computational offloading mechanism can be viewed as either fine grained or coarse

grained procedure [135]. In coarse grain1 computational offloading, the task is

migrated to the cloud in whole and there is no need to estimate resources overhead.

The decision needed in this coarse grain is either to execute the whole workload

on the mobile device or it is sent to be executed at the cloud, while in fine grain

computational offloading2 a portion of the task is executed on the mobile device

and the other portion is executed on the server (edge or cloud device).

In the fine grained offloading, little code is dynamically transmitted and only the

computational hungry part of the code is offloaded to the remote device. Isolating

processes in devices according to their processing needs can reduce unnecessary

transmission overhead, improve performance and energy utilization [93].

The decision taken by an IoT device to offload part of its workload to remote

device depends on the time taken to process the workload. Assume, there exists

some workload (ω) at the user equipment(UE) side say a mobile device(m), whose

processing speed is sm. This workload can be partitioned into two; one part that

will always be executed at the the user equipment side e.g. user interface and

code that manages peripheral (camera, temperature sensors, proximity sensor,

accelerometer, etc.), and the other part that may be offloaded. If the offloadable

workload is locally executed on the user equipment then equation 3.1 represents

the time (τm) required to execute the workload;

τm =
ω

sm
(3.1)

1Coarse grain offloading strategy is synonymous to static computational offloading
2Fine grain computational offloading is synonymous to dynamic offloading
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otherwise, if the workload (ω) is executed on the server 3 whose processing speed

is sse then the time required to complete the workload (τse) is;

τse =
ω

sse
(3.2)

to execute the workload on the server equipment, it is necessary to transmit the

workload over a network channel. To transmit the workload to remote it takes

transmission time (τc). Transmission time can be computed as a ratio of data

shared between the two equipment(UE and the Server) (ds) and the bandwidth

(Bw) between them .

τc =
ds
Bw

(3.3)

Moreover, the energy required in completing the workload at the UE(Enm),server

(Ense), and transmitting shared data to and from UE and server (Enc) can be

computed in terms of τm, τs, τc as follows;

Let pm be the processing power of UE and pse be the processing power of the

server equipment and pc be the transmission power of the transmitting equipment

for both the uplink and downlink4, then

Enm = pm ×
ω

sm
(3.4)

Ense = pse ×
ω

sse
(3.5)

Enc = pc ×
ds
Bw

(3.6)

The total energy consumed during offloading process is the sum of energy required

to process the portion of workload at user equipment, energy required to maintain

the offloading process, and energy required to transmit the remainder of workload

to the server.

Ignoring other conditions such as complexity of the workload, time taken during

the initial setup, the size of program, offloading to be beneficial then equation 3.7

must hold.
ω

sm
≥ ω

sse
+

ds
Bw

(3.7)

3used synonymous to imply Fog node or cloud server
4uplink and downlink power may differ from time to time depending on channel conditions
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If the server is infinitely fast then equation 3.7 reduces to

ω

sm
≥ ds
Bw

. (3.8)

It is important to note that no matter how fast the server processor is, as long

as the transmission time is greater than the time required to process the work-

load at the user equipment offloading will not improve performance. Considering

workload that requires heavy computation, and light data shared is in the center

of fine-grained computation offloading. Identifying parts of the task that require

heavy computation with light data sharing is seen to improve performance [93].

Secondly, performance improvement is dependant on the offloading tasks that

require heavy computation with light data sharing to minimize transmission en-

ergy. Moreover, dynamic offloading adapt to different run-time conditions e.g.

fluctuating network bandwidths and mobility of devices in the network. Lastly,

dynamic offloading make the use of prediction mechanisms such as machine learn-

ing, stochastic Bayesian methods, heuristic algorithms and other optimization

algorithms attractive for decision making [93, 135].

During Dynamic offloading, the workload may be split into smaller portions so

that part of it is processed locally and the other part is offloaded to many remote

devices [134]. A number of approaches used to split tasks have been explained in

[93]. The most commonly used method is the graph method5 . The two factors

latency and energy consumption play a considerable role in determining the quality

of offloading via fog nodes.

3.2.2 Fog Computing

The concept of fog computing stretches from the outer edge where data is created

to eventually where it is processed and/or stored. This computing and storage

location could be within the organizational data center, the edge device(Router,

switch etc.) or the cloud. Fog computing forms another layer of a distributed

network environment in between the cloud computing and the Internet of Things

(IoT) that provides a continuum to bridge the missing link for data that needs to

be handled locally closer to the edge or pushed to the cloud [41]. Fog computing

5Graph method is method used to represent tasks as a directed acyclic graph (DAG). Vertices
represent the computational components and the edges represent the communication between
them. Splitting the task is done by partitioning the graph
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paradigm contains Fog Nodes distributed within limited geographical area where

certain IoT mobile devices computation tasks are executed.

Among other computational objectives, fog computing aims at reducing the data

amount that requires to be forwarded to the cloud for processing and storage.

This activity improves system efficiency when massive data processing, storage

and analysis are required in real-time. Each IoT device performs its computational

tasks or offloads them to the Fog [44, 136]. At the architectural point of view, the

Fog computing provides a horizontal system architecture that distributes resources

and services of computing, storage, control, and networking anywhere along the

continuum from the cloud to Internet of Things.

With the applications or data that may need to be processed quickly for example

in use case such as manufacturing, connected machines may require to respond

to an event at most immediately. Fog computing provide appropriate choice as

means of responding to such event. Secondly, the Fog is required in situations that

may arise due to no bandwidth to send the data for processing to the cloud, or

where amount of bandwidth required to send the data to either the organizational

data center or the cloud is very expensive [132, 137, 138]. An additional benefit is

that, the fog can be used to secure the data from segmented network.

3.3 Review of Related Work

Several works have been done related to computation offloading as well as the

combination of cloud with IoT, but a few contributed to security in computation

offloading. Our work adds to the body of knowledge related to secure computa-

tional offloading in trusted system. In this section, we present related work to

computational offloading and security in fog environment as follows;

3.3.1 Review on computational Offloading in Internet of

Things

An offloading architecture called AutoScaler was proposed in [139]. In this pa-

per, provisioning offloading as a service was explored. They proposed large-scale
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offloading in IoT environment. An offloading system consisting of front-end, back-

end and load simulator which generates dynamic offloading workload of multiple

devices was designed. The AutoScaler front-end component introduces extra time

overhead of ≈150 milliseconds in the overall response time of a client request.

Adjusting a trade off between the utilization price and computational capabilities

of the surrogate servers at the backend, it was observed that the total time of

code invocation is reduced. Furthermore, the proposed architecture was easily

deployable on large scale. Introducing surrogates entities in our Fog environment

is likely to improve performance.

Xiao Ma et al. [140] used a game theoretical approach to analyze the decision

problem of IoT devices. Their work based on a definition of potential game.

Nash equilibrium was derived and algorithm known as computational offload de-

cision(COD) was proposed. This algorithm, portray significant reduction in the

system cost. Cost was viewed in terms of processing delay and energy consump-

tion. COD is energy-aware computation offloading in cloudlet-based mobile edge

computing. The computation offloading decision (COD) algorithm is based on

decentralized computation offloading strategy for IoT devices. The energy con-

sumption of IoT devices in computation offloading to cloud through base station

was found to be significant. Another mobile cloud IoT (MCIoT) paradigm was

proposed in [141] which uses a new nested game model for computation offload-

ing. Firstly, each mobile device would determine the portion of remote offloading

computation using Rubinstein game theory approach. Secondly, a computation

resource in the cloud was assigned dynamically for the requested computation of-

floading. The nested game theory approach provides an optimal solution for the

computation offloading in the MCIoT paradigm. However, game theory principle

consumes more time for computation offloading.

Minghui et al. [16] proposed learning based computational offloading for de-

vices with energy harvesting. They constructed a hotbooting Q-learning dynamic

process that chooses a portion of data to offload to mobile edge computing de-

vices(MEC) according to the system state (bandwidth, amount of energy har-

vested, and battery level) to determine an offload policy. Moreover, the system

was formulated as a Markov Decision Process (MDP) in which the Q-learning

technique was used to attain optimal policy. However, the hotbooting mecha-

nism take significant length of time to converge. To improve further the system

performance they proposed a Fast DQN computational offloading. The proposed
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system use the concept of machine learning in computational offloading though it

implementation doesn’t consider important issues such as mobility, cost of use of

MEC and security in their utility function. These factors left out of the scope of

the study could have an impact on the utility function and therefore impact on

the policy. In addition, dynamic changes in the network parameters such as band-

width and mobility was not considered. In [134], a deep reinforcement learning

based on computational offloading has been proposed. Similar to [16], they have

designed an offloading algorithm for optimal decision making subject to dynamics

of the system in terms of user and cloudlet behavior. They concentrated on the

composite behavior of the cloud queue and the distance between the cloudlet and

the user equipment. Unlike in [16] where offload is achieved on one MEC at an

instance, [134] solve the problem of offloading to multiple cloudlets.

Jie Zhang at el. [142] proposed a hybrid computation offloading algorithm that

combines cloudlet with public clouds, to provide a more energy-efficient offloading

strategy for home automation applications. Particle Swarm Optimization (PSO)

based heuristic algorithm is implemented to schedule mobile services. The task

scheduling mechanism uses queuing model based on First Come First Served

(FCFS). In the same study, the waiting time in the cloudlet is modeled as a

M/M/m/∞ queue while PSO is used to select unscheduled mobile services in the

work flow. Scheduling tasks using FCFS is likely to be slower as compared to other

scheduling mechanism, whereas using the PSO for selecting the Fog node may im-

prove system performance. PSO is suitable for this kind of problem since IoT

devices exhibits characteristics of a swarm. Dynamic Task Offloading (DyTO),

has been proposed in [143], in their work they introduced the concept of surrogate

object in a computational offloading environment. A surrogate object installed

on the mobile cloud takes care of information that tracks the mobile host thereby

separating cohesion of resources to the mobile host as it traverses or looses con-

nection. The surrogate object maintains the information to ensure proper delivery

of data especially in situation where the network is unstable and characterized

by disconnection. The proposed model is observed to save energy. Execution is

faster because interruptions in processing caused by disconnection, or variations

in network resources caused by mobility is avoided. Applying similar solutions in

secure offloading appears feasible
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3.3.2 Review on Security and Privacy in Internet of Things

Privacy, trust, and security are important factors to consider in IoT ecosystem.

Huge amount of data outsourced from a global network of things connected to

data centers, Fogs and cloud make IoT networks more vulnerable to cyber attacks

[144]. Authors in [145] have proposed Smart Trust management method to detect

On-Off attacks caused by nodes that may perform bad behaviour randomly in

order to avoid low in trust ratings. Moreover, suspicious resources may behave

differently with different neighbours. They proposed a method to collaborate with

IoT devices to identify On-Off attacks and broken nodes. Interaction among IoT

devices are evaluated using meta data attributes. A machine learning classifier

is used to classify the data. From the trust score generated by the classifier, a

decision is taken to either trust or mistrust the resource. Their proposed security

method detect On-Off attack with 97% precision and 96% in real record data set.

The method is 95% faster. This recent work is one of those that uses machine

learning generated score in trust management of resources.

In [146], privacy preservation with IoT oriented offloading. This is a method for

solving data transmission security problem. It was implemented in the WMANs

(Wireless Metropolitan Area Networks). In their proposal, data is offloaded to

the cloudlets through access points. To deal with shortest routing problem, the

Dijkstra algorithm was used to establish shortest path between access points. Also

NSDE (Non-dominated Sorting Differential Evolution Algorithm) was considered

to resolve multi-objective optimization problem. Yinghui et al. [142] have pre-

sented privacy-preserving data aggregation from hybrid IoT devices in fog com-

puting. The proposed scheme ensures data integrity by guaranteeing that injec-

tion data is received from legitimate IoT devices. The proposed scheme reduces

communication overhead, but increases computation overhead when searching for

appropriate fog device. Thus, it increases processing delay.

In [147], a practical evaluation of a high security energy-efficient gateway was con-

sidered in IoT fog computing applications. The primary contribution of this paper

is increased security levels for sensed data in resource-constrained environment us-

ing Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) . Fur-

thermore, the proposal improves throughput and energy efficiency for IoT devices.

In practical evaluation, ECC outperforms than RSA, but ECC needed further im-

provement to organize massive sensed data for real-time scenarios. Belem et al.
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[148] have proposed a device-based security called PROTeCt (Privacy aRchitec-

ture for IntegratiOn of Internet of Things and Cloud computing), which improves

user privacy. In the proposed architecture, user privacy is given by cryptography

–based scheme in which only the interested users can access their data, which is

stored on cloud in encrypted form to protect IoT network from insecure access. In

this works, gateway was authenticated. Users required to register and accepted to

join the network time and again which increases communication cost.

