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Abstract

The advent of large-scale pre-trained language models has revolutionized the field of natural
language processing, enabling significant advancements in various applications, including
code retrieval systems. This report presents a novel approach to code retrieval using the
Dense Passage Retrieval (DPR) technique that captures the functional similarity between
codes as a measure of relevance. DPR is a state-of-the-art method that combines the
power of pre-trained language models with dense vector representations for efficient and
accurate information retrieval. The objective of this research project is to develop a large
scale multimodal, multilingual dataset and leverage the DPR framework to build a code
retrieval system capable of retrieving functionally relevant codes given a source code or
natural language description of the code in query. To accomplish this, the study first
establishes a comprehensive dataset XCODEEVAL comprising large number of source codes
downloaded from competitive programming platforms. The dataset is used to train a DPR
model, employing a training process that involves large scale pre-trained masked language
models called CodeBERT, Starencoder to learn contextual representations of codes that
will facilitate the retrieval of similar codes given a query code. Experimental evaluation is
conducted to assess the effectiveness of the proposed code retrieval system. The evaluation
includes metrics such as accuracy@k. The results demonstrate that the DPR-based code
retrieval system achieves notable performance gains compared to traditional information
retrieval methods. The system effectively retrieves relevant code snippets for a wide range of
code queries, highlighting its potential in facilitating retrieval augmented generation models,
code reuse, software development, and programming education. Furthermore, the report
investigates the impact of different factors, such as multilingual accuracy and batch size on
the retrieval performance. Additionally, it explores the limitations and challenges associated
with the proposed system, including the scalability of training and deployment, as well as
potential biases in the training data. In conclusion, this report presents a comprehensive study
on building a code retrieval system using the DPR framework. The experiments for code-
code retrieval suggest that albeit retrieval performance after training the base models gets
boosted in all cases, monolingual retrieval with functional similarity is very accurate (>80%
for accuracy@100)and the multilingual retrieval is bit poor (>56% for accuracy@100). For
NL-code retrieval above 80% accuracy is observed for all languages except D. The results
demonstrate the effectiveness of DPR in leveraging pre-trained language models to improve
code retrieval performance. The findings of this research contribute to the advancement of
code search and retrieval techniques, opening up new possibilities for efficient code reuse
and software development practices.
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Chapter 1

Introduction

In the rapidly evolving landscape of software development, the importance of efficient and
effective code search cannot be overstated. The code search engine, at its core, serves as a
versatile tool designed to locate pertinent code snippets based on user queries. What defines
"relevance" in this context can vary widely, ranging from syntactical similarity to semantic
equivalence, depending on the specific needs of the user [13, 77, 39]. The engine operates
within a vast database housing an extensive collection of code, forming the backbone from
which search and retrieval operations draw their results. The indispensability of tool is
reflected through the code search engines provided by different version control service
platforms such as Github, Gitlab, Bitbucket etc where one can search for semantically
similar codes from the repository. Google Code Search1 also provide a semantic code search
tool with multitude of controls (e.g. regular experssion, class name, file name, ignoring
comments etc.).

The inherent generality of the code search engine opens the door to a myriad of ap-
plications that extend far beyond conventional search functionalities. One of its notable
applications is its role as a plagiarism detector [50], capable of identifying instances
where code similarities might indicate unauthorized reproduction. This not only aids
in maintaining the integrity of software projects but also serves as a safeguard against
intellectual property violations. Code search as a backbone for plagiarism detection is
offered by Code Plagiarism Checker2, Codequery3, Copyleaks4. Additionally, the engine
can be harnessed for Retrieval-Augmented Generation (RAG), offering developers a
valuable resource to enhance their coding practices through intelligent suggestions and

1https://developers.google.com/code-search/
2https://www.codeplagiarismchecker.com/
3https://codequiry.com/
4https://copyleaks.com/codeleaks/code-plagiarism-checker
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contextually relevant examples [51, 45]. Bing Chat5, Google Bard6 are two of the most
popular RAG tools available publicly.

Moreover, the code search engine proves invaluable in the realm of copyright infringement
detection, acting as a vigilant guardian against unauthorized use of proprietary code. The
Hive AI offer one such copyright search tool7. The code search engine’s capabilities extend
to code completion and reuse tools, empowering developers with the ability to expedite
their coding processes by leveraging existing solutions (e.g. tabnine8). The engine also
plays a pivotal role as a coding assistant, offering guidance and support to programmers,
whether they are novices seeking to learn or experienced developers aiming to streamline
their workflows (e.g. Github Copilot9). As we delve deeper into this report, we will explore
the intricacies of the code search engine, examining its architecture, functionalities, and the
diverse range of applications it facilitates.

Central to the functionality of any search engine lies its retrieval system, a sophisticated
component that embodies the principles of information retrieval (IR). The IR techniques
employed by this system form the backbone of the engine’s ability to process queries and
yield relevant search results from its expansive code database. Information retrieval, in
the context of code search engines, encompasses the art and science of efficiently and
accurately retrieving relevant code snippets based on user-defined criteria [17, 76, 8, 70, 38].

The search engine itself acts as a streamlined interface, a thin wrapper meticulously
crafted to enhance the interaction between clients and the underlying retrieval system. This
wrapper serves a dual purpose: first, it ensures the consistency of user interactions with
the system, providing a standardized experience irrespective of the complexities within
the retrieval engine. This uniformity proves paramount for users seeking reliability and
predictability in their interactions with the search engine [38].

Secondly, the wrapper plays a crucial role in fortifying the system against faults
and errors, rendering the overall user experience resilient and dependable. Fault tolerance is
a critical aspect, especially in the dynamic and often unpredictable environment of software

5https://www.bing.com/search
6https://bard.google.com/
7https://thehive.ai/apis/copyright-search
8https://www.tabnine.com/
9https://github.com/features/copilot
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development. By encapsulating the intricacies of the retrieval system, the search engine
shields users from potential disruptions, ensuring a seamless and uninterrupted search
process.

Beyond these fundamental functionalities, the search engine’s wrapper introduces
additional features to enhance ease of use, catering to the unique demands of various use
cases. These features are tailored to the specific needs of developers, whether they are
navigating the engine for code completion, plagiarism detection, or any of the myriad appli-
cations the code search engine supports. As we delve further into this report, we will dissect
the inner workings of both the retrieval system and the search engine wrapper, unraveling
the complexities that contribute to the efficiency and versatility of this indispensable tool in
the realm of software development [39, 38].

1.1 Motivation

Software development relies heavily on the reuse and adaptation of existing code snippets,
libraries, and frameworks. Programmers regularly face situations where they need to locate
code examples, API documentation, or open-source projects to expedite their development
process. In today’s software development landscape, programmers often encounter this
task of searching for relevant code snippets, libraries, or documentation to solve coding
challenges efficiently as rather daunting [17, 38, 39, 8, 70, 50]. Currently GitHub Copilot,
tabnine etc. tools exist as an extension to the preferred IDE or editor the developers use.
These extensions use generative models as backend to provide the code snippets whereas
sometimes a google search is preferred which by definition is a retrieval system as it queries
a database for relevant documents. Traditional retrieval systems, while useful for general
information retrieval, often fall short when it comes to retrieving accurate and contextually
relevant code-related results as it caters to general web searches and often produce an
overwhelming number of irrelevant or outdated results when used to search for code-related
information. [13] This limitation hampers the productivity and efficiency of developers.

At the end of 2022, OpenAI published chatGPT in their official website which is a
generative text model which can help people as search engines and even produce code
snippets to help developers. That being said generative models are predicting next to-
ken/word of its generated text based on their previous tokens/words it generated. Goldstein
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et al. [21], Borji [7] showed that is there is no real referencing within the document and
the generated texts may well be false or incorrect. It is worth mentioning that Retrieval
Augmented Generative (RAG) models are one of the most promising frontier of current
NLP research. It works in the following way:

1. There are two models under the RAG model hood, namely a dense passage retriever
and an autoregressive generative language model. The retriever model takes the
input query (such as a question or a prompt) and encodes it into a dense vector
representation.

2. The retriever model then uses maximum inner product search (MIPS) to find the top-K
documents from Wikipedia that have the highest similarity with the query vector.

3. The retrieved documents are passed to the generative model as additional context,
along with the input query.

4. The generative model generates an output sequence (such as an answer or a text)
based on the input query and the retrieved documents.

5. The generative model can either condition on the same retrieved documents across
the whole output sequence, or use different documents for each output token. This is
controlled by a RAG formulation parameter. [44]

The pursuit of automating the generation of computer programs to tackle intricate chal-
lenges stands as a longstanding aspiration within the realm of Artificial Intelligence (AI)
[54]. Recent years have marked a significant juncture, particularly with the burgeoning
prominence of Large Language Models (LLMs), wherein remarkable strides have been
witnessed in synthesizing code. Notably, this synthesized code not only remains per-
tinent but also boasts full functionality without necessitating further human intervention [11].

The advancements achieved in corollary domains such as program synthesis [14, 47],
program repair [6], code translation [73, 74], and code retrieval [86, 65] exert a profound
influence. They not only significantly enhance developer productivity [102] but also furnish
invaluable support to educators [19]. These developments signify a transformative phase
wherein AI innovations centered on code generation are poised to reshape the landscape of
software development and educational methodologies alike.

In spite of the anticipated ubiquity of such technological advancements, it is note-
worthy that their comprehensive evaluation remains a challenging endeavor. The assessment
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of these advancements has, more often than not, been conducted in a disparate manner,
primarily confined to a limited spectrum of programming languages, such as Python and
Java. This evaluation has been further constrained by an incomplete granularity level, often
confined to the realm of individual statements [29] or functions [30].

Furthermore, the existing evaluative efforts tend to be narrowly focused, concentrat-
ing on specific tasks such as program synthesis and translation. Notably, these evaluations
frequently lack the requisite fine-tuning data [5] or rely on simplistic metrics, such as
lexical n-gram based relevance, rather than capturing the essence of actual execution
dynamics [31]. The inadequacy of such evaluation methodologies raises concerns regarding
the comprehensive understanding and validation of the advancements under consideration.

In response to these challenges, we contribute to the discourse by providing a suc-
cinct analysis of the prevailing characteristics inherent in extant program evaluation
test-beds. Notably, our focus encompasses unit-level evaluations, as delineated in table 1.1.
The table compares the total number of unit test cases provided with the benchmarks.
Here ∞ means automated unit test generation by EvoSuite. N/A refers to unit tests not
openly available. For our retrieval tasks, each candidate is pre-evaluated against the test
cases. More overarching dataset comparisons are presented in section 2.4. This analytical
framework serves to illuminate the existing gaps and variations in the evaluation landscape,
offering valuable insights for the refinement and advancement of future evaluations in the
field of program generation, retrieval and related endeavors.

Table 1.1: Comparison of different execution based evaluation benchmarks.

Benchmark |La| |Unit Test|

TransCoder [73] 3 14,100
HumanEval [11] 1 1,325
HumanEval-x [83] 9 840
MBPP [5] 1 1,500
TransCoder-ST [74] 3 ∞
APPS [26] 1 22,711
MBXP [4] 10 1,500
CodeContests [47] 3 27,220∗

XCODEEVAL (ours)
– Classification tasks 11 -
– Generation tasks 11 62,798
– Retrieval tasks 17 62,798
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Another important aspect to consider is the development of different neural retrievers fol-
lowing the year 2017 after the mass adoption of transformer architecture [85]. Different
Bidirectional Encoder Representations from Transformer (BERT) [16, 18, 46] based models
were introduced which contributed to the neural retrievers in representing text in a meaning-
ful way from unstructured text. This allowed for end-to-end solutions for retrieval systems
as no text processing is required for it to work [22, 39, 8, 76, 36]. This directly motivates
to create an appropriate dataset with annotations for executability and functionality and
develop better language models with semantic understanding of code which can then be
used to build retrieval systems and generative models with superior code understanding.

1.2 Problem Statement

The purpose of the project is to create a large parallel corpus of programming language
data from online competitive programming websites, train a BERT based model to learn
embedding with retrieval and develop a scalable code retrieval system with high degree of
semantic understanding.

1.3 Project Contributions

1. Develop the frontend and backend server of a prototype code search engine.

2. Implement a scraper with lot of fail safe mechanism and download data from Code-
forces. Prepared a large dataset of ∼25M codes from this downloaded data called
XCODEEVAL which provides train, validation, and test datasets for 7 Code-Code,
NL-Code tasks.

3. Train BERT based dense passage retrievers with functional similarity annotated dataset
and evaluate with top-k accuracy.