To this end, our proposed work is one of the kind that is intended to tackle deficits

in previous computation offloading works. To the best of our knowledge, we have

presented a secure and dynamic offloading scheme which minimizes energy con-

sumption and latency to obtain more efficient offloading in Fog-IoT environment.

3.4 Proposed System

3.4.1 Problem Statement

We consider a network of Γ IoT nodes such that Γ = {1, 2, 3 . . . n}. Each of IoT

devices in this network may contain computation-intensive, or delay-sensitive com-

putation task. These IoT devices are deployed in a network which are connected

through a smart gateway to the Fog nodes and the cloud respectively creating

a hierarchical network. The fog nodes form a network continuum to the cloud.

Given a task, the IoT evaluates the task to see if it can execute the task locally

using resident resources or not. If the IoT finds that it cannot execute the task, it

offloads the task to the Fog. The Fog either performs the tasks or sends it to the

cloud.

Our intention is to perform dynamic offloading while maintaining user’s sensitive

tasks in the Fog during task offloading at the same time achieve high performance

in terms of throughput, delay, energy consumption, resource utilization rate and

response time.

3.4.2 System Overview

The proposed system architecture shown in Figure 3.1. consists of IoT mobile

devices at the IoT layer, network devices at network layer, fog devices at the Fog
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layer, and cloud infrastructure at the cloud layer.

Figure 3.1: Proposed system

IoT devices

The IoT devices acquire, monitor and measure data. In addition, they send, receive

data to and from the Fog. The infrastructure environments created by the IoT

devices allow them to monitor and filter data from environment. IoT devices are

characterized by low computational power, constrained by battery life and their

small form factor. They have considerably low memory and powered by small

battery cells [5, 13, 149].

Network layer

The network layer consists of network devices such as switches, routers and gate-

ways. They may adopt the functionality of a fog on a small scale [5, 13]. To
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mention in this framework, a smart gateway is adopted to secure the network

through evaluation of data coming from IoT device. Using Neuro-Fuzzy model,

we are able to predict if an IoT device is a candidate for malicious attack through

reading obtained from the devices. Based on the readings, the node can be trusted.

Fog layer

The fog layer consists of Fog nodes. Fog nodes are high-performance distributed

systems. They report results of processing to both Cloud and IoT layer along

the continuum. Unlike the IoT devices, fog nodes are more powerful and have

considerable amount of storage. They can provide localized services when need

arise. They can be equipped with ability to support data analytics at transactions

level [5, 13, 149]. In our system ,we equip the Fog nodes with surrogate entity,

task classifier, and task scheduler. Fog devices may be installed on moving objects

such as in cars, buses or trains(mobile).

Surrogate Entity

Surrogate entities are software defined objects installed on the Fog Node. Their

function is to collect and store information about the IoT devices which are in

service. IoT device may roam from one network to another, or may face network

unreliability situation which may lead to breakdown in services. As a result, the

device is required to seek the service again when network becomes available. To

avoid such situations, the surrogate entity [143], serves as information holder. If

the IoT devices goes out of service, the service at the fog remains active. After the

service is completed the fog node uploads the results to the IoT device. The enti-

ties help decouple IoT devices during service time hence improving performance,

allowing for mobility and uncertainties in the network connectivity. Information

in the Surrogate entity remains unchanged during service time, though some IoT

device information may change from time to time due to mobility. They generate

compact data sets which are less expensive to maintain.
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Cloud layer

The cloud consists of very powerful, state of art centralized infrastructure, which

has infinite capacity to realize secure and heavy computation. Cloud infrastructure

may be private, public or hybrid. Private cloud allow organizations to run their

cloud services based on proprietary architecture, within their own data centers.

They are created and maintained by an individual organization. Public clouds

allow organizations to run their cloud services based on third-party architecture.

With public cloud, vendor aught not to set their own infrastructure. Public clouds

are based on multi-tenant architecture and pay-as-you-go pricing model. Users

only pay for what is required for their use [149, 150].

3.4.3 Optimal fog node selection using PSO

In IoT network, connectivity is achieved through wireless means. In such an en-

vironment resources can be dynamic. They are affected by unprecedented factors

which include fluctuating bandwidth due to mobility, weather, and physical ob-

stacles along communication path. This makes the workload at the Fog Node

change frequently. Thus, an algorithm to update network information more often

is required.

As the fog node current workload changes, we run the PSO algorithm [151] to

update information used for selecting the optimal Fog node. The criterion for

selecting the fog node is used to reduce the total processing delay between IoT

mobile devices to the Fog. Optimal fog node is chosen by looking at two metrics :

i) Available Processing Capacity (APC) and ii) Remaining Node Energy (RNE).

Every node will calculate its fitness using these two metrics. When the request is

made by the user device, the fog node with high APC and RNE will be chosen.

The PSO algorithm is meta heuristic algorithm which derives its intelligence from

swarm. PSO has been used in many applications that exhibit characteristics of

swarm similar to behavior of social creatures like birds and fish [152] . We find

this algorithm suitable in this study since IoT devices behave the same way a

swarm does. The mechanism used in PSO is simple, but powerful. PSO is used in

many applications in science and engineering. Examples are found in studies that

involve prediction of events [153], network planning [154], alignment optimization

[155] etc.
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PSO uses two basic principles that is communication and learning. A particle

hereafter known as an agent who is a member of a swarm creates an intelligent

behaviour which is absolutely unreachable by other agents in the swarm. There-

after, communicates this information to all agents of the swarm. From information

tendered in by each agent, all agents learn the best course of action to take. The

agents create a single global optimal knowledge that determines the course of ac-

tion for the whole swarm. Leveraging this simple cooperation results in a level of

intelligence that can be reached by all agents of the swarm [152] .

The objective of PSO algorithm is to find the optimal solution by information

sharing and cooperation among individuals in a group. Assume that one popu-

lation comprised of n particles and D dimensional searching space. Each particle

changes its position x at time t by

x(t+ 1) = x(t) + v(t+ 1) (3.9)

v(t+ 1) = ωv(t) + C1R(0, 1) ∗ (xpbest − x(t))+

C2R(0, 1) ∗ (xgbest − x(t))
(3.10)

where v(t) is the velocity of the particle at time t, x(t) is the particle position

at time t, ω is the inertia weight, C1 and C2 are the learning coefficient and

acceleration coefficient respectively, R is the random variable range between 0 and

1, xpbest is the particle best position, and xgbest is the global best position. For

each particle xi of the taski, we compute fitness value by using APC, and RNE.

Fitness function:

f(xi) = w1 × APC(xi) + w2 ×RNE (3.11)

where w1 and w2 are the two weight factors representing the importance of APC

and RNE, respectively. w1 ∈ [0.1, 0.9] and w2 = 1− w1.

Moving forward, let us consider, szi, cxi, µi be the characteristics of taski; where

szi, cxi denote the size complexity of the task i, and mean latency respectively.

And let bs and F be the buffer the current buffer size and CPU frequency of the
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Fog node, then we can compute L(xi), the latency of task xi as follows;

L(xi) =
szi × cxi × µi + bs(xi)

F (xi)
(3.12)

After the optimal node is chosen by user, the request is sent to the fog node. User

request consists of information about the tasks to be offloaded to fog nodes shown

in Table 3.1.

Table 3.1: User request Task Information

Name Description

IDTask Task unique identifier

ApplicationType The type of the application

Task constraints Specific constraints of tasks
such as latency

Fognodeid Optimal fog node within
the user communication
range

At the IoT level, the following proposed scheme is used to choose an optimal

fog node to which offloading can be made.

Method OffloadingScheme-IoT():

for each IoT device do

if offloadable workload exists then

select an optimal Fog Node using PSO

send data through Smart Gateway

else

perform local execution on the IoT device

end

end
End IoT-Scheme

Algorithm 1: offloading scheme at IoT Node
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3.4.3.1 An outline of design strategy of PSO in IoT Ecosystems

In this study, we suppose there exist a cluster that presents the fog-cloud of things

ecosystem. Each cluster contains devices that are categorised as IoT devices, smart

gateways, fog devices and cloud devices. All IoT nodes, fogs and clouds reside in

a single cluster.

The strategy is to follow the candidate solutions in the ecosystem which presents

the best fog to which an offload will be done until it is not capable anymore. Each

candidate solution presents a computed fitness Value that determine the suitability

for selection. At any point in time, a cluster is initialized before a search for

optimal solution is initiated. For each iteration, the best solution achieved locally

so far(fitness) known as local best. Amongst the local best, the candidate solution

that presents the best fitness is considered as global solution.

Based on the above design strategy, algorithm 2 for selecting the best fog in the

cluster is presented.
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Method input :

N ← swarmSize

D ← problemDimension

maxit← maxIterations

searchSpace← [lowerB, UpperB]

Method outPut :
globalBest← TheBestSolutionFound

Method IoT-PSO():

initialize the swarm randomly

initialize the velocity vector v(t) initialize the particle position x(t)

for it=0 to maxit do

for each particle do

compute fitness value using f(xi) = w1 × APC(xi) + w2 ×RNE
if current fitness is better then

replace the existing fitness value

else

continue

end

Select the FogNode with the best fitness value of all the particles

for each particle do
compute velocity using v(t + 1) = ωv(t) + C1R(0, 1) ∗ (xpbest −
x(t)) + C2R(0, 1) ∗ (xgbest − x(t))
update the particle position using x(t+ 1) = x(t) + v(t+ 1);

end

end

end
End IoT-PSO

Algorithm 2: Selection scheme at IoT Node

3.4.4 Neuro-Fuzzy model for security evaluation

In IoT-Fog architecture, IoT devices communicate to the upper layers through the

gateways. Gateways are responsible for bridging between IoT devices, the Fog,

the cloud, and user equipment (smart phone, cyber-physical devices etc.). They

provide a communication link, real-time control over the IoT devices, and provide

offline services. Gateways can be used to secure data that is being transported to
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and from the upper layers. Security is achieved by isolating resources that exhibit

abnormal behavior. In many occasions, security solutions require considerable

amount of processing power which are expensive in terms of energy consumption.

Implementing them on IoT devices is infeasible. In our study, we secure the

network at using Neuro-Fuzzy network at the smart gateway because the smart

gateway houses considerable processing power, and storage as compared to IoT

devices. In [156], neuro-fuzzy model has been used in similar setting for purposes

of routing to achieve better energy utilization.

Nuero-Fuzzy systems are suitable when we intend to manage parameterized com-

ponents of a Fuzzy system. They are used to produce systems that deal with

parameters that can be tuned through training. Nuero-Fuzzy systems are tools

used for prediction and classification problems. They combine characteristics of

both Neural networks and fuzzy techniques. Neural network tools bring useful

traits of learning, generalization, optimization, and adaptation. Whereas, Fuzzy

models bring human like intelligence using IF . . . THEN rules, Expert knowledge,

simplicity in terms of linguistic variable with no mathematical expression to the

system [157].

Nuero-Fuzzy systems are broadly categorized into; Neural Fuzzy systems, Fuzzy

Neural systems and Hybrid Nuero-Fuzzy systems. In Neural Fuzzy systems, Neu-

ral network are used to determine functions and mapping between fuzzy sets that

are used as fuzzy rules. They change weights during training so as to minimize

mean square error between the actual output and target. In these systems, fuzzifi-

cation functions, fuzzy word membership, functions and fuzzy rule confidences are

represented as weights in neural network, whereas in Fuzzy neural network inputs

are non-fuzzy, operations are replaced by membership functions, and aggregation

operations such as max, min, t-norm and t-coform are used. Lastly, in hybrid

Nuero-Fuzzy systems, each technique is used independently to accomplish a task.

Fuzzy rules are interpreted in the of context neural networks while fuzzy sets are

interpreted as weights [158, 159].

In this work, we employ Nuero-Fuzzy model at the smart gateway to evaluate the

data coming from IoT devices. Two factors are considered for security evaluation

i.e. Sensor value(Sv), Time (Ts). From these two values predicted value(Pv) is

derived. If the predicted value is greater than 1.00, we consider the resource has

valid reading otherwise the reading is invalid; therefore the resource is isolated

from transaction. We assume that Neuro-fuzzy model consists of N devices. (d1,
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d2 ,. . . ,dN). Each input has two parameters that is Sv, and Ts and outputs values,

which are either valid and invalid.

Figure 3.2: The Proposed Neural-Fuzzy model

The sensor value(Sv) can be Small, Medium or Large. The corresponding time

value can be low, moderate, or high. In our model, we consider sensor value (Sv)

to be small if data size is less than 100bits, Moderate if the data size is between

100 to 350 bits, and large if the data size is more than 350bits. The corresponding

time is considered Low if the Time (Ts) is below 100ms, Moderate if the Time

(Ts) is between 100 and 1000 ms and high if Time Ts is greater than 1000ms.

For each episode, Sv, Ts, predicted values(Pv), and output are generated. These

output values are stored in the knowledge base which acts as bases of experience.

Using the knowledge base the Neuro Fuzzy network is trained to adapt to incoming

data from the IoT devices. Fuzzy rules are constructed and these are based on

experience/knowledge in the domain as follows;

IF Sv is Small AND Ts is High THEN Pv is Invalid

IF Sv is Small AND Ts is moderate THEN Pv is valid

IF Sv is Small AND Ts is Low THEN Pv is valid

IF Svis medium AND Ts is High THEN Pv is valid

IF Sv is medium AND Ts is moderate THEN Pv is valid

IF Sv is medium AND Ts is low THEN Pv is valid

IF Sv is Large AND Ts is High THEN Pv is valid

IF Sv is Large AND Ts is moderate THEN Pv is valid

IF Sv is Large AND Ts is low THEN Pv is invalid
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IoT devices are sensed to have invalid data due to incorrect sensor values and

incorrect delay (ms). From the obtained results such as valid and invalid predicted

values, the data form trusted devices are retained. Figure 3.2 , illustrates the

proposed Neuro-Fuzzy model, and Table 3.2 shows sample of knowledge base of

Neuro-fuzzy model.

Table 3.2: Sample of Knowledge base for Security Evaluation

DID SV TS Prediction output

107 75 4137ms 0.00027 invalid

108 251 1564ms 1.00002 valid

116 0 951ms 0.00030 invalid

115 230 230ms 1.00458 valid

114 245 1117ms 1.00001 valid

At the gateway, the following proposed scheme is used to secure data coming from

IoT device;

Method validateScheme(ioTScheme-data):

for data received do

validate data using Neuro-fuzzy model

if data is not valid then

drop the data

inform IoT device to resent

else

forward data for processing to selected Fog Node

end

end
End validateScheme

Algorithm 3: Data validating scheme at Smart Gateway

.
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3.4.5 Dynamic Task Offloading using Task Scheduling

When the fog node cannot process all received tasks within the latency constraints,

the fog offload tasks to cloud server for further processing. For this action, a dy-

namic task offloading is proposed. Dynamic offloading is based on reinforcement

learning scheme called Q-learning.

Q-learning is a model-free reinforcement learning mechanism from which the agent

learns the best course of action through experiencing the consequences of an action,

without necessarily building a map of the domain [160, 161]. Learning is achieved

through trial an error until set of action taken yields optimal policy. This mech-

anism is realized by the agent trying an action at a particular state. The agent

evaluates the consequences of the action in terms of an immediate scalar reward

received and it’s estimate of future rewards with respect to the state and action

which it has taken. By trying all the states repeatedly, the best state of action is

learnt. Q-learning is a naive way of learning, but, as such, it forms basis of compli-

cated operations in intelligent systems. It has found many applications in gaming,

computing, science, and industrial application[162]. Examples of real world ap-

plication are found in studies such as, in gaming [163], performance analysis[164],

and robotics [165].

Q-learning concept includes state space, action space and reward function. Each

state s and action-pair Q(s,a) has a Q-value. If action is selected by the agent

located in state s, the Q-value for state-action pair is updated according to the

obtained scalar reward using equation 3.14. When choosing an action, the highest

Q-value for the subsequent state s’ is considered ( ϵ-greedy strategy).

At the fog level, given taski, an action ai means ”choose Virtual Machine (VMi)

from all the existing VM” that meets requirements of taski for offloading. The task

requirements include the type of the server (private or public), The VM that may

be used to perform the task within the task constraints (amount of CPU , Memory,

latency and Priority attached to the task). Action space a consists of action a =

{a1, a2 . . . ai}. In addition, available VM in the cloud server define the state space.

The state space Sm = {VM1, V M2 . . . V Mm}, each VM is characterized by the

amount of CPU and memory(VM [CPU,MEM ]). The action pair is represented
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as follows;

s =


VM1, a1 ... V M1, ai

... ... ...

V Mm, a1 ... V Mm, ai

 ∈ (S, a) (3.13)

A task is assigned to any virtual machine that meets the latency and resource

constraints. To determine optimal action on the current observation of both the

server and task requirement, the Fog chooses appropriate cloud based on the cur-

rent state and reward received from the environment. The goal of the system is

to maximize rewards received and minimize latency.

Dynamic task offloading by task scheduling problem is viewed as Markov Decision

Process(MDP). Herein the action space is described by a binary vector for each

taski. When a current taski is received by the available VM’s, it is represented

by 1 otherwise it is represented by 0, then the reward function is computed for

state-action pair. The rewards obtained denotes the cloud servers current state

(running, waiting, busy etc.). The state action pair rule is shown in 3.14

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s
′, a′)−Q(s, a)] (3.14)

where α ∈ (0, 1) is the learning rate, r is the reward received on taking action a

while in state s, and γ ∈ [0.1, 0.9] discount factor . The VM to where offloading

is to happen is chosen ϵ−greedily with a small chance of acting randomly, even if

the update is done based on highest Q-Value.

The incoming tasks may be sensitive or non sensitive. The sensitive tasks are

offloaded to the private cloud servers, non-sensitive tasks are offloaded to the

public cloud. Since the type of tasks differ and data processing platform is not

the same, a task classifier is employed.

The purpose of the classifier is to classify the in coming tasks in to sensitive Si

and non-sensitive tasks NSi. Sensitivity of the task is determined according to

its size, complexity and latency. During offloading, the task characteristics don’t

change.

In this study, the task size is scaled between 1 and 100 Kbits, and task complexity

is scaled between 10 and 200 cycles per bit. Before offloading the computation

tasks to cloud servers, tasks priority are assigned accordingly. Following the above
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proposed scheme dynamic offloading to either the private or public cloud is ac-

complished. The scheme is outlined in algorithm 4

3.4.6 Training, Validation and Testing the models

In this study we train, validated and tested both the Neuro-Fuzzy Model(NFM)

and the reinforcement learning(RL) model.

The NFM model was trained to evaluate the suitability of data for offloading,

using a set of simulated offloading scenarios based on the guidelines in section

3.4.4. The scenarios included patterns of delivering large, medium, and small

data against small, medium, and large time intervals. During convergence, data

was generated at small intervals, resulting in a training data set of slightly above

400 records. Around 287 instances (70%) of the data was randomly selected for

training the model, while 63 instances (15%) was reserved for validation, and the

remaining 62 instances of data was used for testing. The rules were fine-tuned

through autonomous adjustment based on the training rules arise from the fuzzy

implementation.

The NFM model demonstrated an accuracy of 85.5%, while its precision was found

to be 97.3%. Additionally, recall scored 83.1% and F1 scores were measured to be

89.6%. The neuro-fuzzy model showcases a favorable equilibrium between preci-

sion and recall. Our model was effective in performing on simulated data during

the initial training phase.

Moreover, the RL model is trained, evaluated, and tested based on the knowledge

base obtained from the NFM, which includes sensitive information as computed

in the load input ratio for each instance. To ensure the reliability of the model,

500 instances of data are simulated at system initiation for validation and testing.

The data is partitioned such that 70% or 350 instances are reserved for training,

while the remaining 30% or 150 instances are equally divided for validation and

testing. It is crucial to keep the validation and testing data separate from the

training data to prevent over fitting. The underlying patterns of the model are

continuously updated during its operation(autonomous adjustment).

The RL model demonstrated an accuracy of 84%, while its precision was found to

be 92%. Additionally, recall is 97% and F1 score is 94%. The RL model showcases

a favorable equilibrium between precision and recall. Our model was effective in
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performing on simulated data during the initial generation phase because it is

performing well on the data set, the harmonic mean of precision and recall, is also

high, indicating that the model is well balanced in terms of its ability to identify

both offloading cases.

Method dynaOffloadingScheme(Taski):

for each taski do

Compute execution time

Classify tasks into Si and NSi

Assign Task priority tasks(Pi) according to task size(szi),

characteristics(cxi), and mean latency (µi)

if Pi > ththresthold then

offload Si to private server

offload NSi to public server

else

Perform Si on Fog

offload NSi to public server

end

receive results from Cloud

end
End dynaOffloadingScheme

Algorithm 4: Dynamic offloading scheme

3.5 Evaluation of Machine Learning Based com-

putational offloading with comparative Study

3.5.1 Experimental Setting with Comparative Study

The performance evaluation analysis and comparative study is presented in this

section. First, we present the experiment settings and then provide experiment

results. We evaluated the performance in terms of throughput, delay, energy con-

sumption, resource utilization, and response time. Finally, we show our proposed

offloading scheme is secure and scaleable.
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3.5.2 Experiment Environment and Use Case

Experiment Environment

We create a Fog-Cloud IoT network which, consists of 1 smart gateway, 5-10 IoT

mobile devices, 5 fog nodes and 1 hybrid cloud server. We used network simulator

(NS3.26) and Java programming in our experiment environment.

The purpose of this configuration is to link the fog-cloud paradigms to the IoT mo-

bile devices. NS-3 is an open source network simulator that supports C++ and/or

python packages. Additionally, NS-3 contains Integrated Graphical User Interface

(GUI) that is used to visualize performance of simulated network. Further , it

includes modules that can be used to simulate network performance metrics such

as throughput, energy, delay etc. It also contains modules that can be used to

simulate most state of art networks based on 5G, 802.11ah, and 802.11ax standard

that support fast and reliable data transmission.

In our experiments, all the simulation parameters have been set to follow uniform

distribution. Each device is powered by CPU whose clock frequency ranges from

1 GHz to 1.5 GHz. The clock frequencies are set randomly. We also set available

bandwidth between mobile devices to range between 100 Kb/s to 1000 Kb/s.

The computing offloading require CPU cycles and tasks to be offloaded in bits.

Computational tasks are categorized into complex and non complex. In order to

characterize the offloading task complexity, we used load-input data ratio (LDR)6.

When LDR is high, the task is classified to be computationally-intensive otherwise

the task is not. Non-computationally intensive tasks can be executed at local

device or edge. The system configuration of this experiment is shown in Table 3.3.

Use Case

The proposed dynamic offloading framework with security evaluation has been

simulated for realistic application scenario in smart city. The smart city concept

shows the need of quality of service and experience, improved connectivity and

performance to realize several urban services. With the use of Information and

Communication Technologies (ICT), Smart City application explores cloud-based

6LDR is the ratio of input computational size and computational workload. Computational
workload is measured in terms of CPU cycles required to complete a task on a device
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Table 3.3: System configuration

Name Description

Simulation tool ns-3.38

Development toolkit JDK-17

Operating System Ubuntu 20.04 LTS

Development platform Netbeans 17

Processor Pentium (R) Dual-Core CPU E5700@3.00 GHz

Installed memory 16 GB RAM

and IoT based services for users in real-world through smart phones. Today, cloud

technology is and will continue to be the backbone infrastructure for smart cities

around intelligent transportation, public safety, public health and air quality mon-

itoring programs. Cloud offers a broad set of services including storage, processing,

compute, analytics, databases, networking, etc. Users can use these cloud based

services to construct secure, agile and cost-effective solutions. Broadly speaking,

smart city application can be categorized into: Smart Infrastructure Monitoring,

Smart water monitoring and management, Smart Building and Property, Smart

city Services,Smart Energy Management, and Smart Industrial Environment [166],

[167].

3.5.3 Performance Metrics

In this work, the following performance metrics have been used for comparative

analysis

(i) Throughput (RT ): It is defined by the number of tasks offloaded per unit of

time T.

RT =
#− taskOffloaded

T
(3.15)

(ii) Delay (Td): Time duration for a task of the application is submitted and its

results are obtained. It is also computed as follows:

Td = Tpro + Tq + Tt + Tp (3.16)
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Table 3.4: Simulation Measurements

Simulation Parameters Values

Number of nodes 10 IoT devices

Number of fog nodes 5

Number of cloud server 1 (Hybrid cloud)

Number of simulated tasks ”10, 20,30,40,50”

Number of Smart Gateway 1

Simulation area 1000m x1000m

Task arrival rate ”[0-5]”

Simulation time 100seconds

Initial energy of a node 5J

Traffic type CBR

Packet interval 0.1s

Learning rate 0.2

where Tpro denotes processing delay, Tq denotes queuing delay, Tt represents

transmission delay, and Tp denotes propagation delay.