4. Design a network flow based data selection technique.

5. Develop a distributed, extensible, secure solution for evaluating machine generated
code with unit tests in multiple programming languages

1.4 Outline

We discuss relevant background studies in chapter 2 starting with some history on informa-
tion retrieval and how neural retrievers became the state-of-the-art way to develop retrieval
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systems. Furthermore we discuss why a new dataset is needed for making any significant
progress in coding related tasks to be solved by language models. Chapter 3 describes
different components of the code search engine, briefly mention how the components are
developed with elaborate justification of the choices we made for our cause. Chapter 4
is an walk through of the execution-based evaluation we eluded in the introduction along
with the discussion on functional similarity which is the core concept defining relevance for
code retrieval. Then chapter 5 show how the dataset is prepared in details, chapter 6 show
the development of neural retriever with analysis of its performance. Finally in chapter 7
provides an walk through in the code search engine that is the wrapper over the retrieval
system we develop in previous chapter. Capabilities and limitations of this project as well as
future works and final thoughts are explained in the chapter 8.
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Chapter 2

Related Works

The prevalent works in the domain of our project are discussed as following: section 2.1
covers the study of the information retrieval; section 2.2 covers the work on neural network
models in learning a latent representation of documents (source code with more metadata)
which allows fine tuning the model for task specific datasets; section 2.3 covers the works on
generative language models. Furthermore, we compare the available code related datasets
with our own dataset (as shown in details in chapter 5) in table 2.1 and in section 2.4.

2.1 Retrieval Systems

Information retrieval (IR) is the process of finding and accessing relevant information
from a collection of documents. The history of IR can be traced back to the creation of
electromechanical searching devices in the late 19th and early 20th centuries, such as
the Mundaneum and the Memex [79]. The first computerized IR systems emerged in the
1950s, such as the Univac and SMART [79], which used simple keyword matching and
statistical techniques to rank documents. In the 1960s and 1970s, IR research focused on
developing more sophisticated models of document representation and retrieval, such as the
vector space model, the probabilistic model, and the Boolean model [15]. In the 1980s and
1990s, IR research expanded to deal with various types of documents and queries, such as
hypertext, multimedia, natural language, and speech. In the 2000s and 2010s, IR research
was influenced by the rise of the web and its challenges, such as scalability, diversity,
personalization, and evaluation.

In late 2017, neural retrievers, heralded for their superior performance over traditional
term-based counterparts like TF-IDF and BM25, have demonstrated efficacy across diverse
domains, particularly when ample training data is available [36, 43, 37]. However, the
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expensive annotation of retrieval datasets for novel tasks has spurred exploration into
methodologies that enhance neural retrievers in zero-shot scenarios. Contriever, an
unsupervised approach [32], pre-trains neural retrievers on unlabeled data, offering a
potential solution to the cost constraints associated with dataset annotation. Another strategy
involves leveraging large-scale supervised datasets, such as MS MARCO [58], to train a
single retrieval system, transferring the acquired knowledge to new datasets [32, 37, 60, 12].
However, challenges arise as these models often struggle to generalize beyond their training
data [27].

To overcome such limitations, a third paradigm emphasizes training specialized re-
trievers tailored to specific tasks, utilizing unlabeled corpora and leveraging another model’s
capabilities to autonomously generate necessary training data [88]. Notably, Hidey and
McKeown [27] employed task-specific templates and few-shot samples to automatically
generate in-domain training queries, selecting documents from the target corpus and
utilizing Fine-tuned Language Model (FLAN) as mentioned in [92]. Yet, this approach
often demands the use of extensive large language models and the training of distinct
retrievers, resulting in a slow and resource-intensive adaptation process.

Another noteworthy technique involves pre-training language models on source codes,
leveraging large-scale code corpora to develop general-purpose dense representations
applicable to various downstream tasks. This approach enhances both code understanding
and natural text comprehension, as demonstrated by studies such as Zhang et al. [97] and
Wang et al. [87]. The benefits extend to tasks like code summarization, documentation
generation, bug fixing, and automated code review, making it a promising technique with
cross-modal applicability.

In the realm of retrieval systems, the use of dense representation of text stands out as a
transformative technique. This method maps text into low-dimensional continuous vectors,
capturing semantic meaning and offering advantages over sparse and high-dimensional
representations like bag-of-words or TF-IDF. Dense representation overcomes vocabulary
mismatch challenges, facilitates efficient retrieval through Maximum Inner Product Search

(MIPS) algorithms and specialized hardware, and supports diverse scenarios such as
open-domain question answering and cross-lingual retrieval [49, 53].

9



2.2 Code Understanding

The CodeXGLUE benchmark, introduced by Lu et al. [52], addresses the multifaceted
landscape of code understanding through three fundamental tasks: defect detection,
clone detection, and code search. Defect detection is framed as a binary classification
task, as demonstrated by Zhou et al. [99], who present the Devign model evaluated on
prominent open-source C projects. Meanwhile, Russell et al. [75] focus on function-level
vulnerability detection using open-source C/C++ repositories. To delve deeper into code
semantics, Svajlenko et al. [81] propose the BigCloneBench benchmark, gauging the
similarity between code pairs for clone detection, derived from validated open-source Java
repositories. However, the adequacy of defect and clone detection for comprehensively
evaluating code semantics understanding has been contested [89, 23], primarily due to their
language-specific nature and limited coverage.

In contrast, code search encompasses semantic relevance in both code-to-code and
text-to-code contexts. Notably, Husain et al. [30] and the CodeSearchNet benchmark adopt
a code description or the first documentation as a text query to retrieve corresponding
functions. Recognizing the limitations of existing benchmarks, CodeXGLUE’s code search
considers semantic similarity for a given query code or code description [52, 30]. This
expansion aligns with a surge in datasets, prompting the release of various Language Models
(LM) and LLMs specifically tailored for code understanding. Inspired by the success of
transformer-based pre-trained LLMs such as BERT [16], GPT [67], and T5 [68] in generic
text datasets, the development of pre-trained LMs on code like CodeBERT and CodeT5 has
demonstrated significant prowess in both code comprehension and generation tasks [18, 89].
This evolution underscores the pivotal role of transformer-based pre-trained models in
advancing the understanding of code semantics.

The landscape of code understanding has witnessed a surge in popularity, primarily
propelled by the notable success of pre-trained LLMs in various coding tasks. Particularly,
decoder-only models, exemplified by works such as CodeFill [33] and CodeGen [59], along
with encoder-decoder models like CodeT5 [89], UnixCoder [23], and PLBART [2], have
demonstrated remarkable performances. Among the pinnacle achievers are PaLM [14] and
AlphaCode [47], surpassing the coding capabilities of the average human participant in
competition-level scenarios. This success has spurred researchers to push the boundaries of
code generation tasks, leading to the formulation of more challenging and factually intricate
objectives. These objectives manifest in two primary categories: code-to-code generation
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and text-to-code generation. As the field evolves, the focus extends beyond conventional
coding exercises, inspiring the development of tasks that demand a nuanced understanding
of code and its diverse applications.

2.3 Code Generation

In the realm of code-to-code generation tasks, such as automatic program repair (APR) [84]
and code translation [52], the conventional metric-based automatic evaluation measures
like BLEU [63], CodeBLEU [71], and exact match scores fall short in effectively assessing
the quality of generated code. Recognizing this limitation, Berabi et al. [6] have made a
significant contribution by introducing a comprehensive JavaScript patch repair dataset
derived from GitHub commits. Notably, they leverage a static analyzer, ESLint1, to
identify 52 distinct error types. Going beyond conventional evaluation metrics, their work
emphasizes the importance of introducing an error removal metric that considers diverse
forms of error fixes. This novel approach aims to enhance the reliability and feasibility of
code generation evaluation.

Addressing the intricacies of code semantic and syntactic evaluation, there is a growing
demand for execution-based evaluation methods, coupled with comprehensive test suites. A
noteworthy benchmark in the domain of Java APR is Defects4J [35], which evaluates the
correctness of fixes based on the ability to pass all relevant test cases and provide the desired
functionality. However, a notable drawback of Defects4J is its lack of a cohesive training
corpus. In response to this limitation, researchers commonly resort to constructing training
datasets using GitHub’s publicly available repositories, relying on bug-specific commit
messages [101]. Unfortunately, this heuristic-based approach introduces bug-irrelevant
commits and unrelated code pairs, significantly impacting the quality of the collected
training dataset [93]. As the field progresses, it becomes imperative to address such
challenges for a more accurate and robust evaluation of code generation tasks in natural
language processing research.

For text-to-code generation, the cornerstone dataset CONCODE [31] has emerged as a promi-
nent resource for advancing our understanding of the complex interplay between natural
language (NL) comments and Java code snippets. This dataset, renowned for its widespread
use in research and development, is meticulously curated to encompass a diverse array of

1https://eslint.org
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nl comments paired with corresponding Java code snippets. The dataset’s construction in-
volves the systematic scraping of code snippets from open-domain Java GitHub repositories,
thereby ensuring a representative and varied selection of real-world programming scenarios.
Notably, the inclusion of nl comments is accomplished through the judicious application
of heuristics designed to extract relevant information from Javadoc, showcasing a strategic
approach to capturing the nuanced relationship between human-readable explanations and
machine-executable code. By leveraging the CONCODE dataset, researchers gain access to
a rich and authentic repository of language and code interactions, fostering advancements in
the field of natural language processing (NLP) for code understanding [31].

2.4 Code Datasets

Several innovative efforts have been made to harness the wealth of publicly available
programming resources. One notable initiative is JuICe [1], which systematically gathers
Jupyter notebooks from GitHub, recognizing their potential as valuable repositories of
practical code implementations. Concurrently, CoNaLa [94] focuses on the aggregation
of Python and Java code snippets accompanied by natural language comments from the
expansive database of StackOverflow posts. Noteworthy is the commitment to enhancing
the overall quality of these datasets through the involvement of professional annotators.
Complementing this, the MoCoNaLa project [90] emerges as an extension of CoNaLa,
aiming to broaden its scope by incorporating support for a more diverse array of natural
languages. This collaborative pursuit signifies a multifaceted approach to building compre-
hensive and linguistically diverse code corpora, thereby advancing the understanding and
modeling of programming languages in a broader linguistic context.

The inadequacy of general lexical-based evaluation metrics in assessing the accuracy of
generated code is a recognized challenge. A noteworthy approach addressing this limitation
is the ODEX framework, as introduced by Wang et al. in their work on code execution
evaluation [91]. Unlike conventional metrics, ODEX adopts an execution-based evaluation
paradigm, relying on human-written test cases derived from diverse Python libraries. This
methodology has found widespread application in evaluating benchmarks within the Data
Science domain, exemplified by its use in DSP [10], DS-1000 [42], and Exe-DS [29].
Additionally, its utility extends to single-language settings, as evidenced by its incorporation
in general code generation benchmarks such as HumanEval [11], MBPP [5], and APPS [26].
Going beyond the confines of a single language, specialized benchmarks like multi-turn
MTPB [59] and multi-language CodeContests [47] also embrace the use of test cases and
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Table 2.1: Comparison between XCODEEVAL and other benchmarks and datasets.

Dataset |Train| |Test| |La| Task Type Evaluation Level Genre

Django [61] 16,000 1,805 1 Program Synthesis Lexical Local N/A
WikiSQL [98] 56,355 15,878 1 SQL Queries Lexical Modular SQL
Miceli Barone and Sennrich [55] 109,108 2,000 1 Synthesis, Summarization Lexical Local Github
CoNaLa [94] 2,379 500 2 Program Synthesis Lexical Local Stackoverflow: QA
CONCODE [31] 100,000 2,000 1 Program Synthesis Lexical Modular Github
Android [64] 26,600 3,546 1 Program Synthesis Lexical Local Map oriented, GitHub
CodeSearchNet [30] 6,452,446 99 6 Plain Text, Retrieval NDCG Modular Github
JuICe [1] 1,518,049 1,981 1 Notebook Cell Gen. Lexical Local Prog. assignment
TransCoder [73] 721MB 1,410 3 Program Translation Lexical Modular Github
HumanEval [11] - 164 1 Program Synthesis Execution Modular Interview Question
HumanEval-X [83] - 820 9 Synthesis & Translation Execution Modular Interview Question
MBPP [5] - 974 1 Program Synthesis Execution Modular Interview Question
CodeXGLUE [52] 2,840,000 759,000 9 10 Tasks Lexical Local N/A
AVATAR [3] 5,937 1,693 2 Program Translation Lexical Global Problem Solving
TFix [6] 84,846 10,504 1 Program Repair Lexical Local Github
CCSD [51] 84,316 6,533 1 Program Summarization Lexical Modular Linux Kernel
TL-CodeSum [28] 55,766 6,971 1 Program Summarization Lexical Modular Github
CodeNet [66] 8,906,769 2,783,365 55 Classification, similarity Lexical Global Problem Solving
TransCoder-ST [74] 333,542 103,488 3 Program Translation Execution Modular Github
DSP [10] - 1,119 1 Notebook Cell Gen. Execution Local Math and Data Science
MTPB [59] - 115 1 Multi-turn Code Gen. Execution Local Problem Solving
Exe-DS [29] 119,266 534 1 Notebook Cell Gen. Execution Local Data Science
DS-1000 [42] - 1,000 1 Notebook Cell Gen. Execution Local Data Science
MoCoNaLa [90] - 896 1 Program Synthesis Lexical Local StackOverflow
ARCADE [95] - 1,082 1 Notebook Cell Gen. Lexical Local Data Science
ODEX [91] - 945 1 Program Synthesis Execution Local StackOverflow
MBXP [4] - 13,877 10 Program Synthesis Execution Modular Interview Question
XLCoST [100] 496,333 45,394 7 10 Task Lexical Local, Global GitHub

DeepFix [25] 37,000 7,000 1 Program Repair Ececution Global Compile Error, Students
Defects4J [35] - 835 1 Program Repair Execution Local, Global N/A
APPS [26] 5,000 5,000 1 Program Synthesis Execution Global Interview Question
CodeContests [47] 4,432,447 32,181 3 Program Synthesis Execution Global Problem Solving
CoderEval [96] - 460 2 Program Synthesis Execution Modular, Global GitHub
Humanevalpack [57] - 6×164 6 Program Synthesis Execution Modular Interview Question
BioCoder [82] - 2,522 2 Program Synthesis Execution Modular, Global Github
CodeApex [20] - 706 1 3 tasks Execution Modular Online Judge platform

XCODEEVAL (ours) 19,915,150 159,464 17 7 Tasks, see table 5.3 Execution Global Problem Solving

exploit code execution as a pivotal component for enhanced evaluation. The incorporation
of execution-based assessment methods, as exemplified by ODEX, reflects a conscientious
effort within the NLP research community to establish more robust and comprehensive
evaluation frameworks for generated code.

Comparison between XCODEEVAL and other benchmarks are compiled in table 2.1. For
simplicity, we combine NL-code generation and code completion as Program Synthesis.
Compared to others, XCODEEVAL offers the largest suite of training and test data and a
more comprehensive set of test cases. Evaluation levels Global, Modular, and Local refer to
document, function, and statements level evaluation, respectively. We elaborate more on
these evaluation levels in our discussion of executability in chapter 4.
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Chapter 3

System Architecture

Commencing our endeavor, the primary objective is to develop a sophisticated code search
engine that offers a responsive interface, adept at furnishing functionally pertinent codes
from an expansive database. This search engine functions as a wrapper encapsulating the
core code retrieval system, strategically designed to enhance accessibility, user-friendliness,
and customization to cater to specific requirements.

At the heart of our retrieval system lies information retrieval, a pivotal process that
necessitates the delineation of a query for retrieval purposes and a scrupulously curated
database from which results are extracted. This intricate process mandates the incorporation
of two key components: a user interface facilitating query input, seamlessly handled by our
frontend, and an extensive database housing an array of codes to proficiently respond to
queries, carefully organized within the dataset we construct. The ensuing challenge then lies
in the delicate definition of relevance and the subsequent ranking of documents in response
to a given query, a task that hinges on an intermediate phase of indexing, further elucidated
in section 3.2.

As expounded in chapter 5, our data acquisition strategy involves the extraction of data
from Codeforces, wherein each code snippet is tagged with a distinctive problem_id.
This identifier serves as a criterion for discerning functional similarity, as it enables the
assessment of whether two codes constitute correct solutions to a shared problem. Though,
this evaluative approach is merely a facet of gauging our model’s performance, it is also of
utmost important concept for preparing semantically meaningful dataset for training. We
dedicated chapter 4 solely for the discussion on executability and functional similarity of
codes.
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Figure 3.1: Functional block diagram of the search engine.

To evaluate the functionality of our system, we employ an encoder language model
to generate real vector embeddings for individual codes, subsequently gauging their
functional congruence by measuring the dot product as the inner product of said embeddings.
This approach not only facilitates a exact evaluation but also defines the metric induced
from the inner product, thereby establishing a robust framework for performance assessment.

In summation, the comprehensive project can be bifurcated into four distinct yet intercon-
nected blocks, each possessing its own life cycle. Commencing with a assiduously crafted
web scraper functioning as the data provider, we transition to a machine learning system
responsible for updating the dense retrieval model, denoted as the indexer. Subsequently, a
ranker comes into play, employing FAISS to refine the ranking process. Finally, a server
equipped with a web interface is implemented to facilitate seamless user interaction. Fig-
ure 3.1 encapsulates this intricate orchestration, presenting a simplified yet comprehensive
functional block diagram of the search engine.

3.1 Web scraper: building dataset

In the realm of retrievers, the significance of possessing an extensive retrieval corpus
or database cannot be overstated. As elucidated by Google1, the Google Search index,
comprising hundreds of billions of webpages, surpasses a colossal size of 100 petabytes.

1https://www.google.com/search/howsearchworks/how-search-works/
organizing-information
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Figure 3.2: Principle of database indexing.

This colossal scale underscores the indispensability of a vast corpus for efficient indexing.

For code retrieval systems, source codes can be procured from diverse public repositories
such as GitHub, GitLab, and competitive programming platforms like Codeforces, Aizu,
AtCoder, and others. While general crawlers may yield noisy data due to variations in data
policies and structures across websites, bespoke crawlers tailored for specific platforms
can ensure the acquisition of high-quality data, complete with well-structured annotations.
However, it is imperative to acknowledge that specialized crawlers necessitate vigilant
maintenance owing to the dynamic nature of website layouts and data representations.
Additionally, the pursuit of amassing copious amounts of data mandates scalable storage
solutions and formidable computational resources. Notably, Codeforces emerges as a
preeminent repository, renowned for its richness in both the quality and quantity of available
data. Furthermore, the flexibility to continuously augment the database by downloading
additional data aligns with the standard practices observed in the crawling and indexing
pipelines integral to any search engine architecture.

In the context of this comprehensive perspective, a dedicated scraper was meticulously
developed for Codeforces, resulting in the extraction of a substantial 660 gigabytes of
data. Subsequent refinement processes culminated in a curated collection of raw source
codes, totaling 40 gigabytes and spanning contributions from diverse contestants addressing
7,514 problems hosted on Codeforces. This concerted effort facilitated the establishment of
XCODEEVAL. A detailed exploration of the scraper, data processing methodologies, and
pertinent statistical analyses is presented in chapter 5. Noteworthy inclusions within the
dataset, such as annotations, enable the assessment of the functional relevance of query re-
sponses generated by the retriever, thus enhancing the robustness of the research framework.
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3.2 Indexer

The foundational objective of indexing within the realm of database management is
the computation of derived values for individual rows or documents, culminating in a
systematic enhancement of search operations within the database. This pivotal functionality
is succinctly encapsulated in figure 3.2, illustrating the systematic derivation of values for
each document within the database. To expound further, consider the exemplar scenario
wherein a user data table incorporates a birth date field, and the objective is to ascertain
the number of users falling within a specific age range. This necessitates the derivation of
age values for each user, thereby facilitating subsequent counting operations within the
designated age range.

In our specific context, the derivation involves the computation of real vectors for each
code, which are subsequently utilized for ordering rows based on the maximum inner
product. The choice to employ real vectors and seek the maximum inner product warrants
justification. As delineated in chapter 2, early retrieval systems extensively relied on diverse
text processing algorithms and metrics to compute various derived values, instrumental
in identifying functionally analogous documents. However, inherent challenges surface
with this approach, primarily encompassing the potential dissimilarity between two codes
that employ disparate algorithms, variable names, or coding patterns while addressing the
same problem. Albeit extant text algorithms proficiently handle variable name mangling
and coding pattern variations, they falter in discerning disparate codes that solve identical
algorithmic challenge without executing the actual code.

A secondary impediment lies in the multi-stage nature of such systems, an attribute
that distinguishes them from the end-to-end solutions proffered by neural retrievers. As
substantiated by the comparative analysis in chapter 2, neural retrievers, particularly those
grounded in neural architectures, eclipse their non-neural counterparts. The advantage lies
in the provision of an end-to-end solution, obviating the explicit extraction of features from
codes. Consequently, the adoption of neural retrievers becomes imperative.

This necessitates the calculation of a real vector, termed an embedding, for each code
through BERT-based models, colloquially referred to as encoders. The nomenclature aligns
with their capacity to encode all pertinent attributes from the textual content into a real
vector. A pertinent query arises: why opt for BERT-based models, specifically masked
language models, over alternatives such as GPT or T5 models, categorized as autoregressive
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language models? The answer lies in the mathematical representation inherent to the
language model architectures.

BERT models, in contrast to GPT and T5, predict token probabilities based on both prefix
and suffix information of the token. This bidirectional contextual representation enables
BERT models to extract features that represent contextual relations more comprehensively,
all achieved with a reduced number of model parameters. Consequently, the advantage of
training smaller, faster models is realized, with the added benefit of BERT training being
more parallelizable compared to autoregressive counterparts, thereby expediting the training
process significantly [69].

The experimental endeavors undertaken in this research involved the refinement of
BERT-based models, specifically CodeBERT and Starencoder. These models are designed
to encode textual codes into an embedding within the vector space R768, constituting a
dense representation of the code. The training methodology employed was premised on the
notion that the vectors corresponding to similar codes would exhibit greater proximity than
those representing dissimilar codes. In essence, the objective function guiding this process
is identified as the Inverse Cloze Test (ICT), a term explicated further in chapter 6. The
fundamental principle underlying the ICT framework is the optimization for increased in-
ner product values between vectors representing similar codes, in contrast to dissimilar ones.

The adoption of a dense representation for textual or code data is a conceptually ingenious
strategy, poised to enhance the discrimination between texts that may be syntactically
proximate but lack semantic similarity. A comprehensive exploration of the intricacies
involved in the training regimen and the consequential outcomes is presented in chapter 6,
providing a nuanced understanding of the methodologies employed and the efficacy of the
implemented models.

3.3 Ranker

The efficacy of a retrieval system hinges upon its ability to swiftly navigate through an
extensive dataset. Within the retrieval system, the role of a ranker is paramount; it diligently
searches and assesses the relevance of documents by employing efficient similarity scoring
mechanisms. In alignment with our established preferences, the selection of a ranker
becomes pivotal, necessitating a system adept at probing for akin embeddings within the
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embedding space.

Inverse Cloze Test objective serves as our guiding principle, ensuring that embeddings
corresponding to similar vectors exhibit higher inner product values compared to their
dissimilar counterparts within the embedding space. Consequently, the chosen ranker must
embody an algorithm characterized by efficiency in executing Maximum Inner Product
Search (MIPS) [80, 24]. To this end, FAISS (Facebook AI Similarity Search) [34] emerges
as a compelling choice, proficiently navigating encoded vectors (embeddings) within the
indexed corpus to identify embeddings with the highest inner product values in relation to
the query vector.

The development of FAISS by Johnson et al. [34] builds upon prior contributions by
Shrivastava and Li [80] and Guo et al. [24], amalgamating diverse techniques and algo-
rithms. FAISS achieves state-of-the-art efficiency by facilitating MIPS with GPUs at
an unprecedented billion-document scale. This accomplishment is underpinned by the
integration of innovative data structures, pre-computations, and quantization techniques.
The culmination of these advancements yields a distributed k-NN (k-Nearest Neighbors)
algorithm tailored for searching nearest neighbors within high-dimensional real vector
spaces. Notably, FAISS elucidates the intrinsic connection between MIPS and nearest
neighbors in the embedding space, thereby substantiating how k-NN resolution elegantly
addresses the MIPS problem.

3.4 Server

Within our code search engine architecture, we have sedulously devised a comprehensive
frontend and backend infrastructure to serve as the indispensable wrapper over our
sophisticated retrieval system. This symbiotic relationship between the frontend and
backend components constitutes the backbone of our endeavor, seamlessly integrating
cutting-edge technologies to ensure a robust and user-friendly experience.

The backend, positioned as the linchpin connecting our FAISS ranker to the frontend web
interface, plays a pivotal role in facilitating user-system interactions. This critical element is
responsible for orchestrating the retrieval process, delving into the indexed corpus/database
with unparalleled efficiency. Its seamless operation enables it to promptly respond to
HTTP requests, appending invaluable additional metadata to the retrieved results. This
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augmentation is strategically designed to enhance visualization on the frontend, offering
users a refined understanding of the retrieved data.