(iii) Energy consumption (Et): It is the amount of energy consumed by IoT

mobile devices to perform given task.

Et = Ep + Et (3.17)

where Ep is energy consumed during processing offloading a task, Et is energy

consumed during transmission and receiving the result of the task.

(iv) Resource utilization rate (RU): is defined as the total amount of resources

consumed as compared against the amount of resources estimated. RU is

expressed as the percentage of time mobile device utilize resources in 24

hours.

RU =

(
N(i)

24

)
× 100 (3.18)

(v) Response time (TR): Time interval between a user request and the reception

of an action.
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3.5.4 Comparison Analysis

In this subsection, we present comparative analysis of our offloading schemes to

other existing solutions in [142, 143, 168, 169] listed in Table 3.5. Our proposed

offloading provide scaleable and flexible solution for IoT users. In the following

subsections we illustrate our results.

Table 3.5: The Benchmarks Used in this Study

Reference Target
device

Major contribution Drawbacks Application
for IoT

Zhang et
al. [142]

Mobile
devices

Computation of-
floading using PSO
(FCFS) schedul-
ing.

High latency
and hybrid
computation
offloading
increases
network
overhead

Smart
home au-
tomation.

Gnana
Jeevan et
al. [143]

Mobile
devices,

Dynamic task
offloading using
surrogate object
model (DTO-SO).

Consumes
more energy
and lack of
security and
privacy.

Mobile ap-
plications.

Tongxiang
Wang et
al. [168]

Mobile
devices ,

Cooperative multi-
tasks schedul-
ing based on
Anti Colony
Optimisation(CMS-
ACO).

Static
scheduling
poor resource
utilization
rate and
not suitable
for sensitive
tasks

Mobile ap-
plications.

Yucen Nan
et al. [169]

General
IoT de-
vices,

Lyapunov op-
timization for
application offload-
ing based on time
and energy cost
model(LOTEC).

High energy
consumption
and high
response
time.

Green en-
ergy con-
sumption
applica-
tion.
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Impact on Throughput

Figure 3.3 shows the impact on throughput for proposed compared to DTO-SO in

[143] with respect to number of requests. We set latency requirements for sensitive

tasks to be 1 seconds and 1.5 seconds for non-sensitive tasks. We set number of

tasks n ∈ {10, 20, 30, 40, 50}. We observe throughput as the number of requests

increase.

Figure 3.3: Impact on Throughput

Throughput increases with respect to the number of tasks transmitted by IoT

device. At n = 10, throughput attained by our proposal is 30 KB/s for sensitive

tasks, and 23KB/s for non-sensitive task. DTO-SO attains 18KB/s for both sen-

sitive and non-sensitive for the same number of tasks transmitted. At n = 50,

throughput attained by our proposal is 120 KB/s for sensitive tasks and 100KB/s

for non-sensitive task whereas, DTO-SO attains 95KB/s for sensitive, and 80 KB/s

for non-sensitive. Our proposed secure offloading scheme improves throughput by

23.2% as compared to DTO-SO. The increase of throughput is due to pipeline of

machine learning offloading strategies that include PSO at the IoT nodes and dy-

namic offloading using Reinforcement learning at Fog node. Hence, the proposed

offloading strategy is suitable for both complex and simple task computation of-

floading.
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Impact on Delay

Figure 3.4 shows the delay per user requests for both sensitive and non-sensitive

tasks.

Figure 3.4: Impact on Delay

The delay of total offloading increases linearly with respect to number of requests.

Delay is reduced by 20% and 60% as compared with DTO-SO and FCFS offloading

approaches. In particular, considering sensitive tasks, The delay registered in our

proposed scheme is up to 1.6s when n = 50. Whereas, the delay in DTO-SO is

1.8s and FCFS is 2.2s for the same amount of requests. Our proposed offloading

scheme reduces delay because of optimal selection of fog node using PSO, and

security evaluation at smart gateway does not increase latency. This in turn

reduces time required to respond to offloading. Furthermore, task scheduling for

sensitive (complex) tasks and non-sensitive tasks at the Fog is seen to reduce delay.

Impact on Energy Consumption

Energy utilization is one of the primary constraints in IoT environment. Exe-

cuting complex tasks attracts massive usage of battery thereby compromising the

device life. Migrating computationally intensive tasks and complex tasks by of-

floading such a task to the Fog and cloud server save energy and improve device

lifetime. Figure 3.5 shows energy consumption of the proposed secure offloading

vs. previous approaches LOTEC [169] and DTO-SO [143] with respect to number

of requests. The energy consumption of total offloading tasks at mobile device is
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Figure 3.5: Impact on Energy Consumption

linear. We observe that the energy consumption during processing non-sensitive

tasks is low (0.11J), which is 15% less than DTO-SO and 35% less than LOTEC.

In previous approaches, the energy consumption rate increases gradually from

n = 10 to n = 50 with higher gradient. This is because the delay sensitive and

complex tasks consume more energy than non-sensitive tasks. Our proposed of-

floading scheme reduces energy consumption by the use of surrogate entity which

decouples IoT devices from the burden of staying connected during processing of

the offloaded work. Secondly, surrogate entity assigns cloud resources to device

quickly thus reducing the energy required to maintaining computational offloading.

Impact on Resource Utilization Rate

Figure 3.6 shows resource utilization rate for proposed vs. previous approaches

CMS-ACO [168], and DTO-SO [143]. Heterogeneous IoT devices request pro-

cessing increases overhead and thus resource utilization rate is decreased. The

proposed offloading scheme can handle real-life data, and monitoring of smart IoT

devices. Thus it delivers highly scaleable sensing information and also security is

evaluated before offloading. When n = 10, the resource utilization rate for pro-

posed offloading scheme is to 92% at T =1s while the previous approaches utilizes

89%, and 87% for DTO-SO and CMS-ACO, respectively. In previous approaches,

offloading tasks of certain resource-restrained devices may not increase resource

utilization rate. This reveals the trade-off between energy consumption and delay
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Figure 3.6: Impact on Resource Utilization Rate

in fog-cloud IoT environment. Our proposed offloading scheme is feasible in any

resource-constrained environment

Impact on Response Time

Figure 3.7 shows the result of response time for proposed offloading scheme as

compared with two previous approaches LOTEC[169] and DTO-SO [143]. The

response time grows gradually In LOTEC and DTO-SO. Our proposed offloading

takes 0.5s to complete a task as compared to 0.9s in LOTEC, and 0.7s in DTO-SO.

Therefore, our proposed scheme is faster in terms of response.

Figure 3.7: Impact on Response Time
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Finally, we present average response time (aRT ) and average execution time (aET )

of all the tasks for secure offloading and conventional offloading schemes presented

in Table 3.6.

Table 3.6: Average Response Time and Average Execution Time

Metrics State-of-the-art on offloading approaches

DTO-SO CMS-ACO LOTEC FCFS Proposed

aRT (ms) 285.64 295.45 305.78 312.46 184.56

aET (ms) 1670.46 1700.23 1750.56 1790.9 956.23

The results show that our proposed system achieves response time of 184.54 (ms) as

compared to 285.64(ms) for DTO-SO, 295.45(ms) for CMS-ACO, 305.78 (ms) for

LOTEC and 312.46 (ms) for FCFS. At the same time execution time registered for

our proposal is 956.23(ms) as compared to 1670.46(ms), 1700.23(ms), 1750.56(ms)

and 1790.9(ms) for DTO-SO, CMS-ACO, LOTEC and FCFS. All experiments are

done under similar environment.

The performance of various metrics vary depending on user request (task size, delay

constraint and complexity). In all the figures (3.3, 3.4, 3.5, 3.6 3.7 ), graphical

results were presented. Our results confirm that the proposed offloading scheme

reduces delay and energy consumption than DTO-SO, FCFS, LOTEC, and CMS-

ACO.

From the experiments conducted in this study, we conclude that the proposed

mechanism improves performance of the IoT-fog-cloud ecosystem. It has been

shown that offloading strategy minimize latency and energy consumption. Sec-

ondly, the implementation of security features such as euro-fuzzy model at layers

of Fog-cloud of thing continuum guarantees security. Lastly, a well structured

pipeline of procedures along the fog cloud of things improves the performance of

the whole infrastructure by minimizing delay and realize negligible energy con-

sumption. This makes the proposed approach robust. In a bid to further explore

application of nature inspired mechanism we present an improved version of the

current PSO to further improve the performance of the Fog cloud of things infras-

tructure in chapter 5.
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3.6 Summary

This chapter forms the gist of this thesis. We illustrate the working process of our

solution as follows; The IoT devices generate workload that may have offloadable

content. The IoT device select a most suitable Fog node that can process the

request and send back the results with in required threshold. PSO is used at this

level as described in section 3.4.3. The offloadable content is forwarded through

a smart gateway to the Fog. The smart gateway secures the data as described

in section 3.4.4. The Fog may offload the workload coming from the IoT to the

cloud using reinforcement learning mechanism described in section 3.4.5. After

processing the cloud sends back the results to the IoT through the Fog, and Smart

gateway. Thus forward, we present the evaluation of the mechanism presented in

section 3.5



Chapter 4

Modified nature inspired compu-

tational offloading in Fog-cloud of

things ecosystem

4.1 Introduction

The Internet of Things (IoT) industry has quickly expanded and revealed more

opportunities to improve Quality of Service (QoS) in industries, governments and

businesses through a connection paradigm that allows anything, anywhere to ex-

ploit connectivity to attain desired services [170]. The IoT ecosystems provide

powerful platforms that influence intelligent systems in the automation of fac-

tories, education, military, medical care, surveillance, transportation etc. Em-

bedding internet of things alongside data analytics has enabled development of

high-performance systems that have upgraded the future prospects in cities, man-

ufacturing, exploration of environment and space. Even if there is tremendous

performance improvement in many systems developed today as a result of adopt-

ing IoT, performance of most of the systems developed are affected by; i) the

nature of connectivity, ii) the characteristics of application that run on them, iii)

the features of the platform that host the applications, and iv) the configurations

of the IoT systems. Undistinguishably, the limitations such as uncertainty of IoT

devices behavior, nature of operations as influenced by changing physical world,

finding optimal solutions that map applications to the optimal remote platform

for processing are largely unresolved [33, 39].

84
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IoT systems performance can be improved by extending service of latency and

security-sensitive applications to a remote location through fogging [171]. To ef-

fectively exploit fogging the challenge of selecting optimal location in the network

to which tasks may be mapped in a constantly dynamic environment to achieve

minimized latency, improve inter fog node communication and achieve better load

balancing is still a challenge, moreover, minimized resource utilization in fog-cloud

of things ecosystems is another important problem to study [134, 172].

Among the important problems to be resolved in computational offloading solu-

tions is finding an appropriate offsite infrastructure to which resource-constrained

user terminals in the fog-cloud of things ecosystems may offload complex applica-

tions so as to improve the general performance of the IoT ecosystems. Offloading

process improves performance by reducing program turnaround and increasing

system throughput [173]. This is done by minimizing communication overheads

and maximizing resources utilization across the fog nodes. Inopportunely, there

exist a trade-off in achieving an appropriate offsite infrastructure with sufficient re-

sources to offload task(s) and minimizing intra-infrastructure communication that

achieves sufficient turnaround required by IoT applications. This trade-off makes

this problem NP-complete [174, 175]. NP-complete problems have no optimal so-

lution in polynomial time, therefore, may yield better solutions when heuristic

techniques are used.

From Solutions proposed in the literature, a number of optimisation techniques

have been used to accomplish computational offloading in the IoT-fog ecosystems.

For instance, Zhou in [176] explored contract-matching approach to task assign-

ment and resource allocation in Vehicular Fog Computing (VFC). In their study,

they proposed an efficient incentive mechanism based on contracts. They further

transformed the task assignment into a two-sided matching between vehicles and

user equipment. From their numerical result, the matching algorithm proposed

was observed to improve performance. De Jong [177] proposed a deterministic

delay constrained task partitioning as a mechanism to solve offloading decision.

In their study, they highlighted the previous studies in which algorithms based

on integer linear programming and stochastic analysis formulation were seen to

under perform. They observe these mechanisms didn’t guarantee polynomial-time

convergence. To improve the performance of the system, they proposed a ”deter-

ministic approach”, a proposal that guarantees polynomial convergence.
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Recently, a number of heuristic mechanisms have been proposed for example ant

colony mechanism was proposed in [168], they formulate multi-tasks scheduling

as an optimization . Their optimization objective was to maximize profit and

constraints. Their proposals performed better than previous explored mechanisms

based on deterministic methods. In our previous work in [33] we proposed a

pipeline of machine learning mechanisms to perform computational offloading.