On the frontend, we have crafted a sophisticated web interface that serves as the gateway for
users to interact with the system. At its core, this interface features an intuitive user input
field, allowing users to input query text seamlessly. The subsequent presentation of search
results occurs in a structured list format, accompanied by thoroughly curated additional
metadata. This metadata serves a dual purpose – not only does it contribute to justifying the
accuracy of the retrieved results but also enriches the user’s understanding of the underlying
data.

To further elevate the user experience, our web interface incorporates insightful plots
that visually articulate the similarity between the query and results. These plots leverage
various accuracy measurements, providing users with a multidimensional perspective on the
efficacy of the search operation. The integration of such visual aids not only enhances the
interpretability of results but also aligns with our commitment to delivering a transparent
and comprehensible user experience.

Chapter 7 serves as an exhaustive repository of knowledge, offering a accurate and elaborate
description of both the frontend and backend servers. This section provides an in-depth
exploration of the intricacies inherent in our architecture, elucidating the synergies between
the frontend and backend components that form the backbone of our innovative code search
engine.
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Chapter 4

Executability

Executability of codes is the most vital aspect of both the dataset and the retrieval model
we present in this book. We define executability of code as the ability to measure syntactic
correctness and functional correctness. Both correctness are essential measurement for
any code [72]. The syntactic correctness for a code means it conforms to the grammar
presented by the compiler version of the language and thus equivalently measures whether
it compiles or not. The functional correctness or algorithmic correctness on the other
hand denote whether the code solves a particular problem or not within specified time and
memory complexity. Although code capabilities of LLMs were measured with lexical
or syntactic algorithms, de facto executability is the only natural way to evaluate codes
generated/retrieved by LLMs. We call the evaluation frameworks that measure executability
the execution-based evaluation frameworks. We further divide the execution-based
evaluation frameworks into three categories as follows:

1. Modular: It can measure correctness for individual functions. Such frameworks
inject the function to be tested in a template code and then successful termination of
the executable represents correctness. Function name is predefined in this case.

2. Local: Here the test code comprises of several statements which is then injected in the
template code. Variable and function names are predefined in these cases too. Similar
to modular, successful termination of the code represent correctness.

3. Global: this frameworks can evaluate only a complete program. There is no template
code. To test correctness of any code, one needs to have the proper collection of unit
tests that can rigorously measure the correctness of the code. A unit test represent
a input and expected output pair and during evaluation correctness is implied if
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providing the input to the executable produces the expected output. By a proper
collection of unit tests we mean a list of unit tests that covers all sort of corner cases
from algorithmic sense.

The key aspect of XCODEEVAL dataset is offering unit tests for all data in validation and
test splits for the tasks. This feature makes our dataset execution base evaluation compatible.
But there is no available global execution-based evaluation framework publicly available, let
alone being secure or multilingual. This inspired the development of ExecEval1. Before
we dive in the discussion on ExecEval, we will define functional similarity between two
codes or a natural description and a code which is paramount to the evaluation of retrieval
performance on our dataset.

4.1 Functional Similarity

Mathematically speaking similarity is an equivalence relation (i.e. reflexive, symmetric,
transitive) and a popular theorem states that having the equivalence classes of the relation
partitions the set. According to Sajnani [78], two codes are functional clones if they
implement the same functionality. This implies the codes have same time and memory
complexity. This is indeed an equivalence relation on any set of codes (trivially any code
belongs to its own equivalence class) [48]. From technical perspective, implementation
details of the codes implementing same algorithm and hardware states during executing
those codes can result in different execution time and memory consumption. This poses an
unavoidable obstacle for judging functional clones.

We need a definition of relevance for code retrieval and we want the definition to be motivated
by both executability and equivalence of functional clones. This is solved by defining two
codes functionally similar if they are the correct solution for same problem (an algorithmic
challenge with a natural text description). Problem will be formally defined in section 5.1.
Informally, every code have an unique identifier denoting an algorithmic challenge and an
execution outcome of whether the code is a correct or not. This is again an equivalence
relation as every code belongs to only one problem. This attribute in the dataset allows the
performance evaluation of retrieval based on functional similarity of codes. Analogously a
natural language description and a code is defined to be functionally similar if the code is a
correct solution for the description. Via the same annotated attributes for code-code case,

1https://github.com/ntunlp/ExecEval
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nl-code functional similarity can be measured while evaluating any retrieval model with
XCODEEVAL.

4.2 ExecEval

The latest trend in code generation is to move to a new metric called pass@k backed by an
execution-based evaluation framework to capture the functional correctness of the generated
code instead of using n-gram matching algorithms capturing the syntactic similarity such
as codebleu [41, 11]. Two challenges emerge in moving to a complete execution-based
evaluation framework: firstly one needs to have unit tests for the generative tasks, secondly
a execution framework that enables compiling and executing arbitrarily generated code in
specific languages. Chen et al. [11] only implemented the support for python and function
level execution. XCODEEVALhas the unit tests for validation and test splits of all generative
tasks, which solves the first challenge in execution-based evaluation.

To solve the second challenge, which is an essential requirement for execution-based
evaluation in different programming languages is the availability of a secure and scalable
framework [9]. We developed a distributed, extensible, secured, dockerized execution engine
named ExecEval. It offers the solution for evaluating programs with unit tests in multiple
programming languages. With its capacity to support 44 compiler/interpreter versions in
11 different languages of XCODEEVAL , ExecEval offers a versatile and comprehensive
approach to program evaluation. Table 4.1 shows the currently supported list of compilers
and interpreters. The engine is distributed as a secure Docker image, ensuring the safe
and efficient execution of potentially malicious generated programs such as fork bomb,
arbitrary file system i/o etc. This feature makes it an ideal tool for researchers who require
a trustworthy and secure environment to evaluate their code. It also provides scripts to
generate pass@k reports for codes generated against the generative tasks offered through
XCODEEVAL. In addition, ExecEval supports easy integration of new compilers and
interpreters with custom execution flags (flags can also be changed at runtime).

4.2.1 Architecture

ExecEval is hosted as a HTTP server. It exposes two APIs, one for list of supported
compiler versions (GET), one for executing any code (POST). The docker container is built
over ubuntu base image and the compiler versions in table 4.1 are installed during build
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Table 4.1: Supported languages and their versions in ExecEval.

Language compiler Supported Versions
Ruby ruby 3.0.2p107 Ruby 3
Javascript node.js v16.17.1 Node.js v16.17.1
Go go1.19.2 Go 1.19
C++ gcc 12.1.0 GNU C++17, GNU C++20, GNU C++11,

GNU C++14, GNU C++17, GNU C++0x
clang 14.0.0 Clang++17, Clang++20

C gcc 12.1.0 GNU C11, GNU C
Java java 19.0.2 Java 6, Java 7, Java 17, Java 11, Java 8
Python PyPy 7.3.9 with GCC 10.2.1 PyPy 3.9.12, PyPy 2.7.18,

Python 2.7.18 Python 2.7.18
Python 3.11.0rc1 Python 3.11

C# Mono JIT compiler version 6.12.0.182 Mono C# 6.12
PHP PHP 8.1.2 PHP 8.1
Rust rustc 1.67.1 Rust 2021, Rust 2018, Rust 2015
Kotlin Kotlin 1.7.20 Kotlin 1.7.20

time. Gunicorn2 takes Flask app objects and spawn workers according to user defined ‘num
workers’. When a POST request to execute a code is received, a subprocess is initiated to
compile the code and then another subprocess execute the executable generated in previous
step. Prlimit3 and seccomp4 is used to restrict access within predefined boundaries to make
it secure. We run the executable once for each unit test provided in the POST request. Input
is provided through stdin and stdout is read and parsed to match with the expected output of
the unit test. ExecEval responds with execution outcome for each of the unit tests and a
solution is considered functionally correct if ExecEval reports PASSED for all of the unit
tests.

4.2.2 Execution Outcome

During compiling the code and executing the executable, several scenario can occur. These
scenarios are listed below along with the execution outcome that will be reported by
ExecEval.

• COMPILATION ERROR: The program fails to compile or run due to a syntax error.

• RUNTIME ERROR: The program successfully compiles but fails during runtime due
to native environment issues (i.e., asserts, division-by-zero, heap/stack overflow).

2https://gunicorn.org/
3https://man7.org/linux/man-pages/man1/prlimit.1.html
4https://man7.org/linux/man-pages/man2/seccomp.2.html
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• MEMORY LIMIT EXCEEDED: The program occupies more memory than the mem-
ory limit for it during execution.

• TIME LIMIT EXCEEDED: The program requires more time than the limit to pro-
duce an output for an unit test.

• WRONG ANSWER: The program successfully compiles (or interprets) and generates
an output but fails to produce a correct answer for the unit tests, potentially having
logical errors.

• PASSED: A solution that successfully pass all the unit tests. The program will be
flagged as buggy (1-5) even when it fails on a single unit test.
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Chapter 5

Dataset Preparation

5.1 Data Representation and Relations

To address the limitations mentioned on section 2.4, and drive further advancements in the
creation of more general-purpose LLMs for problem solving, we introduce XCODEEVAL,
the largest executable multilingual multitask benchmark to date consisting of 25M coding
examples from about 7.5K unique algorithmic problems. It covers up to 17 programming
languages with the parallelism of multilingual data which can benefit both mono- and
multi-lingual code intelligence applications. It features a total of 7 tasks involving code
understanding, generation, translation and retrieval, and wherever appropriate it employs
an execution-based evaluation protocol. A detailed documentation of the dataset will be
presented in this chapter. Figure 5.1 shows an example from XCODEEVAL; it includes a
problem description in natural language, a buggy and bug-free solution to the problem, and
relevant metadata such as difficulty level, language, problem tags (e.g., brute force).

The dataset prepared from codes downloaded from Codeforces along with various metadata.
Codeforces is an online competitive programming platform that hosts contests on a regular
basis. Formally speaking, each contest Ci has a set of problems Pj ∈ P (set of all problems),
and each problem has a set of submissions Sk ∈ S (set of all submissions). Each submission
belongs to an unique user Ul of Codeforces. Also each problem is annotated with a list of
algorithmic techniques here called tags Tj ⊂ T , the set of all tags. Figure 5.1 shows an
example of a submission and with the problem.

Figure 5.1 presents an example of a problem along with a correct submission, and a wrong
submission. Each problem includes a natural language description, input, and output
description, and a few sample i/o examples. It also includes relevant meta-information such
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Figure 5.1: An example of a problem along with a correct submission, and a wrong
submission.

as language, difficulty level (800 in the figure), problem tags (e.g., brute force, math), and
a note (explanation of i/o). It also contains a number hidden unit tests (not shown in the
figure) against which one can evaluate the corresponding code. For example, although the
code at the left gives the correct answer to the given input, the solution is actually incorrect.

To better grasp the data representation of contest, problem, submission, and user some
entities and relations between them are defined here. All the entities and attributes used
by Codeforces will not be defined here rather only the ones that are using in preparing the
dataset, also such information is published publicly1. Figure 5.2 shows the ER diagram
relevant to this project. The entities are defined below.

• Problem: A text description of an algorithmic task with i/o specification according to
which a user has to write a solution code in any supported programming languages.
Has a unique problem id, contest id, and a list of tags. Here tags come from a list of 37
algorithms and techniques. The list of tags for the problem represents the algorithms
and techniques needed for solving the problem.

1https://codeforces.com/apiHelp/objects
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Figure 5.2: Minimal ER diagram of Codeforces database.

• Submission: A text code written in any supported programming language by an unique
user as an attempt at solving a unique problem. It has an unique submission id. It also
has a verdict justifying the code as being correct (referred to as Accepted/OK/PASSED
in later parts) or incorrect (anything other than Accepted/OK/PASSED).

• Contest: A collection of problems along with their submissions and other statistical
data. It has an unique contest id.

With the above entities available in structured way at Codeforces, the aim is to download
the problems and submissions to prepare nl-code, code-code datasets utilizing the relations
of the entities to improve quality of the downloaded data in the sense of maximizing the
coverage of different attributes.

5.2 Overview of Scraping Architecture

This section provides a deep dive into the scraper developed for the download. It depends
on the following technologies: Scrapy, tor, privoxy. Privoxy service upon receiving https
requests and converts them to SOCKS5 request, which can then be processed by the tor
network. The architecture of the scraper is adopted from scrapy framework with some
modifications to improve the fail safe mechanisms implemented by the scraper.
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Figure 5.3: Architecture of the scraper.

The data flow of the scraper is controlled by the engine in figure 5.3. The engine uses
Python’s twisted library to run an event loop and hence allows asynchronous execution
of python code, and in turn allows parallel downloads. The general control flows is as
follows:

The web crawling process begins with the spider initiating a crawl request to the engine. The
engine then places the request in a scheduler, a priority queue manager storing requests for
crawling. Subsequently, the engine retrieves the next request from the scheduler and directs
it to the tor middleware, which manages request counts, resets counters at specific intervals,
and renews the tor circuit. Following the tor middleware, the request traverses a http proxy
middleware, utilizing the Privoxy server URL as the http proxy, and is then forwarded to the
downloader. The downloader, upon completing the page download, generates a response
and forwards it to the engine. The engine, in turn, sends the response to the retry middleware
for validation; unsuccessful validations prompt the request to be resent to the engine, while
successful validations result in the response being sent to the spider for further processing.
The spider processes the response, extracting JSON data (scraped items) and generating new
requests for the engine. The engine sends items to the item pipeline, enqueues requests in
the scheduler, and writes items to a disk file. This process iterates until no further requests
remain in the scheduler.
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In light of this architecture, the algorithm to generate sequence of requests at the spider is as
follows:

1. Iterate over all contest ids (natural number upto some N and download the list of
submissions metadata for the contest.

2. Partition the list of submission metadata into list of submission metadata per problem.

3. For each partition, use algorithm 1 to get the submissions download.

4. Return the requests corresponding to the newly selected submissions for download.

Algorithm 1 Algorithm to select submissions to download
1: X: List of submission metadata for any given problem, V list of bot users to ignore, n

number of users to limit.
2: Y ← ∅
3: Let L be the programming languages available in X .
4: for all lang ∈ L do
5: Let Xlang = {x ∈ X : x uses language ‘lang’}
6: Let U be the users in Xlang who solved the problem and not in V .
7: Let c : U −→ N defined as c(u) = number of submissions used to solve the problem.

8: Let U ′ be the ordered set from U with the ordering defined by ∀a, b ∈ U, c(a) <
c(b) =⇒ a < b.

9: Let F be the first n users from U ′.
10: Y ← Y ∪ {x ∈ Xlang : x.user ∈ F}
11: end for
12: return Y

In this case, N = 1760. After downloading all valid submissions for N contests, the
submissions were appended to a file in jsonl format. A total of ∼25M submissions are
downloaded for ∼9K problems along with the hidden unit tests used to test the correctness
of the code in the submission. It took 660GB on the disk to store the raw data. The next
section covers the distribution of values across different attributes of the downloaded data.

5.3 Statistics of Raw Data

Here are some interesting and noteworthy statistics from the raw data. For rest of this chapter
we will call passed submissions as pure in the sense that the code in those submissions are
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Table 5.1: Statistics of basic quantities of the downloaded raw data.

Data Value

Submissions 25,097,955
Submissions of language of interest 24,576,186
Accepted (pure) submissions 7,014,519
Problems 9,081
Problems with rating 7,821
Tags 37
Interactive problems 151
Submissions of interactive problem 418,564
Clean code size (in GB) 39.82

rigorously asserted by Codeforces as the correct solution for their respective problems, and
impure otherwise. Mixed submissions will mean both pure and impure submissions are
present.
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In figure 5.4, a comprehensive overview of the distribution of submissions across all
language compiler versions is presented. The data encompasses a total of 68 compiler
version codes, providing a rich dataset comprising approximately 25 million codes. This
extensive compilation lays the foundation for a thorough analysis of language diversity and
usage patterns within the dataset.

Moving to figure 5.5, an insightful representation of the distribution of submissions across
major programming languages is showcased. The chart lists 17 languages pivotal for
generating code-code and nl-code datasets. Here, the term "major" signifies the substantial
presence of submissions under these languages within the downloaded dataset. This
exploration of major languages serves as a key aspect in understanding the linguistic
landscape of the compiled data.

Figure 5.6 refines the analysis by providing a focused examination of the distribution of
pure submissions across major language compiler versions. The figure meticulously lists
49 compiler versions belonging to the 17 major languages identified earlier. This detailed
breakdown contributes to a nuanced understanding of the prevalence and distribution of
submissions within specific languages.

The language coverage of the entire dataset is commendable, with a diverse array of
49 compiler versions spanning 17 major programming languages. This compilation
constitutes a substantial volume of approximately 25 million mixed submissions, among
which approximately 7 million are deemed pure. These findings are graphically depicted
in figures 5.4 to 5.6, emphasizing the intricate interplay between language usage and
submission types.

In light of these observations, there is a compelling motivation to harness the richness of
this dataset for the creation of multilingual datasets. The robust representation of various
languages and compiler versions makes this dataset an invaluable resource for researchers
and practitioners seeking to explore and develop multilingual programming datasets.
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In figure 5.7, a comprehensive portrayal emerges as we delve into the intricate landscape of
mixed submissions, totaling approximately 25 million, distributed across a rich spectrum of
37 distinctive tags. This visual representation not only encapsulates the sheer magnitude of
mixed submissions but also provides a granular view of their dispersion among the various
tags Tj embedded within the dataset.

Meanwhile, figure 5.8 outlines the distribution of roughly 7 million pure submissions across
the same array of 37 tags T . This nuanced exploration sheds light on the prevalence of
untainted contributions within each tag, offering insights into the diverse array of topics
encapsulated by these pure submissions.

Furthermore, figure 5.9 offers an insightful perspective on the distribution of problems
across the expansive spectrum of tags. The uniqueness of this representation lies in its
consideration of the multifaceted nature of problems, counting them once for each tag to
which they belong. A total of 7821 problems P with associated tags are examined, pro-
viding a comprehensive view of the interplay between problems and their corresponding tags.

Upon synthesizing the information from Figures 5.7, 5.8, and 5.9, it becomes evident
that the 37 tags under consideration serve as a fundamental framework for categorizing
algorithmic techniques and data structures. These tags, as illustrated by the visualizations,
offer a structured lens through which the vast expanse of submissions and problems can be
comprehended. This becomes particularly salient in the context of typical computer science
curricula, where these algorithmic techniques form the bedrock of knowledge dissemination.

In conclusion, the triad of visualizations encapsulates the intricate relationship between sub-
missions, problems, and tags, providing a holistic view that is indispensable for researchers
and practitioners alike. The narrative unfolds within the realm of fundamental computer
science concepts, offering a valuable resource for those seeking a deeper understanding of
the intricacies inherent in algorithmic and data structure landscapes.
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Delving into the intricate world of problem difficulty assessment on Codeforces, the
investigation into the distribution of problems across various difficulty ratings unveils a
compelling narrative. A difficulty rating of−1 denotes an absence of an assigned rating for a
given problem. Ergo, the total number of problems considered in this context excludes those
falling under the −1 difficulty rating, elucidating a more focused analysis in figure 5.10.

Moreover, the exploration extends beyond mere problem distribution to encompass the
distribution of mixed submissions across these diverse difficulty ratings. Similar to the
aforementioned scenario, problems bearing a difficulty rating of −1 are omitted from
consideration in figure 5.11, ensuring a coherent evaluation.

The amalgamation of approximately 7.8K difficulty-rated problems, as illustrated in both
figure 5.10 and figure 5.11, heralds a pivotal opportunity. This corpus of problems serves as
a robust benchmark against which the performance of any generative model attempting to
solve these conundrums across the difficulty spectrum can be meticulously measured and
scrutinized.

In essence, this rich dataset not only illuminates the landscape of problem distribution
but also serves as a formidable yardstick for evaluating the efficacy and adaptability of
generative models in tackling challenges of varying complexity within the Codeforces
domain.
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In the examination of Codeforces data, an analysis encompassing approximately 25 million
submissions is conducted, detailing the distribution across various verdicts. The specific
verdicts assigned by Codeforces to individual code submissions, elucidating the outcomes
derived from the execution against unit tests within their system, are encapsulated in
figure 5.12.

Zooming in on submissions coded in C++, a focused investigation unveils the distribution of
the number of submissions across all verdicts. As depicted in figures 5.4 to 5.6, it becomes
evident that C++ exhibits a significantly higher number of mixed submissions, surpassing
those in other programming languages by several orders of magnitude, as illustrated in
figure 5.13.

Further delving into the temporal aspect, an analysis of approximately 5.5 million timelines
is conducted, emphasizing the distribution across different timeline lengths. Each timeline
encapsulates the chronological sequence of submissions leading to the moment when a
particular user’s submission attains an "OK" verdict for a specific problem. This exploration
is intricately visualized in figure 5.14.

The culmination of insights from the verdict distribution (figures 5.12 and 5.13) and
timeline analysis (figure 5.14) substantiates the premise that a robust dataset for the task of
automatic program repair can be systematically constructed. These findings underscore the
potential of leveraging Codeforces data to advance research and development in the realm
of automatic program repair, showcasing the diverse patterns and characteristics inherent in
the submissions and their associated execution outcomes over time.
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In figure 5.15, we present a comprehensive analysis of the distribution of approximately
25 million mixed submissions based on the number of tokens. Tokens, in this context, are
defined as the count of white-space separated substrings in a given code. The distribution
provides valuable insights into the token lengths prevalent in the dataset, facilitating a
nuanced understanding of the code structure and complexity.

Furthermore, figure 5.16 offers a cumulative perspective on the same dataset, depicting
the accumulation of mixed submissions across different token ranges. Again, tokens are
delineated as the number of white-space separated substrings in the code. This cumulative
representation aids in identifying trends in the dataset and highlights the overall distribution
of submissions as token length increases.

An examination of figures 5.15 and 5.16 reveals noteworthy findings. Specifically, more
than 20 million submissions fall within the 500-token threshold, indicating a significant
portion of the dataset with relatively concise code snippets. Furthermore, a substantial
24 million submissions are observed within the 1000-token range. This implies that
the majority of submissions can be effectively handled by contemporary state-of-the-art
Language Model Models (LLMs) that have demonstrated proficiency in processing code
snippets of comparable lengths.

In summary, the visualizations in figures 5.15 and 5.16 underscore the manageable nature of
the dataset in terms of token lengths. These insights are crucial for guiding the selection
and optimization of LLMs for tasks associated with the given dataset, ensuring efficient and
effective processing of mixed submissions in the context of white-space separated token
counts.
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Figure 5.17: Distribution of number of translation pairs across pairs of languages limiting
submissions with token length ≤ 500 with tokens defined in figure 5.15.
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Figure 5.18: Distribution of number of translation pairs across pairs of languages limiting
submissions with token length ≤ 1000.
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We now delve into the intricate landscape of translation pairs within the context of limited
token lengths. Our investigation focuses on the distribution of the number of translation
pairs across pairs of languages, specifically constraining submissions with a token length not
exceeding 500, as elucidated by the token definitions in figure 5.15. The ensuing insights
are encapsulated in the heatmap visualization presented in figure 5.17.

Furthermore, we extend our scrutiny to a broader spectrum by considering token lengths up
to 1000. The distribution of translation pairs across pairs of languages under this extended
constraint is portrayed in figure 5.18, providing a more comprehensive perspective on the
interplay between token limitations and translation pairs.

It is essential to underscore that our approach to pairing submissions adheres to the
principle of functional equivalence, as expounded in section 4.1. Functionally equivalent
solutions, producing identical outputs for identical inputs, are considered interchangeable.
Consequently, this equivalence criterion allows us to form translation pairs by juxtaposing
any two submissions addressing the same problem but articulated in different languages.

The visual representations in figures 5.17 and 5.18 bring to light a fascinating observation
– the considerable abundance of potential translation pairs. Astonishingly, the number
of such pairs reaches approximately 1 billion for certain language combinations. This
revelation underscores the vast space of linguistic diversity and the myriad ways in which
problems are tackled across different languages. The heatmaps serve as a powerful tool for
comprehending the distribution patterns, offering valuable insights into the multifaceted
world of translation pairs under varying token length constraints.

5.4 Data Cleanup and Processing

In spirit of the above mentioned features of the raw data, the dataset was cleaned, and
processed to produce train, validation, and test datasets for seven tasks, which is collectively
called XCODEEVAL. It is a result of a number of crucial design principles and challenges as
highlighted below.

Reasoning In terms of genre, problem solving posits a unique set of challenges that
require (a) understanding a complex natural language problem description, (b) expertise
in data structures and algorithms, (c) complex reasoning that goes beyond memorization,
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and (d) generating programs of potentially hundreds of lines so that they can pass a
comprehensive list of especially designed hidden tests. Given the current progress in LLMs
and their instruction following capability [62], competition-level problems that humans find
challenging, provide an interesting benchmark to test many aspects of intelligence [47, 67].