Amongst the mechanisms that was used in the pipeline to facilitate selection

of suitable fog node for computational offloading was Particle Swarm Optimiza-

tion (PSO). We assumed during the offloading process the network conditions

and resources utilization remained unchanged. This study considered a Simple

PSO(SiPSO) mechanism in which for every offloading scenario in a cluster there

arises one peak fog that provides maximum processing power and other resources.

This peak node is the one considered the most suitable candidate to execute an of-

floading process. The results of this study enumerated considerable improvement

in resource, throughput, and energy utilization. Further there was considerable

improvement in response time.

In the same study, dynamic nature of IoT environment that resulted in many

IoT devices that may initiate offloading at the same time was considered, but

clustered nature of Fog-cloud of things which could result in multiple topology,

different underlying topological functions and batch offloading at diverse points in

the network was not considered. Again, for simplicity we did not consider multiple

fogs that may arise due to resource fluctuation in the network. Naturally, multiple

offloading and varying availability of task processing resources at the offloading

points on fog-cloud of things network may provide numerous optimum fog that

may offer better offloading performance, or make the offloading positions actively

change. This is a shifting fog-peak. The shifting fog-peak results in the peak fogs

to gain or lose resources required to process offloading dynamically, this activity

makes the algorithm fail to converge, hence requiring the algorithm to diverge and

re-converge so as to find the optimum fog. And, most often when using tradi-

tional SiPSO the personal best and global best may change resulting in memory

loss. Looking at the application of PSO proposed in our previous studies in [33],

we intent to extend the proposed mechanism to include a dynamic selection con-

sidering multiple clusters. Our proposal takes care of changing dynamic that may

offer moving maxima fogs during the offloading processes. This study continues

the effort to explore PSO mechanisms and its variations for different offloading

conditions in dynamic IoT-fog environment.
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The chapter therefore, aimed at designing and developing a modified dynamic

particle swarm optimisation algorithm for computational offloading in the fog-

cloud of things ecosystem. During the study an evaluation of our algorithm in

terms of latency, network utilization and energy consumption was done. Secondly,

a comparison of the results obtained through simulation of mDyPSO, SiPSO and

related benchmark is completed and summary provided. To achieve the aim of

the study we

(i) performed a classification of computational offloading strategies. This en-

abled us to observe how experts have applied them to solve offloading and

other related solutions,

(ii) developed and designed modified Dynamic Particle Swarm Optimisation

(mDyPSO) algorithm for computational offloading in a clustered Fog of

things ecosystem,

(iii) performed an evaluation of the developed mDyPSO algorithm and tested

its performance against Simple Particle Swarm Optimisation and related

benchmark.

The remainder of the chapter is organized as follows: Section 4.2 presents re-

view of related literature in terms of offloading technologies, application of nature

inspired algorithm for computational offloading and classes of computational of-

floading strategies as they appear in literature. Section 4.3 and 4.4, presents the

proposed system, the network model, formulation of the optimisation framework

and modified Dynamic Particle Swarm Optimisation offloading Mechanism. In sec-

tion 4.5, the simulation results are presented and compared to results of SiPSO. a

summary of the chapter is provided in section 4.6.

4.2 Review of related work

4.2.1 Offloading in the fog computing ecosystem

Fog computing paradigm provides data, compute, application and services to the

user at the edge [41]. Fog computing is promoted by scenario that require fast
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and reliable computing closer to the source of data such as in autonomous sys-

tems, smart city applications, smart health care, smart infrastructure and disaster

management systems. Fog computing is characterised by low latency comput-

ing closer to the edge of the network. In addition, they use reliable protocols,

provide easy and affordable installations. Also they consist of slightly powerful

devices that contain programmable function to allow accommodation of multiple

applications. The Fog-cloud of things infrastructure that supports offloading pro-

cesses run in versatile operating environment that calls for processing big data

using powerful artificial intelligence applications. This phenomena may result in

the device at the edge to fail handling the application. Besides, IoT devices at

the edge are designed to handle very powerful application but come with small

battery capacity, this therefore, calls for a mechanism that should allow devices

at the edge to conserve energy. Fog technologies are often designed to conserve

resources(processing power, energy and memory) by developing mechanisms that

accept the edge devices to process active tasks generated by IoT and provide both

trust and security.

Fog-cloud of things paradigm provides effective solutions to eliminate latency

caused by physical distance between the cloud and devices in request of service

coupled with huge volumes of data along the service path. Additionally, they en-

able organisations to save bandwidth and mitigate network congestion given that

essential storage and computing can be provided along the edge [178–180]. Though

the fog is viewed as Superior technology that will increase the efficiency of a net-

work through mechanism such as computational offloading, they are deterred by

their complexity and expensiveness due to their distributed nature. Their imple-

mentation calls for well defined scope in addition to equipment, applications and

resources to meet the objective of adoption [181, 182]. Along with their location at

the edge, their mobility make them vulnerable to security concerns. Lastly, their

processing capacity may require data reduction which may result in partial data

processing. Partial data processing at the edge limits their capacity to function in

a similar way such as the cloud infrastructure in an intensive big data environment.

To achieve computational offloading at the fog the middle ware system should

partition the offloadable tasks, present the task for processing at the host fog

device and make an offloading decision. The computational offloading is based on

if the ecosystem; (i) support offloading (ii) benefits from the offloading process,
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and (iii) if the resources are not available to process the application tasks locally

[183].

Authors in [139] presented three classes of archetypes that defines computational

offloading strategies in IoT-cloud ecosystem. They include homogeneous, hetero-

geneous and neutral models. To allow for offloading using homogeneous model,

the run-time environment must be implemented on both the IoT device and the

Fog/cloud infrastructure. This configuration enables the IoT to execute its task

independent of network connectivity and Fog/cloud in situations when offloading is

not necessary. The results of execution of tasks in this model are not compromised

Offloading only happens when it is suitable and unavoidable. On the other hand,

heterogeneous offloading models require that the run-time environment implemen-

tation is simpler and lighter for the IoT devices and complete for the fog/cloud

environment. This enables the IoT devices to execute their own task but the result

may not be as good as the one produced by the fog/cloud run-time environment.

During offloading, input data is transmitted to the server and result of the com-

putation received. Whereas, the neutral models does not require the run-time

environment to be installed on the IoT-device during task outsourcing. Therefore,

the IoT device must always consult with the fog/cloud to execute offloading. In

this model IoT can not execute offloading independent of network connectivity

and fog/cloud connection. Generally speaking implementation of computational

offloading solution take one of the above three forms.

Offloading decision

The ability of the IoT devices or smart gateway to initiate a decision is regarded

as an offloading decision. The decision occurs after an evaluation of application

needs to warrant offloading. The evaluation is done in terms of data type, data

size, power of devices, status of activities at the initiation point, intermediate

nodes, and the end node. Furthermore, the need to improve performance of the

IoT ecosystem is at the heart of offloading decision strategy. An offloading decision

is passed subject to whether the application can benefit from offloading in terms

of the overall performance of the system. Also, an evaluation to determine if data,

its code or its application require to be offloaded. for every offloading strategy

the destination to where an offloading request shall be processed is critical for a

rational offload decision [183]. sometimes it is important to consider the portion
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of data that should be offloaded. Finally, offloading strategy used to perform

offloading is critical for offloading. Most often offloading decisions are taken by

middleware installed over the top of smart device.

The decision is held based on whether the application at hand i) needs extra

computational resources in excess of the hosting device, ii) if it is latency sensitive,

iii) if it is security or privacy sensitive, iv) does it require its data to be stored on

storage space in excess to what the hosting device has, v) if the application at hand

is demanding such that it’s execution may degrade the performance of the system

during operation, and, vi) does offloading improve the general quality of service

of the whole IoT system. Other means through which an offloading decision may

be necessary is if offloading is supposed to improve infrastructure utilization as

observed in load balancing, parallel processing and distributed computing.

Application task partitioning

Application task partitioning is another important activity performed in prepara-

tion for offloading. it involves dividing an application tasks into subsequent chunks

that can be executed either on a client device or the server. In a number of studies

authors have shown that a good design strategy towards an optimum partitioning

solution can affect resources utilization at run time, further levels of granularity

affect compatibility, offloading, and performance in general [184]. Partitioning

mechanisms can be static, dynamic or hybrid. Hybrid mechanism bridges the gap

between adaptability to offloading conditions and balancing cost of performance.

Li et al. in [185] presented a partition scheme at a procedure call level. Their

solution is based on a cost graph to model the behaviour of the task assignment

during offloading. They further explored the computational expensive branch

and bound mechanism for task assignment and improving it by implementing

pruned heuristic component that improved its performance considerably. Gao at

al. [186] proposed a layered computational strategy that performed partitioning

of tasks based on deep neural networks. in their study joint optimisation design

that minimised latency by optimising task allocation and offloading was realized.

Another study by Jianhui et al. [187] illustrated that when portioning is done

at both the mobile device and/or on the remote/edge device to facilitate further

processing latency is minimised. These studies confirms that partitioning of task

during or before the offloading process is an important factor. In our study, we
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consider the first partitioning occurs at the IoT device. Here the task is partitioned

such that a portion that is processed on the local device is considered for offloading

and further partitioning may occur at the smart gateway so that the task may be

processed by multiple Fogs.

Preparation

During the preparation stage actions that are necessary to support successful op-

timal offloading performance are finalized. Three events are important here i.e i)

selection of destination offsite location where offloading will occur, ii) Transfer and

installation of code, and, iii) transfer of data to and from the offload site [188].

Preparation is done in an effort to initialize the offloaded process on the offsite

environment. [49]. Mitsis et al. in [189] showed the importance of well designed

selection mechanism. In their simulation study they proposed a two component

data offloading and MEC server selection algorithm based on stochastic learning

automata. Their mechanism scored sufficient performance improvement in real-

izing optimal offloading and pricing. Therefore,in our study we opt to develop

mDyPSO in a Fog-cloud of things environment to improve performance by using

PSO.

4.2.2 Nature inspired algorithm for computational offload-

ing and related problems

The dynamic nature of applications, computational and data transactions that

are supported by IoT-Fog-cloud ecosystems inspire the use of evolutionary algo-

rithms based on either genetic algorithms or swarm intelligence. Yang et al. in

[190] performed an analysis of nature inspired algorithms and their applications. In

their study, they elaborated the two broad categories of nature inspired algorithms

falling in procedure based and equation based. They further provided examples

of such algorithms to include Deferential Evolutionary(DE), Particle Swarm Op-

timisation(PSO), fire-fry algorithm, Bat algorithm, Cuckoo search algorithm etc.

Also studies in [191] performed a comparative study of nature inspired algorithm

on travelling salesman problem to show how they provide platform to solving

combinatorial optimization. These algorithms provide diverse opportunities to
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solving many problems that arise in the IoT-Fog ecosystems except for lack of well-

formed frameworks to enable a proper consideration of their efficiency, effectiveness

and their robustness in the new computing environment. In this work we are in

efforts to explore PSO for offloading mechanism in IoT environment.

PSO is principally based on social behavior of animals [192]. In a PSO system, mul-

tiple solutions co-exist and collaborate by iterative changing their current position

until an optimum solution is achieved. Each set of candidate solutions are known

as particles. In an bid to find an optimal solution in a search space of D dimension,

the particles fly around adjusting their position in accordance with is personal ex-

perience (Pb) and neighbour particles experience (Pg). Each particle preserves a

memory of its own experience and best experience of the neighbourhood. PSO

combines particle dynamics and information sharing to derive a powerful heuristic

optimization tool. The canonical PSO achieves optimisation through the following

two equation 4.1 and 4.2

Vij(t+ 1) = ωVij(t) + C1 × r1 × (Pb(i,j) −Xij(t)) + C2 × r2 × (Pg −Xij(t)) (4.1)

Xij(t+ 1) = Xij(t)) + Vij(t+ 1) (4.2)

where Vij(t+ 1) and Vij(t) are current and previous velocity respectively, whereas

Xij(t+1) and Xij(t) are current and the previous particle positions, c1 and c2 are

cognitive and acceleration coefficients, r1 and r2 are random numbers between 0

and 1, ω is the initial coefficients, t are the number of iterations [193] and lastly,

Pb(i,j) and Pg are personal and global best respectively [194].

Originally, PSO has been thought to solve optimization problems that were con-

tinuous in nature. Recently, PSO has attracted interest in solving both discrete

and combinatorial problems with small modification, these problems include find-

ing complex solutions computer aided design as illustrated by [195] in their work.