Multilinguality We aim to cover as many programming languages as possible regardless
of the resource discrepancies. One of the main objectives of this benchmark is to assess the
degree to which codes in different languages are parallel to one another. In addition to that,
we also intend to evaluate the zero-shot cross-lingual capability of the LLMs.

Evaluation and its granularity We believe the current evaluation standards do not fully
consider the idea of the global meaning representation of a program, which requires
models to comprehend different interpretable code segments and connect both local and
modular knowledge into a global representation. We propose execution-based evaluation
with unit tests at the global level. While there are many benchmarks covering the local
understanding of a code segment, there are only a few that work at a global level as shown
in table 2.1. We consider a pair of codes to be equivalent, if they generate the same
output for a given input regardless of syntax/languages (see section 4.1 for definition).
To support this, we have developed ExecEval, a new standardized and distributed
execution environment that supports 44 compilers/interpreters in all the languages in
XCODEEVAL. We also provide a large number of necessary unit tests (average of 50 per
problem) for the relevant tasks (table 1.1). In this context, it is noteworthy that 44 out
of 165 problems in the CodeContest’s test split have no private unit tests. Additionally,
it contains 104 problems without complete collection of unit tests (as available in the
source), thus are inadequate in assessing a solution’s correctness. We have identified
this issue and excluded such problems from our evaluation sets (development and test splits).

Task difficulty and trainability We wish to focus on problems of different difficulty levels
(from 800 to 3500 rating points, following Codeforces such that models with different
capabilities can be benchmarked against difficulty levels. We also aim to provide sufficient
training data for each task so that pre-trained LMs can be fine-tuned or small-scale models
can be trained from scratch.

Data split Finally, balancing the validation and test distributions of text-code instances over
multiple attributes such as problems, tags, and execution outcome (e.g., correct vs. wrong)
is challenging. We propose a novel data split schema based on a geometric mean and a data
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selection schema adapting a graph-theoretic solution to the circulation problem with lower
and upper bounds [56] that can be applied for other benchmarks as well (section 5.4.2).

XCODEEVAL offers two classification, three generative, and two retrieval tasks. Further-
more, as discussed in chapter 2, evaluating the performance of LLMs on code generation
tasks, the syntactic similarity measured by string matching algorithms are fairly unfair;
rather the executability of the generated codes must be tested. This can be achieved as we
have unit tests for all problems that were used by Codeforces. Execution based evaluation is
described in chapter 4. Next two sections covers the data cleanup and processing, and the
development of individual task datasets with their statistics in XCODEEVAL.

At this point there are 25M crawled submissions for a total of 7514 distinct algorithmic
problems deduplicated out of 9K problems. As a reminder, each submissions Sk ∈ S
represents a potential solution to a problem Pi ∈ P , and a problem Pi can be solved by
employing a set of data structure and algorithmic techniques Ti ⊂ T , which is referred to
as problem tags (e.g., 2-sat, binary search); see figure 5.20 for a complete list of tags in
XCODEEVAL. A balanced distribution over T and P is attempted while preventing any
possible data leakage to maintain the quality of the benchmark in the next section.

5.4.1 Validation-Test Split Creation

Held-Out Problems To prevent overlap of problems and submissions between training
and validation/test splits, Nh(= 1354) problems as set Dho for validation and test was put
aside. This ensures that the problems in the validation and test sets are not seen in training
and the model needs to generalize to be able to produce meaningful outputs for dataset
generated from unseen problems.

From the held-out set Dho, a validation Dvalid and a test Dtest split was created maintaining
a balanced tag distribution, and problem distribution. Further it was ensured that all
the tags in these two sets also exist in the training data, which could be a requirement
for certain tasks (e.g., tag classification in section 5.5.1.1). For this, random splits were
created by iterating over a number of seeds. Let γ be the expected ratio of the number
of submissions in Dvalid and Dtest, i.e., γ = |Dvalid|/|Dtest|. For each random split, a
tag-wise ratio γt, the ratio of the number of submissions in Dvalid and Dtest for a tag
T ∈ T was calculated. The geometric mean of {γT}T∈T defines the ‘tag distribution’
score of a split. The split whose score is closest to γ was then selected. algorithm 2 de-
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scribes the method, which ensures that the validation and test sets contain the same tag sets.2

5.4.2 Data Selection for Validation and Test

Though algorithm 2 creates two different sets of submissions with the same tag sets for both
validation and test, each of the two sets may contain a few hundred thousand of submissions.
For example, for tag classification (section 5.5.1.1), only C++ had 161,765 and 647,064
submissions for validation, test sets respectively. To make the testing and validation process
computationally feasible, it was mandatory to reduce the sample size while maintaining a
balanced distribution across problems and tags. Finding an optimal solution to this selection
problem (i.e., how many submissions per problem and per tag to select) is nontrivial. This
task was then formulated as a circulation problem with lower and upper bounds [56] within
a flow network as explained below.

2Assuming that the training tag set is a super set containing all possible tags, the process ensures that no
tags are new in validation or test sets.
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Algorithm 2 Validation and Test Split Creation

Input: A held-out dataset Dho, a fraction value γ where
0 ≤ γ ≤ 1, an integer N indicating number of seeds.
Output: Dvalid, Dtest spits
Initialize: count = 0, bestScore = γ + 1
while count < N do

seed = getSeed()
Shuffle Dho
Dvalid = Dho[0 : |Dho| × γ]
Tvalid = set of tags in Dvalid
Dtest = Dho[|Dho| × γ : |Dho|]
Ttest = set of tags in Dtest
if Tvalid ̸= Ttest then

continue
end if
for all T in Tvalid do

γT = #samples in Dvalid with tag T
#samples in Dtest with tag T

end for
µ = geoMean({γT }T∈Tvalid)
if |γ − bestScore| > |γ − µ| then

bestScore = µ
save current split {Dvalid, Dtest}
count = count+ 1

end if
end while

Figure 5.19: Flow network of for
validation-test dataset creation.

Here the aim is to put bounds to the number of submissions selected for each problem
and tag. Let pi and tk be the number of solutions for problem Pi and tag Tk, respec-
tively. Let G = (V,E) be a flow network (a directed graph) with the set of vertices
V = {s, P1, ..., PN , T1, ..., TK , t}. Here s and t represent the source and sink of the flow
network. Also l(u, v), c(u, v) represents the lower and upper capacity of edge connected
from u to v. Figure 5.19 shows the flow network used for the validation-test dataset creation.
For each edge e ∈ E, the lower capacity l(e) and upper capacity c(e) are defined as follows.

1. Initialize E = ∅.

2. For each problem Pi, add edge (s, Pi) to E and assign l(s, Pi) = min(mp, pi) and
c(s, Pi) = min(xp, pi), where mp and xp respectively refer to the minimum and
maximum submissions to choose per problem if available with mp ≤ xp, thus 0 ≤
l(s, Pi) ≤ c(s, Pi).
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3. For each tag Tk, add edge (Tk, t) to E and assign l(Tk, t) = min(mt, tk) and
c(Tk, t) = min(xt, tk), where mt and xt respectively refer to minimum and maximum
submissions to choose per tag if available with mt ≤ xt, thus 0 ≤ l(Tk, t) ≤ c(Tk, t).

4. For each Pi and Tk, add (Pi, Tk) to E if Pi has a tag Tk, and assign l(Pi, Tk) = 0,
c(Pi, Tk) =∞.

Now solution of the circulation problem can be directly adopted to find a flow f : E −→ Z3

that satisfies:

∀e ∈ E, l(e) ≤ f(e) ≤ c(e) (5.1)

∀u ∈ V,
∑
v∈V

f(u, v) = 0 (5.2)

In this case, f denotes a feasible flow when the above constraints are satisfied for some G.
For each e ∈ E, f(e) represents the following:

1. f(s, Pi) denotes the number of submissions to be picked from problem Pi.

2. f(Tk, t) denotes the number of submissions to be picked from tag Tk.

3. f(Pi, Tk) denotes the number of submissions to be picked from Pi that has a tag Tk.

Here,
∑K

k=1 f(Tk, t) =
∑N

i=1 f(s, Pi) is the total number of submissions selected, which
can be controlled in a balanced way by setting the control variables mp, mt, xp, and xt. Now
for the details about selection method of this control variables and their value for different
tasks, along with a comparison to a random data selection strategy.

5.4.3 Control Variable Selection

Let M be the number of submissions to be selected for any set of submissions. Call
(mp,mt, xp, xt) a valid tuple if the flow network has a feasible flow for the circulation
problem defined in (5.4.2). Let d = ⌊(∑N

i=1 f(s, Pi)−M)2/∆⌋, representing the squared
difference between number of submissions required and the submissions selected for the
flow and ∆ reduces the resolution of difference between number of submissions required
and number of submissions selected. Here d defines a boundary from M where it has been

3Z denotes the set of integers.
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allowed to choose an expected solution with mp, mt, xp, and xt. Finally, the lexicographical
ordering (−d,mt,−xt,−xp,mp) is used to find the largest element in the collection of valid
tuples which always exist if the search space is limited to a finite set. The largest element
in this ordering depicts the nearest (close to M ) selection of submissions that maximizes
the minimum number of submissions per tag mt. When there are many solutions with the
same (−d,mt), reducing the maximum number of samples per tag, xt has been prioritized.
Similarly, xp and mp were also prioritized as defined in the lexicographical ordering.

5.4.3.1 Search Techniques

1. It was manually checked that (mp,mt, xp, xt) = (1, 1, 1000, 1000) is a valid tuple for
any set of submissions that were processed and ∆ = 1000 was chosen.

2. In Tag classification task (section 5.5.1.1) and Code compilation task (section 5.5.1.2),
M is 2000, 10000 for any language for validation, test split respectively. For Code
translation (section 5.5.2.3) M was 400, 2000 for the same.

3. Search largest tuple (−d1,mt1 ,−xt1 ,−xp1 ,mp1) where mt1 ∈ {1, 6, 11, · · · , 496},
mp1 ∈ {1, 2, 3, · · · , 19} and xp1 = xt1 = 1000. Since (mp,mt, xp, xt) =

(1, 1, 1000, 1000) is a valid solution, hence the set of valid tuples is nonempty.
Let f1 be the flow for the flow network defined for mt1 ,−xt1 ,−xp1 ,mp1 . Let
fP1 = max1≤i≤N f1(s, Pi), fT1 = max1≤k≤K f1(Tk, t) be the maximum flow through
edges from s to Pi, and same through edges from Tk to t.

4. Now again search the largest tuple (−d2,mt2 ,−xt2 ,−xp2 ,mp2) where mt2 ∈
{mt1 ,mt1 + 1, · · · ,mt1 + 49}, xt2 ∈ {fT1 − 100, fT1 − 80, · · · , fT1}, xp2 ∈
{fP1 − 5, fP1 − 4, · · · , fP1}, mp2 ∈ {mp1 ,mp1 + 1}. Since mt1 , fT1 ,mp1 , fP1 is
included a solution is found in this step too. Define fP2 , fT2 similar to previous step.

5. Finally search the largest tuple (−d3,mt3 ,−xt3 ,−xp3 ,mp3) where mt3 = mt2 , xt3 ∈
{fT2 − 100, fT2 − 99, · · · , fT2}, xp3 = xp2 ,mp3 = mp2 .

While it is not an exhaustive search, it prioritizes minimizing xt −mt over xp −mp.

5.4.4 Results

Here is the performance of data selection using circulation problem technique with randomly
selecting equal number of submissions for validation and test sets of all languages and
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measured the skew µ̃3, and standard deviation σ of the distribution of tags in the selected
data. Here lower value of |µ̃3| means more symmetric distribution. On the other hand, a
lower value of σ represents that the number of samples in each tag are closer to the mean.

Table 5.2: Comparison of skew and standard deviation of tags using circulation problem
technique and random data selection (lower value is better).

Language
Skew, µ̃3 Std. deviation, σ

Validation Test Validation Test
Random Circ. Random Circ. Random Circ. Random Circ.

Tag Classification

C 2.778 2.499 2.848 2.440 249.161 213.849 880.881 772.549

C++ 2.405 1.873 2.315 1.655 233.530 157.889 1154.538 751.023

Python 2.731 2.365 2.689 2.173 265.193 240.248 1125.133 992.904

Java 2.652 1.990 2.545 2.050 258.587 207.881 1175.790 972.703

C# 3.066 2.598 2.971 2.506 314.219 291.813 846.426 760.069

Code Translation

C 2.744 2.455 2.941 2.332 117.298 99.261 267.214 215.881

C++ 2.424 2.112 2.287 1.565 131.632 120.979 243.100 150.498

Python 2.533 2.379 2.635 2.294 123.710 110.076 271.219 237.179

Java 2.558 2.208 2.605 1.827 134.314 114.840 259.510 193.211

C# 3.147 2.532 2.943 2.395 103.838 96.747 250.049 220.615

PHP 2.506 2.744 2.520 2.730 59.321 59.877 270.582 278.530

Rust 2.520 2.393 2.534 2.311 59.269 60.253 269.352 264.507

Go 2.807 2.359 2.676 2.424 72.415 66.666 266.565 254.986

Javascript 2.611 2.611 2.473 2.473 64.090 64.090 246.483 246.483

Ruby 2.875 2.686 2.968 2.762 74.153 70.760 280.000 271.539

Kotlin 2.865 2.576 3.108 2.534 59.765 56.114 266.430 257.155
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Table 5.3: Size of the datasets for each task and the evaluation metrics.

Task Type Task |Lang| |Train| |Validation| |Test| Metric

Classification
Tag classification 11 5,500,913 19,087 76,498 mcc
Code compilation 11 19,915,150 6,394 30,388 accuracy

Generative
Program synthesis 11 5,545,785 108 979 pass@k
Code translation 11 5,548,683 7,194 20,890 pass@k
Automatic program repair 11 4,677,164 5,224 18,028 pass@k

Retrieval
Code-Code retrieval 17 45,270 2,335 9,508

Recall,Prec@k
NL-Code retrieval 17 55,924 2,780 11,157

5.5 Tasks in XCODEEVALwith Statistics

XCODEEVAL features two classification, three generative, and two retrieval tasks. Table 5.3
summarizes the sizes of the datasets for each task and the evaluation metrics. For Program

Synthesis train data Pi, Sk comes from 7514 problems of 11-17 languages where the input
for validation and test data is only natural language text (problem description) independent
of programming languages. For all other tasks, validation and test samples are reported for
total number of languages. For both of the sub-tasks of tag classification and automatic
code repair total number of samples are same. In contrast table 5.4 gives a more detailed
breakdown of the tasks per language. It should be noted that the validation and test splits for
Program Synthesis are same across all the languages as they solve the same problems (to
produce solution in different languages from same nl description). From here on ‘sample’
would mean a submission or a problem depending on the task that has survived the data
processing step described in section 5.4.

5.5.1 Classification Tasks

5.5.1.1 Tag Classification

This task is formulated as a multi-label classification problem in two settings: Code-to-Tag
(Code2Tag) and Problem Description-and-Code to Tag (DesCode2Tag). In Code2Tag,
given a code C in any language, the task is to predict the corresponding tag set T. In
DesCode2Tag, the natural language problem description is also given as input in addition to
the code. The performance difference between Code2Tag and DesCode2Tag settings can
suggest the if the problem description can help models to identify the problem tags (i.e., the
type of solution needed).
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Table 5.4: Dataset statistics per language and task.

Split C C# C++ Go Java Javascript Kotlin PHP Python Ruby Rust Total

Tag Classification

Train 178509 79219 3716097 25645 704270 15744 49449 6313 679710 15253 30704 5500913
Validation 1732 2265 2027 1636 2003 1616 1733 905 2031 2215 924 19087
Test 6338 6136 10002 6548 9254 6467 6932 3621 8641 8862 3697 76498

Code Compilation

Train 503458 170407 15147814 53561 2007940 36949 104970 18099 1793141 26362 52449 19915150
Validation 1000 1000 1000 212 1000 454 482 102 1000 50 94 6394
Test 5000 5000 5000 814 5000 1676 1940 392 5000 242 324 30388

Program Synthesis

Train 179706 79773 3748656 25789 708265 15947 51903 6412 683199 15380 30755 5545785
Validation 108 108 108 108 108 108 108 108 108 108 108 108
Test 979 979 979 979 979 979 979 979 979 979 979 979

Code Translation

Train 179716 79786 3751303 25796 708408 15951 51950 6413 683222 15382 30756 5548683
Validation 788 759 1083 477 986 415 433 378 896 508 471 7194
Test 1778 1810 2010 1838 1989 1661 2000 1764 1998 2002 2040 20890

Automatic Program Repair

Train 135430 37104 3412242 13106 575039 8878 16369 3649 462500 5166 7681 4677164
Validation 744 742 730 295 738 184 313 191 739 343 205 5224
Test 2005 2041 2080 1436 2080 646 1990 1166 2080 1595 909 18028
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Figure 5.20: Tag distribution in tag classification task in XCODEEVAL.

For these tasks, the split for validation and test is done with a ratio of 1 : 5 (i.e., γ = 0.2)
using algorithm 2. To get the final Dvalid and Dtest with a feasible number of samples, the
flow network-based data selection approach with the details of control variable settings
presented in section 5.4.
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The distribution of the samples according to the tags is presented in figure 5.20. In
XCODEEVAL, often multiple tags are assigned to the same problem as each problem can
be solved in multiple ways or with a combination of multiple techniques (e.g. figure 5.1).
This dataset is further broken into a language-specific tag classification task, in which each
programming language has its own Code2Tag and DesCode2Tag settings.

5.5.1.2 Code Compilation

Given a code C in a language L and its compiler or interpreter version B, the code

compilation task is to decide whether the code compiles or not. The validation and test splits
are created using a modified version of algorithm 2 that balances the partition based on the
compilation outcome of the code instead of the tags of the problem that the code belongs
to with a ratio γ of 1 : 5. Then a simplified version of the circulation problem is used to
prevent too many codes coming from a single problem, and also to ensure a balanced output
distribution. The details of hyper-parameter settings of the circulation problem technique
are presented in section 5.4. In the flow network construction, tags {Tk} = {true, false} as
true if the code compiles or not. Furthermore true and false examples are present in equal
numbers in both validation and test dataset.

5.5.2 Generative Tasks

XCODEEVALproposes three generative tasks which require a global understanding of
programming languages. For the evaluation of generative tasks, execution-based evaluation
is promoted instead of lexical similarity. All the generative tasks are evaluated using
ExecEval execution engine. XCODEEVALprovides complete unit tests for all problems
in the validation and test dataset which also satisfy the conditions of the input-output
specification of the problem.

5.5.2.1 Program Synthesis

Given a problem described in natural language, program synthesis task is to write a program
that solves the problem. We can express each sample in the dataset as a tuple (C,P, l, L),
where C denotes a solution code written in a programming language L for the problem
P , and l denotes the compiler/interpreter version of the code. All code samples in the
dataset are unique and marked as a correct solution (PASSED outcome) to the problem. The
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validation and test splits are created from the heldout problems using algorithm 2 with a
ratio (γ) of 1 : 9. The generated code is judged based on executions on the unit tests.

5.5.2.2 Automatic Program Repair (APR)

We consider APR as a task to synthesize a fix for a detected program bug. We create a
bug-fix pair by matching a buggy code (1-5 execution outcome in section 4.2.2) with a
PASSED solution. Given a bug-specific defect, the objective of this task is to generate a
correct fix that passes all the unit tests.

Let C = {C1, . . . , Cm} be the set of programs submitted by a participant in a chronological
order in order to solve a specific problem P . Some of these submissions can be ‘buggy’,
while some can be PASSED. We create the ‘bug-fix’ pairs from C as follows.

1. We iterate over C and mark the PASSED ones as ‘fixed’. Let C∗
j is one such case.

2. For each buggy submission that was made before C∗
j , we measure its lexical similarity

with C∗
j and select the one (say Ck where k < j) with the highest similarity score to

pair it with C∗
j and form a bug-fix pair (Ck, C

∗
j ). We use difflib4 to measure the

similarity.

3. With each bug-fix pair (Ck, C
∗
j ), we also include the corresponding problem descrip-

tion P and execution outcome Vk (section 4.2.2) of Ck.

4. The tuple (Ck, C
∗
j , P, Vk) represents a sample in our APR task.

We repeat this process for each participant and problem to create the final APR dataset. As
reported in table 5.3, it comprises more than 5M practical bug-fix pairs and supports 11
programming languages. For data selection in APR, we considered execution outcome
(section 4.2.2) as tags in the network flow construction (section 5.4.2).

Due to the large input specification of the APR task, sometimes the input sequence length
becomes too large. However, we have not compromised the benchmarks by selecting only
small sequence length samples but rather keep them as challenging tasks for the language
models.

4https://docs.python.org/3/library/difflib.html
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Figure 5.21: Distribution of samples across all problems in the train, validation, test splits
for all languages in the code translation task.

5.5.2.3 Code Translation

Each sample in the code translation data can be expressed as a tuple (C, P, l, L), where
C denotes a set of solution codes in a programming language L for the problem P , and
l denotes the compiler/interpreter version of the code. All codes in set C are unique and
guaranteed to be marked as a correct (PASSED outcome) solution to the problem by the
compiler/interpreter.

The validation and test splits are created from the held-out problems using algorithm 2 with
a ratio (γ) of 1 : 5, and employ the data selection method with flow network (section 5.4) to
have a practical evaluation setup while ensuring a balanced distribution over problems and
tags. Figure 5.21 shows the distribution of the machine translation tasks.

5.5.3 Code Retrieval

Code retrieval tasks typically aim to measure the mere semantic relatedness between a
natural language (NL) query and a programming language (Code) code. However, a code
that is relevant, can still be buggy and thus be misleading (see an example in figure 5.22).
The candidate code in the left of figure 5.22 has a bug highlighted in red and that in
the right has a fix highlighted in green. Both of the proposed NL-Code and Code-Code
retrieval tasks ensure differentiating between them and pose a more challenging task
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that aims to comprehend both the semantic and logical similarity. In view of this, we
propose two new and more challenging retrieval tasks in our benchmark, which require
a deeper understanding of the NL query and code. In particular, we propose NL-Code
and Code-Code retrieval tasks that involve identifying a correct code from a large pool
of candidates containing similar codes. In both tasks, for each programming language,
we aggregate all the submitted codes and their test cases to create a retrieval corpus and a
testbed for evaluating their correctness against test cases. The datasets for the subtasks and
the evalaution schema are discussed below.

1. def find_median(uns):

2.     sorted_nums = sorted(uns)

3.     mid = len(uns)//2

4.     return mid

5.  

6. find_median([4,2,3,1,5])

Problem

1. def find_median(uns):

2.     sorted_nums = sorted(uns)

3.     mid = len(uns)//2

4.     return sorted_nums[mid]

5.  

6. find_median([4,2,3,1,5])

Code
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find median of an unsorted list of odd length

Figure 5.22: A code retrieval example.

5.5.3.1 NL-Code Retrieval

This task involves matching an NL problem description to the most relevant and correct
code from a pool of candidates. An example of an NL description and its corresponding
codes are showed in figure 5.1. To gather data for this task, only the instances where the
NL description is valid and there is at least one correct solution code (i.e., with execution
outcome PASSED) has been used. For an NL problem description, all the correct solutions
has been considered as positive examples and all the wrong (or buggy) solutions as the
negative examples.

5.5.3.2 Code-Code Retrieval

Given an input code (as query), this task involves finding functionally similar codes (i.e.,
passes the same set of test-cases, defined in section 4.1) from a collection of candidates.
We ensure that the query code solves a specific problem (i.e., correct solution without any
detected bugs) and evaluate whether the retrieved candidate also solves the same problem
or not. To collect data for this task, we only consider the programming problems which
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Table 5.5: Statistics of retrieval datasets for both nl-code and code-code.