Resendo et al. in [196] presented PSO with path rethinking for combinatorial

optimization problems. In their work, they presented a PSO algorithm in which

the particle was viewed to be guided by three components. These components

include i) the component that is guided by it’s own way k1, ii) the other compo-

nent that allows it to get to its previous best solution k2 and iii) the component

that allows it to align with the global solution of the whole swarm k3. Component

k1 facilitates the local search, where as k2 and k3 helps move the particle to the

new position. Grouping the components into functional partitions allows them to
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create the local search and the path rethinking dimension of the velocity equation

in 4.1. From their formulation the PSO equations can be formed as in eqn. 4.3

and 4.4 as follows ;

Vij(t+ 1) = ωk1(t) + C1 × r1 × (K2(t)) + C2 × r2 × (k3(t)) (4.3)

Xij(t+ 1) = Xij(t)) + Vij(t+ 1) (4.4)

Referring to eqn. 4.3 ωk1(t) represents the local search and the remaining part

of the equation form the path rethinking. During their study, they Performed ex-

periments to show how their results compared well with other solution presented

in literature. This study gives evidence that hybridization is one of the ways of

attaining a competitive discrete and dynamic PSO. Gupta et al. [197], proposed a

hybrid Genetic Algorithm-Particle swarm optimization (GA-PSO) to solve travel-

ling salesman problem. In their algorithm they take advantage of fast convergence

rate of PSO and robustness of GA. Their result show that hybrid GA-PSO achieves

better computational average mean time and low mean error, thus attaining su-

perior performance. Mohammed et al. [198] investigated the application of PSO

to solve the shortest path problem. They experimented their work of different

network topology. In there study good success of discovering the shortest path

was realized as compared to GA.

Authors in [199] and [200] presented PSO for transport problem and assignment

problem respectively. In both studies they presented tractable solutions to the

problems in questions. [199] noted in there study that the PSO traditional updat-

ing rule does not hold for the constrains that result from formation of transport

problem. Therefore, they presented an alternative updating rule that suites trans-

port problem as stated in equation 4.5 and equation 4.6

Vij(t+ 1) =


r1 × (Pb(t)−X(t)) + r2 × (Pg(t)−X(t)), t = 0

r3 × V ij(t) + r4(Pb(t)−Xij(t)) + r2 × (Pg(t)−X(t)), t > 0

(4.5)

Xij(t+ 1) = V ij(t+ 1) +Xij(t) (4.6)

They considered the following conditions to overcome the shortcoming of the tra-

ditional PSO to solve TP problems
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(i) X(t) and Vij is viewed in n×m dimension

(ii) r1, r2, r3, r4 are random number between 0 and 1

(iii) r1, r2 r1 = U(0, 1), r2 = 1− r1

(iv) r3, r4 r1 = U [0.8, 1), r4 = 1− r3

(v) if Pb(t) = X(t) AND Pg(t)! = X(t) then r1 = 1

(vi) if Pb(t)! = X(t) AND Pg(t) = X(t) then r2 = 1

(vii) if Pb(t) = X(t) AND Pg(t) = X(t) then r3 = 1.

Our study is based on assignment of tasks to a fog that has capacity. This problem

is viewed as version of TP problem.

Rafique et al. presented Bio-inspired hybrid strategy based on PSO to schedule

tasks and Cat swarm optimisation (CSO) algorithm to manage resources. Results

of their study show with slight modification of the PSO and CSO NBIHA [201]

balances load well amongst Fog nodes hence presenting an efficient resource allo-

cation strategy. we deduce from this study that further tuning of PSO would yield

improved performance in the Fog-cloud of things environment.

Similarly ML based on Deep learning has been presented in Heidari at el. [202].

Their deep Q-Learning technique for offloading computation in blockchain-enabled

green IoT-Edge scenarios, in their study, they proposes an approach to address

the problem of IoT-edge offloading enabled blockchain using the Markov Deci-

sion Process. The proposed approach employs the Post Decision State mechanism

in online mode, and integrates edge/cloud platforms into IoT blockchain-enabled

networks to encourage the computational potential of IoT devices. The system

can be used both online and offline while maintaining privacy and security, and

dynamically chooses and changes the master controller, offloading decision, block

size, and processing nodes to reduce device energy consumption and cost. The

results of proposed method outperforms four benchmarks in terms of cost, compu-

tational overhead, energy use, task failure rate, and latency. this Study therefore,

provides a good yardstick to compare the results of our proposal.

In another study [203] Sun et al. developed a cache strategy for mobile edge

networks that utilizes deep reinforcement learning for computational offloading.

The objective of their study was to improve network energy efficiency, and they



95

proposed an intelligent caching strategy that combines a deep neural network

(DNN) and the Q-learning algorithm. The DNN is used to approximate the action-

state value function in the Q-learning solution, and the stochastic gradient descent

method is employed to improve the parameter iteration strategies in the proposed

DQN algorithm for faster convergence to the optimal solution. Their proposed

intelligent DQN-based content cache strategy significantly improves the energy ef-

ficiency of mobile edge networks, and their results demonstrate that with sufficient

training steps, the proposed strategy can optimize the network performance of the

content caching policy. Additionally, this study provides a basis for comparing

an offloading policy for further offloading between fog and cloud in our proposal.

Drawing from the experiences of the above authors we build confidence that our

proposal may provide better platform to solve offloading problem.

4.2.3 Classes of computational offloading strategies

In this section we present 5 classes of taxonomy of computaional offloading mech-

anisms as presented in Table 4.1. In the first class, the focus is on energy mini-

mization, which involves jointly optimizing energy and task completion while con-

sidering the time and energy constraints of mobile users. The second class deals

with task offloading using integer programming, aiming to address the challenge

of representing the high dimensions of the distributed system environment in fog

computing. The third class explores bio-inspired methods for task scheduling and

resource allocation, utilizing optimization problems and bio-inspired algorithms

to match resources for computation in fog computing. The fourth class discusses

machine learning-based offloading approaches that employ supervised, unsuper-

vised, and reinforcement learning methods, including deep learning, to maximize

network performance and enhance system utility. However, these approaches have

limitations such as heavy training requirements, lack of explainability, and complex

debugging. The research domain encompasses fog, MEC, cloud, and mist. Lastly,

the fifth class focuses on stochastic offloading, which takes into account random-

ness in task generation, processing, and communication among nodes. Stochastic

models help in understanding offloading behavior and complexities but face con-

vergence issues when dealing with larger, dynamic, and complex systems.
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Table 4.1: The state of art strategies for computational offloading

Sno. Proposed of-
floading strategy

Principle Limitation Edge tech-
nology

Reference

1 Offloading for
Energy min-
imizing in
mobile-edge
cloud computing

Formulated as joint energy and Task
completion minimization problem for mo-
bile users. mobile users are constrained
by both time and energy consumption.
Formed as a convex optimisation problem

formation results
in complex system
that difficult to solve
for distributed Fog
ecosystem

mobile
Edge,
cloud

[204–206]

2 Task offloading
based on integer
programming

Formulated as mixed integer non-linear
programming problem. the problem is of-
ten transformed sub problems to tune the
results of the system

Difficulty in represent-
ing high dimensions of
distributed system en-
vironment created by
the fog system

software
defined
mobile
edge

[205, 207,
208]

3 Bio-inspired
task scheduling
and resource
allocation.

Formulated as optimisation problems to
be solved using bio-inspired algorithms.
Approaches include modification of PSO,
CSO, Bee swarms, etc. These methods
are used to schedule tasks, resources, and
demands

difficulty in matching
resources for compu-
tation

Fog com-
puting

[209–211]
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Sno. Proposed of-
floading strategy

Principle Limitation Edge tech-
nology

Reference

4 Machine
learning-based
offloading

Formulated based on machine learning ap-
proaches. They include supervised, semi-
supervised and supervised Approaches.
Deep learning and reinforcement learning
have been widely proposed in literature.
These methods have shown that reliable
offloading that maximizes network perfor-
mance and improves system utility is pos-
sible

They suffer from
heavy training re-
quirements, lack of
explainability, and in-
telligence. Often the
underlying systems
are complex to debug

Fog MEC,
Cloud,
Mist

[212–214]

5 Stochastic of-
floading

Formulated with association of random-
ness in the system that generates the
tasks, or the systems that processes the of-
fload. Communication between the nodes
may also be random. The success of
stochastic systems are mainly dependant
on task uploads and download possibilities

Stochastic models
help in learning the
behaviour of offload-
ing and complexities
involves but, suffer
from convergence is-
sues when the systems
under study become
larger, dynamic and
complex

Fog, Mec [215–217]
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Figure 4.1: Multi clustered Network Model

4.3 Problem Formulation

4.3.1 Network model

Figure 4.1 shows the network model used in this study. We consider a moderately

large IoT network of N devices. The devices in the network are grouped into

smaller C clusters. Ck is the kth cluster and k is a positive number. This model

consists of p IoT devices at the lower layer, p Fog nodes organized in the multi-

hierarchical middle layer and r clouds devices in the upper layer. In the model, the

number of IoT devices, fog devices and the cloud devices are such that p >> q > r.

All IoT devices in a single cluster are connected to the upper layers through

the smart gateways. The fogs are in turn connected to the cloud infrastructure

consisting of private clouds, public clouds or hybrid clouds systems. All packets

shall enter or exit the cluster through the smart gateway (Gk). Each IoT device I

belongs to some cluster Ck.

Application tasks(Aτ) arrives to the IoT randomly and periodically. These tasks

are associated with resource requirements. If the generated application tasks can-

not be completed in the required sums of time slot (t) at I, an offload decision is

initiated or the task is dropped [33]. The task generated at this point may be delay,

resource constrained or demand driven. That means the tasks must be completed

within specified time bound or the tasks demands processing requirements that

are not available at I to complete the task. To this end, the offloading decision
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may be to execute the tasks in whole on a local device or offload the task(s) to fog

device(s) in the next layer. Moreover, the offload decision might support further

offloading to the cloud.

Let us consider 0 ≤ λ ≤ 1 to be a fraction of the application tasks that shall be

offloaded during offloading process. If λ = 0 then the task is executed in totality at

point of generation that is the local device I else if λ = 1 then the task is offloaded

in whole to the fog except for the none offloadable parts of the task, otherwise a

portion λ of the task is offloaded to the fog and 1−λ will be executed on the local

device [33].

Each Task (Aτ) generated is characterized by input component (α), output com-

ponent (β) and computational component (γ). Thus Aτ is represented as a tuple

Aτ = {α, β, γ}. To offload Aτi to a fog j a considerable delay bound (δi) is

required. δ is the sum of transmission delays (δtr), queuing delay (δqd), fixed pro-

cessing delay ( δfd), packetization delay (δpd) and depacketization delays (δdd).

Based on the the portion of data that may be offloaded a decision models may be

chosen.

Let us denote fi to be the ith fog node to which an offload occurs at time slot (ts);

where, i = {1, 2, 3, . . . ,m} and m, is the maximum number of fog nodes in the

network organized in multi-hierarchy. Finally, the lower levels of the network are

connected to the fog through smart gateway Gk. Fog nodes may be connected to

the cloud directly or indirectly through multiple sub-layers of Fogs devices. The

cloud has abundant resources but high latency requirement, therefore, if any task

is offloaded to the cloud it shall be executed at negligible execution time. If a task

is not executed by any fog, then the fog may perform additional offload to the

cloud for complex part of the workload. In general, this framework adopts that

there exists Fog(s) that are capable of solving the computational offload, therefore,

offloading to the cloud may often be immaterial.

The computational offloading process happens in time slots. The time slots contain

three (3) time cycles as follows a) The assignment cycle (Tas), the time through

which the tasks shall be received by the smart gateway of the cluster, b) The

operational cycle (Top), the time cycle at which the PSO mechanism is run to

select the optimal fog platform to execute offloaded task, c) The dispatch cycle

(Tdi), the time cycle through which the results shall be received by the IoT devices.
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Figure 4.2: The offloading Time slots

4.3.2 Problem statement

An IoT device Iijk randomly generates application task(Aτi). Aτi consist of of-

floadable part. If offloadable part does exist then Iijk issues an offloading request

Ork to the smart gateway SGk. SGi forwards the request to the selected Fog node

Fj which is considered optimal at the time of request. The selection process is

driven by heuristic algorithm. The algorithm ensures that the selected Fog node

to which an offload process opijk is initiated minimizes latency, response time etc.

during time slot st. The offload process happens at the fog. In case an offload

process can not happen completely in one time slot, the process is postponed to

next time slot in a w the process can be invoked on a cloud thereby invoking a

cloud process an offload process invoked on the fog is considered active otherwise

the process is idle.

Since the tasks are forwarded to the fog through the gateway, we assume at a

certain time(t) the gateway has at least one offloading requests. Further the cloud

has unlimited resources and our solution will forward a task to cloud only when

there is no fog to solve the task. Therefore, the main concern is to find a fog for

each task available at the gateways.
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Table 4.2: The time constructs required during offloading process

Offloading decision Model Formula Def. of symbols Description

Local processing model τlp = (1− λ)× Ωiot

fiot

(i) λ is the fraction of
work load that is of-
floaded,

(ii) Ωiot is work load gen-
erated at the IoT,

(iii) fiot is the processing
power of the IoT de-
vice

Time required to process a
fraction of workload gener-
ated at IoT device this in-
cludes User interfaces, pe-
ripheral management pro-
grams etc. [16, 33, 148]

Processing offloaded work
load at the Fog

τlp = λ× Ωiot

ffog

(i) ffog is processing
power of the fog
processor

Time required to process a
fraction of a workload gen-
erated at IoT and offloaded
to the Fog for processing.
[16, 33, 148]

Transmission Time to se-
lected fog

τtf = λ× Ωiot

βtf
βtf = is the transmission
rate on the link(s) between
the selected fog node and
the IoT device

Amount of time required
to transmit the offloaded
workload to the fog device
[16, 33, 148]

Transmission Time to the
cloud

τtc = λ× Ωiot

βtc
βtc = is the transmission
rate on the link(s) between
the selected cloud and the
IoT device

Amount of time required
to transmit the offloaded
workload to the cloud [16,
33, 148]
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Offloading decision Model Formula Def. of symbols Description

Local processing model τlp = (1− λ)× Ωiot

fiot

(i) λ is the fraction of
work load that is of-
floaded,

(ii) Ωiot is work load gen-
erated at the IoT,

(iii) fiot is the processing
power of the IoT de-
vice

Time required to process a
fraction of workload gener-
ated at IoT device this in-
cludes User interfaces, pe-
ripheral management pro-
grams etc. [16, 33, 148]

Processing offloaded work
load at the Fog

τlp = λ× Ωiot

ffog

(i) ffog is processing
power of the fog
processor

Time required to process a
fraction of a workload gen-
erated at IoT and offloaded
to the Fog for processing.
[16, 33, 148]

Transmission Time to se-
lected fog

τtf = λ× Ωiot

βtf
βtf = is the transmission
rate on the link(s) between
the selected fog node and
the IoT device

Amount of time required
to transmit the offloaded
workload to the fog device
[16, 33, 148]

Transmission Time to the
cloud

τtc = λ× Ωiot

βtc
βtc = is the transmission
rate on the link(s) between
the selected cloud and the
IoT device

Amount of time required
to transmit the offloaded
workload to the cloud [16,
33, 148]



103

4.3.3 Formation of optimization framework

An optimization framework for computational offloading in clustered fog-cloud of

things is presented in this sub section. The optimisation framework determines

the optimal computational offloading strategy.

Optimisation related entities

1. Gateway: From our model presented in Figure 4.1, all IoT devices are

associated with a smart Gateway forming a cluster, therefore all the tasks

generated from the lower levels of the model are surrogated by the gateway.

In our optimisation framework, IoT devices are encapsulate by the gateway.

2. The Fog: This middle tier computing devices at the edge that is responsible

for computational offloading. In case none of the fogs in the clusters can

perform computation offloading, then the tasks are forwarded to the upper

tier of the network model.

3. The cloud: Form the upper tie computing environment that is responsi-

ble for computational offloading if and only if there exists no fog from the

computing environment to perform computation offloading.

Overall objective function

Maximize Task allocation: TA =
G∑

j=1

Tj∑
i=0

F∑
k=1

xi,j,k (4.7)

subject to:

F∑
k=1

xi,j,k ≤ 1

i = 1, 2, ...Tj; j = 1, 2, ...G

di,j,k ∗ xi,j,k ≤ Di,j,k, i = 1, 2, ...Tj; j = 1, 2, ...G

mk ≤Mk, k = 1...F

ck ≤ Ck, k = 1...F

xi,j,k = {0, 1}
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Table 4.3: The symbols used in formation of optimization framework

Symbols Description

gj The jth Gateway j = 1, 2...G

Ti,j The ith Task at jth Gateway i = 1, 2...Tj

fk The kth fog to which offloading is performed k = 1, 2...F

Di,j Maximum delay tolerance between the task Ti,j

di,j Delay experienced during the processing of task Ti,j

td Round trip time

tc Computational time at the fog

xi,j,k = {0, 1} Boolean indicator if xi,j,k = 1 then that fog is chosen.

this indicator is used to generate the assignment table

hjk Number of hope counts between gi and the selected fog

ld the average link delay

mij the memory requirement for tij

Mk the maximum available memory at the fk

ci,j the required processing power required for a task ti, j

Ck the maximum available processing power available at the Fog fk

di,j = td + tc

= td is twice the delay between the selected fog and the gateway

td = 2× hj,k × ld

(4.8)

di,j,k = tc + 2× hj,k × ld
= delay assigned if ti,j is assigned to a fog fk

= xi,j,k × di,j,k ≤ Di,j

(4.9)
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Resource requirement

(i) Central Processing Unit (CPU) requirement for task ti,j is measured in CPU

cycles as follows

ck =
G∑

j=1

Tj∑
i=0

xi,j,k × cik ≤ Ck (4.10)

(ii) Memory requirement for task ti,j is measured in bits as follows

mk =
G∑

j=1

Tj∑
i=0

xi,j,k ×mik ≤Mk (4.11)

4.4 The modified Dynamic PSO for computa-

tional offloading

In this section, we present the mDyPSO A PSO motivated computational offload-

ing algorithm applied in multiple cluster topology of fog-cloud of things ecosys-

tem. This algorithm is based on dynamic particle swarm optimization mechanism,

which forms a basis of many selection and scheduling problems [218, 219]. Studies

in [220, 221] proposed PSO mechanism to solve multi-objective problems. Since

this study involves Fog-cloud of things clustered in multiple domains whose topol-

ogy and search space may vary. It becomes central to treat the problem as a

multi-objective particle swarm optimization problem.

4.4.1 Traditional Dynamic Particle Swarm Optimisation

algorithm

The traditional particle swarm optimisation is best suited for problems that are

represented in n-dimension space [33]. Using a particle with defined velocity,

acceleration and communication channels between them, they are made made to

drift towards the best suited solutions known as the best fit among the other

potential solutions [200]. The dynamic variation of Particle swarm optimisation

considers that the swarm size may not be the same or the space consist of varying

topology. Therefore in such a case acceleration is weighted by random term and
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average of the fitness may be considered [222]. in algorithm 5 a dynamic particle

swarm optimisation is presented.

Method DyPSO():

noParticles← p = (1, 2, ...)

avaragefit← 0

currentfit← 0

fitness

personalBest← 0

bestF it← max(personalBestp)

globalBest← bestF it

for all the fogs in the fog list do

if currentF it ≤ avarageF it then

currentF it← avaragaF it

compute fitness

end

if personalBest ≤ fitness then

personalBest← fitness

end

end

select a fog with bestF it as globalBest

for All the fog in foglist do

Compute particleV elocity using equation 4.5

compute particlePosition using equation 4.6

end
End DyPSO

Algorithm 5: TradDyPSO
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4.4.2 Dynamic Task allocation algorithm

Algorithm 7 presents the dynamic task allocation in the fog-cloud of thing ecosys-

tem. Application tasks arrive at the gateway for offloading to the optimal-fog that

provides sufficient resources to execute the task with minimum latency.For each of

the cluster mDyPSO is initiated to determine an optimal fog node for a cluster.

The best fit fog amongst all the clusters is assigned the function of a global best

fit to whom the tasks are allocated. If all the fogs are busy and can not execute

the tasks allocated in the threshold allocated the task is forwarded for processing

to the cloud.

Method Dynamic-task-allocation():

resource− bank ← 0

resource− required← 0

min− reserve sum− of − resources fog ← fog1, fog2, ...fogj

clustersize← m

cloud← cloud1, cloud2...

for all incoming application tasks Aτ1, Aτ2, Aτ3... do

for each of the clusters K do

local − optimal − fog ← DyPSO(fog)

if local-optimal-fog is better than global-optimal-fog then

global − optimal − fog ← local − optimal − fog
end

allocate-task(global-optimal-fog)

end

if all fogs are busy then
allocate-task(cloud)

end

end
End Dynamic-allocation

Algorithm 6: Dynamic Task allocation algorithm
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Method mDyPSO():
local − optimal − fog ← 0
global − optimal − fog ← 0
fog ← fog1, fog2, ...fogj
gateway ← gw1, gw2, ...gwm

clustersize← m
cloud← cloud1, cloud2...
requiredmemory ← mi,j

availablememoryfog ←Mk

requiredcpucycle← cij
availablecpucyclesfog ←Mk

for each of the clusters i do
for all incoming application tasks Aτi,1, Aτi,2, Aτi,3... do

for each fog do
if mi,j −Mk ≤ 0 then

if ci,j − Ck ≤ 0 then
fk ← DyPSO(fog)
assign Aτij to fk

end

end

end

end

end
mDyPSO

Algorithm 7: Modified dynamic Particle Swarm Optimisation

4.5 Comparative study between DO2QIEO, SiPSO

and mDyPSO

4.5.1 Experimental environment and settings

System configuration

Table 4.4 shows the system configuration and development environment. IFogSim

was used to develop and simulate our proposal. In addition, we run our simula-

tion on a machine installed with windows 10, IntelCore i3, 8
th generation. Each

processor speed is 2.1GHz and 16GB.
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Table 4.4: The system configuration

Name Description

Simulation tool IFogsim

Operating System Windows 10

Development Platform Eclipse IDE for Java Devlopers (2021-03)

Processor IntelCore i3 8th Generation 2.1GHz 2.3GHz

Installed Memory 16GB

The choice of using IFogSim in this study is motivated by simplicity underlying

the it’s architecture in terms of application placement, load balancing, resource

application and network utilization [171]. Secondly, IFogSim is free and popular

event driven simulation tool used modeling the IoT-fog environment. the underly-

ing architecture enables creation of physical, logical and management components

that constitute the fog-cloud of things ecosystem. IFogSim gives us the capac-

ity to evaluate resources management policies based on network usage, energy

consumption and other operational costs [223].

Simulation parameters

Table 4.5: The simulation parameters

Item Description/number

Number of IoT nodes [60-70] nodes

Number of Fog nodes [2,3,4,5]

Number of cloud 1 hybrid cloud

No of application tasks [10,20,30,40,50,60,70,80]

Bandwidth 10000

simulation Area 1200 x 200

In our simulation, we consider number of IoT devices ranging from 60 to 70 devices

per cluster. Each cluster is bound by a smart gateway. Further a hybrid cloud

and fog devices ranging from 2 to 5 was considered. Lastly, a simulation area of

10000 and simulation area of 1200×200. Other parameters that included the task

arrival rates, simulation time, traffic types, traffic arrival rates are set to default

setting.
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4.5.2 Evaluation parameter

(i) Application latency: - in this study we define application latency as the

total round trip taken by a data packet to travel to and from the IoT device.

The lower the application latency the better the offloading strategy. Higher

application latency can strangle network reducing the performance.

(ii) Network usage: - we define network usage as the amount of data that travel

back and forth across a network due IoT applications, the fog devices and

network users.

(iii) Energy consumed during application execution: This parameter refers to

total amount of energy consumed when an application is launched to execute

on an IoT device. We note that IoT devices are often constrained by battery

life. The less the energy consumed the better the mechanism for running the

applications that may require intensive application.

4.5.3 Application latency for mDyPSO as compared with

DO2QIEO and SiPSO

Figure 4.3: The application latency for mDyPSO and SiPSO
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Figure 4.3 displays the application latency achieved by IoT devices connected to

a network using three offloading mechanisms: DO2QIEO from [202], SiPSO from

[33], and an improved nature-inspired offloading method based on mDyPSO. Sim-

ulation data shows that DO2QIEO achieved an application latency of 39.16 ms,

SiPSO scored 31.61 ms, while mDyPSO achieved a latency of 21.61 ms. Offload-

ing mechanisms and multitasking techniques can conceal application latency, and

well-designed offloading algorithms can significantly enhance performance. Our

modified nature-inspired offloading approach outperforms the work presented in

[202] in terms of execution time, primarily due to the incorporation of blockchain

in our model. The blockchain consensus mechanism plays a vital role in ensuring

secure data transmission at the edge, even though it affects the execution time

of the system. It is worth noting that a blockchain-based offloading approach

provides better security at the edge, especially when dealing with sensitive data,

such as in the case of applications like the Internet of Health Things (IoTH). In

contrast, the neural fuzzy model implementation in our study does not offer the

same level of security. Therefore, we conclude that the careful design of mDyPSO

can enhance offloading performance by approximately one-third.

4.5.4 Computational Delay for mDyPSO as compared with

DO2QIEO and SiPSO

In the experiment, the computational delay of mDyPSO is compared with DO2QIEO

and SiPSO, as shown in Figure 4.4. The computational tasks are fixed at 80, and

the number of fog nodes and cloud nodes are fixed at five and one, respectively.

The results demonstrate a gradual increase in computational delays at the IoT

devices as the number of nodes increases. For a small number of nodes, the of-

floading mechanism supported by mDyPSO performs better and is more gradual.

In contrast, the gradient of DO2QIEO and SiPSO is slightly higher. This differ-

ence can be explained by the fact that mDyPSO is effective in optimizing complex

structures in high dimensions compared to DO2QIEO. Additionally, the mDyPSO

mechanism does not require large amounts of data to achieve convergence, making

it feasible for handling both chained and non-chained data structures.
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Figure 4.4: The computational delay for mDyPSO as compared with
DO2QIEO and SiPSO

4.5.5 Energy consumption for mDyPSO as compared to

SiPSO

The graph displayed in Figure 4.5 compares the energy consumption of two offload-

ing strategies, namely SiPSO and mDyPSO. From the graph, it can be observed

that the energy consumption during offloading using mDyPSO is lower than the

energy consumption when using SiPSO. The reduced energy consumption can be

attributed to the fact that mDyPSO is designed to optimize PSO parameters as

the swarm grows, and the parameters are tuned to minimize the number of iter-

ations required. Even as the number of nodes in the network grows, mDyPSO

remains an effective offloading algorithm that minimizes energy consumption.

It is important to note that energy consumption is directly related to energy con-

servation. Therefore, we can conclude that mDyPSO provides a better offloading

strategy in terms of energy conservation at the IoT device.
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Figure 4.5: Energy consumption for both mDyPSO and SiPSO

Figure 4.6: The network utilization based on ML-Q based and DQN-based
cache policy



114

4.5.6 Network utilization between the ML-Q based and

DQN based Policy

The comparison between the network utilization based on ML-Q based further

computation offloading and DNQ-based cache mechanism was presented in Fig-

ure 4.6. The experiment consisted of 80 computational application tasks, five fog

nodes, and one cloud node. By varying the number of participating IoT devices,

the results showed a gradual linear increase in network utilization. The ML-Q

based policy showed a slightly better utilization of the network, although the dif-

ference was not significant. One of the reasons for this is the manageable dimension

of the Q table in offloading mechanisms. In many offloading scenarios, there exists

an optimal fog node for performing offloading. Furthermore, literature notes that

solutions with large dimension DQN-based mechanisms are desired.

4.6 Summary

Fog computing aims at improving responsiveness of real time application. From

our study we conclude that Application latency can be reduced through adoption

well-designed mechanism in the fog-cloud of things infrastructure. Secondly, we

achieve lower response by adapting computational offloading at the edge through

proper resource utilization and load balancing. Our Nature inspired computational

offloading in clustered fog of things ecosystem exhibits better network utilization

as the network grows, a typical characteristics of IoT networks. Further our study

show that network performance is reduced by one third, energy consumption is

reserved and application latency is moderately lower than earlier proposed mech-

anism in SiPSO. In future, we hope to explore models for computational offload-

ing with hybrid cloud in IoT ecosystem, 5G-enabled services for task offloading

in fog-cloud of things ecosystems and future perspectives for fog-cloud of things

computing cooperation.



Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, a general pipeline based on Particle swarm optimisation algorithms,

neural-fuzzy and machine learning algorithms was considered for secure offloading

in the Fog-cloud of things ecosystem. Our focus was to create a general purpose

mechanism for computational offloading introduced in chapter 1. In Chapter 2, we

provide extensive survey on Fog computing so as to give a foundation to solutions

proposed in Chapter 3 and Chapter 4 respectively. Chapter 2 focused the thesis in

terms of concepts, architecture, standards, tools, and applications of cloud-based

controlled ecosystem across range of network terminals.

In Chapter 3, we considered SecOFF-FCIoT: a detailed PSO-fuzzy-machine learn-

ing based secure offloading in Fog-Cloud of things for smart city applications. In

addition, the experimental evaluation of the study was provided. In this chapters,

we proposed layered system architecture for offloading scheme is secure and ef-

fective for balancing the trade off between latency and energy consumption. The

neuro fuzzy model is proposed to eliminate the invalid resources and also optimal

fog node is chosen by Particle Swarm Optimisation. The results of our implemen-

tation show that the delay is marginal and has negligible energy consumption.

In chapter 4, we continued to explore heuristic approach that permits offloading

to optimal offsite fog by developing modified dynamic PSO(mDyPSO) mecha-

nism. We compared our results with the SecOFF-FCIoT which used traditional

simple PSO(SiPSO)in non clustered networks. Our simulation results show that
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mDyPSO out performs SiPSO in terms of application latency, network usage and

energy utilization. We note that mDyPSO offloading mechanism improves net-

work performance up to one third. we conclude that mDyPSO mechanism per-

forms well in clustered fluctuating topology by one third. Therefore, considering

multiple computational parameters to modify PSO yield better offloading Results.

A conclusion to the thesis is provided in chapter 5.

Summary of the main contribution

This thesis presents a new taxonomy for Fog Cloud of Things (FCIoT) ecosys-

tem, aimed at guiding future research in fog and IoT domains. Additionally, we

have proposed SecOFF-FCIoT, a secure computation offloading scheme in the

Fog-Cloud-IoT environment, which uses machine learning strategies to achieve ef-

ficient offloading in the Fog-IoT setting. Further, an improved SecOFF-FCIoT, a

modified nature-inspired computational offloading mechanism has been proposed

for smart city applications. This mechanism implements dynamic Particle Swarm

Optimization (PSO) in a clustered IoT environment. Furthermore, we implement

a classifier based on Load Input Ratio (LIR) to categorize data based on complex-

ity and sensitivity in the Fog layer. Lastly, a surrogate entity implementation that

ensures stability in mobile-enabled and fluctuating network conditions has been

included.

In general, a comprehensive presentation of nature-inspired computational offload-

ing, incorporating machine learning mechanisms has been given. The thesis high-

lights the latent power and limitations of Particle Swarm Optimization (PSO),

neural-fuzzy techniques, and machine learning approaches in enhancing perfor-

mance in the FCIoT ecosystem through computational offloading.

5.2 Future Directions

Currently, a number of state-of-art research dedicated to the concept of offloading

technologies for IoT application is ongoing. These works are of great significance

to the collaboration of the edge computing with theories and methods of decision

making. Generally, the perception of hybrid task offloading empowers IoT applica-

tion in different ways. These include performance of complex task in constrained
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ecosystem of less computing capacity and limited battery power. The future stud-

ies will involve i) introducing new technologies such as blockchain in decentralizing

security, privacy and trust issues at all levels of continuum from IoT devices to the

cloud. ii) Another emerging challenging and interesting problems in fog computing

is parallel programming for Fog and Edge computing environments. The classes

of these problems may include; federated learning, parallel programming models

for data optimisation and management across the fog systems, 5G /6G enabled

programming models and their application in fog computing.
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[147] Manuel Suárez-Albela, Tiago M Fernández-Caramés, Paula Fraga-Lamas,

and Luis Castedo. A practical evaluation of a high-security energy-efficient

gateway for iot fog computing applications. Sensors, 17(9):1978, 2017.

[148] Luis Belem Pacheco, Eduardo Pelinson Alchieri, and Priscila Mendez Bar-

reto. Device-based security to improve user privacy in the internet of things.

Sensors, 18(8):2664, 2018.

[149] Roohie Naaz Mir et al. Resource management in pervasive internet of things:

A survey. Journal of King Saud University-Computer and Information Sci-

ences, 2018.

[150] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and survey

of cloud computing systems. In 2009 Fifth International Joint Conference

on INC, IMS and IDC, pages 44–51. Ieee, 2009.

[151] Yuhui Shi and Russell C Eberhart. Empirical study of particle swarm opti-

mization. In Proceedings of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406), volume 3, pages 1945–1950. IEEE, 1999.

[152] Yuhui Shi et al. Particle swarm optimization: developments, applications

and resources. In Proceedings of the 2001 Congress on Evolutionary Com-

putation (IEEE Cat. No. 01TH8546), volume 1, pages 81–86. IEEE, 2001.

[153] Abdulwahab A Alnaqi, Hossein Moayedi, Amin Shahsavar, and

Truong Khang Nguyen. Prediction of energetic performance of a building

integrated photovoltaic/thermal system thorough artificial neural network

and hybrid particle swarm optimization models. Energy Conversion and

Management, 183:137–148, 2019.

[154] Xudong Ye, Bing Chen, Liang Jing, Baiyu Zhang, and Yong Liu. Multi-agent

hybrid particle swarm optimization (mahpso) for wastewater treatment net-

work planning. Journal of environmental management, 234:525–536, 2019.

[155] Hao Pu, Taoran Song, Paul Schonfeld, Wei Li, Hong Zhang, Jianping Hu,

Xianbao Peng, and Jie Wang. Mountain railway alignment optimization

using stepwise & hybrid particle swarm optimization incorporating genetic

operators. Applied Soft Computing, 2019.



Bibliography 136

[156] K Thangaramya, K Kulothungan, R Logambigai, M Selvi, S Ganapathy, and

A Kannan. Energy aware cluster and neuro-fuzzy based routing algorithm

for wireless sensor networks in iot. Computer Networks, 2019.

[157] George S Atsalakis and Kimon P Valavanis. Surveying stock market fore-

casting techniques–part ii: Soft computing methods. Expert Systems with

Applications, 36(3):5932–5941, 2009.

[158] Navneet Walia, Harsukhpreet Singh, and Anurag Sharma. Anfis: Adaptive

neuro-fuzzy inference system-a survey. International Journal of Computer

Applications, 123(13), 2015.

[159] Jose Vieira, F Morgado Dias, and Alexandre Mota. Neuro-fuzzy systems:

a survey. In 5th WSEAS NNA international conference on neural networks

and applications, Udine, Italia, pages 87–92, 2004.

[160] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,

8(3-4):279–292, 1992.

[161] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement

learning with double q-learning. Thirtieth AAAI Conference on Artificial

Intelligence, 13(7):2094–2100, 2016.

[162] Sascha Lange, Martin Riedmiller, and Arne Voigtländer. Autonomous re-

inforcement learning on raw visual input data in a real world application.

In The 2012 International Joint Conference on Neural Networks (IJCNN),

pages 1–8. IEEE, 2012.

[163] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[164] Robert H Crites and Andrew G Barto. Improving elevator performance

using reinforcement learning. In Advances in neural information processing

systems, pages 1017–1023, 1996.

[165] Petar Kormushev, Sylvain Calinon, and Darwin Caldwell. Reinforcement

learning in robotics: Applications and real-world challenges. Robotics, 2(3):

122–148, 2013.



Bibliography 137

[166] Kehua Su, Jie Li, and Hongbo Fu. Smart city and the applications. In

2011 international conference on electronics, communications and control

(ICECC), pages 1028–1031. IEEE, 2011.

[167] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, and Marimuthu

Palaniswami. An information framework for creating a smart city through

internet of things. IEEE Internet of Things journal, 1(2):112–121, 2014.

[168] Tongxiang Wang, Xianglin Wei, Chaogang Tang, and Jianhua Fan. Effi-

cient multi-tasks scheduling algorithm in mobile cloud computing with time

constraints. Peer-to-Peer Networking and Applications, 11(4):793–807, 2018.

[169] Yucen Nan, Wei Li, Wei Bao, Flavia C Delicato, Paulo F Pires, Yong Dou,

and Albert Y Zomaya. Adaptive energy-aware computation offloading for

cloud of things systems. IEEE Access, 5:23947–23957, 2017.

[170] Chaogang Tang, Shixiong Xia, Qing Li, Wei Chen, and Weidong Fang. Re-

source pooling in vehicular fog computing. Journal of Cloud Computing, 10

(1):1–14, 2021.

[171] Adam A Alli and Muhammad Mahbub Alam. The fog cloud of things: A

survey on concepts, architecture, standards, tools, and applications. Internet

of Things, page 100177, 2020.
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