Lang Subtask
Train Dev Test Retrieval

|Size| |Pos| |Neg| |Size| |Pos| |Neg| |Size| Corpus |Size|

C#
NL-Code 4,886 75,478 55,709 215 6,623 4,971 862

251,147
Code-Code 4,404 69,100 55,015 202 5,895 4,956 813

C++
NL-Code 6,192 613,747 609,150 283 27,152 26,851 1,134

18,212,508
Code-Code 6,192 555,383 609,150 283 24,796 26,851 1,134

C
NL-Code 5,205 149,189 147,116 221 11,688 11,717 887

787,516
Code-Code 4,398 122,904 146,113 205 9,514 11,706 830

D
NL-Code 3,367 7,639 3,680 137 357 142 550

15,984
Code-Code 1,974 4,272 2,745 82 220 119 305

Go
NL-Code 3,768 25,692 19,006 170 1,483 784 683

68,237
Code-Code 3,093 21,819 18,126 151 1,254 757 574

Haskell
NL-Code 3,178 15,159 7,152 178 2,200 947 715

44,682
Code-Code 2,308 11,879 6,378 163 1,894 931 615

Javascript
NL-Code 2,616 15,636 13,733 139 1,344 1,352 559

56,917
Code-Code 1,990 12,845 12,705 120 1,161 1,313 449

Java
NL-Code 5,941 394,341 375,937 264 18,271 16,670 1,057

2,523,044
Code-Code 5,802 321,150 375,696 259 14,575 16,643 1,027

Kotlin
NL-Code 4,023 46,559 25,645 167 1,939 1,115 669

121,569
Code-Code 3,242 39,879 24,993 134 1,671 1,086 528

Ocaml
NL-Code 1,429 2,334 1404 100 231 141 401

7,012
Code-Code 487 905 760 51 131 109 180

PHP
NL-Code 1,969 6,379 8,977 141 902 837 567

29,179
Code-Code 1,183 4,377 6,796 100 724 745 403

Pascal
NL-Code 4,441 113,381 105,327 221 10,310 8,693 887

494,473
Code-Code 3,958 97,329 104,520 213 8,662 8,689 848

Perl
NL-Code 1,280 3,911 1,964 106 565 346 427

11,035
Code-Code 680 2,631 1,536 66 459 313 319

Python
NL-Code 4,941 317,696 285,609 224 18,097 16,061 896

2,290,854
Code-Code 4,747 267,046 285,291 221 14,884 16,059 874

Ruby
NL-Code 2,357 15,274 7,333 168 2,498 894 676

44,934
Code-Code 1,749 12,750 6,738 155 2,229 882 592

Rust
NL-Code 3,864 30,696 14,962 140 750 310 560

59,829
Code-Code 3,066 26,798 14,329 106 610 292 433

Scala
NL-Code 2,558 7,863 5,226 149 874 469 600

24,780
Code-Code 1,529 5,270 4,092 125 725 448 454

have at least two correct code solutions that pass all the corresponding test cases (i.e., with
execution outcome PASSED). From each of these problems, we randomly choose one
correct solution as a (code) query and pair it with the other correct solutions as positive
examples and the corresponding wrong solutions (i.e., with execution outcome WRONG
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ANSWER) as negative examples.

Retrieval Corpus Metadata and Evaluation Protocol: We preserve the problem spec-
ifications and execution outcomes (e.g., PASSED, WRONG ANSWER) for each candidate
code in our retrieval database. For both the NL-code and code-code retrieval tasks, we use
this information to determine the correctness of a retrieved code, checking if that solves the
same programming problem as the input query by passing all its unit tests or not.

Evaluation Metrics: We evaluate the retrieval performance in terms of accuracy@k also
called top-k accuracy. We consider k ∈ {1, 10, 100}.

Our retrieval benchmark has 17 programming languages and our training dataset is the
largest that provides annotations of similar codes that are found logically equivalent or
correct based on the passing of test cases. For evaluation purposes (i.e., for test sets), we
release the input problem description (in NL-Code) or the input code (in Code-Code) only
and keep all other metadata confidential. Covered programming languages and their data
statistics in both tasks are summarized in table 5.5. Here |Size| denotes the number of
instances in the datasets. For each train/validation instance we provide multiple positive and
negative examples and |Pos| and |Neg| refer to the that total number of positive and negative
annotations.
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Chapter 6

Model Training and Results

We now delve into the intricate facets of a Dense Passage Retrieval (DPR) model, elucidating
the methodology employed in its training alongside a comprehensive exposition of the
ensuing evaluation results. The DPR model, a sophisticated neural architecture designed for
information retrieval, assumes a pivotal role in the encoding and indexing of queries within
the retrieval system. Subsequently, these encoded queries undergo processing by FAISS
(Facebook AI Similarity Search), a state-of-the-art similarity search library introduced by
Johnson et al. [34]. FAISS operates on the principle that documents with lower ranks in the
retrieval process correspond to a higher degree of similarity to the input query, thereby facil-
itating the extraction of relevant documents in accordance with their hierarchical rank order.
This chapter thus serves as a comprehensive guide, offering a refined understanding of the
intricacies underlying the DPR model’s training and evaluation, culminating in a judicious
elucidation of the interplay between DPR and FAISS in the retrieval of pertinent documents.

6.1 Model Training

6.1.1 Model Architecture

DPR uses two separate BERT-based [16] encoders EP(·), EQ(·) for retrieval corpus codes
(passages) and search codes (questions) respectively which maps a natural text to a vector in
Rd. During inference Ep is used to build the index for all M codes of the retrieval corpus,
then for each search codes (question) q, k passages pi are retrieved from the corpus such that
similarity between pi, q denoted by sim(pi, q) are maximized. As Karpukhin et al. [36] have
shown, after lot of studies are available on possibilities for the similarity function, it is found
that they perform closely which motivates the use of simpler function i.e. inner product
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between the embeddings, more formally the similarity between passage p and question q is
defined as

sim(q, p) = EQ(q)
TEP(p).

This also implies that the model should learn to embed codes in such a way that the codes
labelled as similar in the dataset should produce embeddings that maximize (6.1.1).

In this work the pre-trained language model CodeBERT [18] and Starencoder [46] were
used as the encoder implementation for both the question and passage encoders EQ(·),
EP(·). The 125M parameter CodeBERT, and Starencoder models are masked language
models pre-trained on CodeSearchNet [30], and The Stack [40] datasets, respectively
that has been specifically designed for tasks related to understanding and generating
code. CodeBERT was developed by Microsoft Research and is based on the BERT [16]
architecture, which has achieved strong results on a variety of natural language processing
tasks. The model has been pre-trained on a large dataset and has already learned dense
representations encapsulating a lot about the structure and patterns of natural language,
including code-related text. Similarly Starencoder was trained by the bigcode project with
much larger dataset. By using the these as the encoders, we can leverage this pre-trained
knowledge to improve the performance of our indexer. This choice forces d = 768, and
the sequence length of 512 for CodeBERT and 1024 for Starencoder, the limit of number
of tokens of the code that the model will process using CodeBERT’s own SentencePiece
tokenizer, or Starencoder’s own GPT2Tokenizer.

During inference, given a question q at run-time, DPR derives its embedding vq = EQ(q)

and FAISS retrieves the top k passages with embeddings closest to vq with closeness
measured by eq. (6.1.1).

6.1.2 Training Dataset

To achieve the goal the training dataset is structured as a collection of m samples

D = {(qi, p+i , p−i,1, · · · , p−i,n)}mi=1
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, where qi represents a code and p+i denotes a code that is similar to qi and p−i,j are codes that
are not similar to qi. Then the loss function is defined as

L(qi, p
+
i , p

−
i,1, · · · , p−i,n) = − log

esim(qi,p
+
i )

esim(qi,p
+
i ) +

∑n
j=1 e

sim(qi,p
−
i,j)

.

Note that minimizing this loss function implies learning an encoding EQ, EP such that
sim(qi, p

+
i ) >> sim(qi, p

−
i,j). This is the Inverse Cloze Test (ICT) objective function eluded

in section 3.2.

Informally the positive passages are annotated to be similar to question and negative passage
is annotated different from the question. Interestingly enough the model is not directly fed
dataset in this representation, rather the positive passages in other samples of the batch are
assumed as negative passages at training time along with the negative passages annotated in
the sample. Thus the input representation is Dinput = {(qi, p+i , p−i )}mi=1 is fed to the model.
This mixing of annotations from different samples of the batch is aptly named by Karpukhin
et al. [36] as in batch negatives. In section 6.3, more will be covered on the effects of
in batch negatives. Next section covers in greater detail, the construction XCODEEVAL

retrieval dataset from raw data as introduced in section 5.5.3.

6.1.3 Data Preparation

Here we create samples with question, positive and negative passage dataset from the
collection of all submissions that have verdict PASSED as we can not make any strong
claim about impure submissions that did not produce acceptable outputs for some problem.
We use the functional similarity defined for both nl-code and code-code case to pair up
questions and passages. The NL-Code and Code-Code datasets were prepared by making
a 20:1:5 split for train, validation, and test split as discussed in section 5.5.3 ensuring a
disjoint split of problems between train, and validation and test dataset. Furthermore the
validation and test split is derived from the heldout set discussed in section 5.4.2. The main
difference between NL-Code and Code-Code dataset is that of the question as in NL-Code
the question is the problem itself and in Code-Code a randomly chosen code for the problem
is considered as the question.
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Table 6.1: List of major hyperparameters and their values for CodeBERT on left and
Starencoder on right.

Attribute Value (CodeBERT) Value (Starencoder)
Sequence length 510 1024
Dropout 0.1 0.1
Initial learning rate 2× 10−5 2× 10−5

Optimizer Adam Adam
Train batch size 64/128 48
Dev batch size 64/128 48
Number of epoch 40 40
Gradient accumulation step 1 4

Finally, CodeBERT [18] and Starencoder [46] both were trained over the Code-Code

datasets for all languages combined into a single dataset resulting in the following number
of samples:

• Train data: 50,802 samples.

• Validation data: 2,636 samples.

• Test data: 10,378 samples.

• Corpus data: 25,032,700 codes.

And only Starencoder was trained for the NL-Code dataset as the sequence length of
CodeBERT is too small for NL data. The NL-Code dataset for all languages were combined
to a single dataset resulting in following number of samples:

• Train data: 61,898 samples.

• Validation data: 2,900 samples.

• Test data: 11,701 samples.

• Corpus data: 25,032,700 codes.

We train CodeBERT on 4 NVIDIA A100 40GB GPUs taking around 14 days to train each
models up to 40 epochs each. Starencoder was trained on 4 NVIDIA A100 80GB GPUs and
also took around 14 days for 40 epochs for each of code-code and nl-code retrieval.
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6.2 Indexing the Corpus

The code corpus, constituting an expansive repository comprising approximately 25 million
distinct codes, serves as the foundational dataset from which our advanced search engine
derives its results. A preprocessing phase, as previously illustrated, involved the segregation
of the corpus based on programming languages, subsequently encoding them with our
highly sophisticated and rigorously trained language model.

To effectuate the embedding process, four NVIDIA P100 32GB GPUs were employed. This
formidable hardware configuration was chosen to ensure optimal computational efficiency
and expedited processing. The batching strategy for this embedding task was painstakingly
calibrated, with 1024 as the batch size for the CodeBERT model and 512 for the Starencoder

model, underscoring our commitment to precision and performance optimization.

The encoding operation culminated in the generation of embeddings, which encapsulate the
subtle semantic representations of the codes. Executed across the aforementioned GPUs,
this intricate procedure produced embeddings of exceptional depth and granularity. The
resultant embeddings, embodying the semantic essence of each code snippet, were stored in
a binary file, magnifying the overall corpus size to approximately ∼73 gigabytes.

This exhaustive process, marked by the fusion of cutting-edge hardware resources and
state-of-the-art language models, stands as a testament to the rigor and sophistication
inherent in our approach to code corpus analysis. The resulting binary file, encapsulating
the distilled knowledge within the embeddings, now serves as a foundational reservoir
from which our search engine seamlessly retrieves and delivers insightful and contextually
relevant results to the discerning user.

6.3 Model Evaluation

The primary hyperparameter under investigation in this study pertains to the training and
validation batch size, a critical aspect in the optimization of machine learning models. As
delineated in figure 6.1, a discernible performance disparity is evident between accuracy@k

scores of CodeBERT with batch size 64, 128 respectively at checkpoint 35. This observation
underscores the efficacy of the in batch negatives strategy, wherein the utilization of a higher
batch size (128) correlates with an augmented model performance, primarily attributed to

72



0 20 40 60 80 100

k

75

80

85

90

95

A
cc

u
ra

cy
@
k

Accuracy@k Curve

bsz = 16

bsz = 32

Figure 6.1: Comparison of performance between batch sizes.

Table 6.2: Summary of performance of both CodeBERT and Starencoder in both tasks.

Tasks metric C C# C++ D Go Haskell Java Javascript Kotlin Ocaml PHP Pascal Perl Python Ruby Rust Scala AVG.

CodeBERT

Code-Code (α) Acc@k 61.39 51.79 40.83 61.33 72.93 58.76 47.46 76.03 66.83 66.26 72.21 56.92 65.71 59.53 69.55 43.39 69.52 61.20
Code-Code (γ) Acc@k 68.23 72.68 71.42 46.41 65.76 60.58 76.73 52.87 55.26 35.3 44.88 67.55 40.32 72.47 63.32 42.84 59.57 58.60

Starencoder

Code-Code (α) Acc@k 56.43 56.05 39.96 62.82 66.30 56.71 49.30 69.63 63.42 58.44 64.80 52.71 56.38 55.92 61.38 58.10 66.69 58.53
Code-Code (γ) Acc@k 68.66 74.50 70.49 17.35 62.62 60.03 74.71 50.70 52.06 33.72 49.88 65.35 40.50 68.33 61.71 48.58 59.76 56.41

NL-Code Acc@k 82.28 89.99 83.81 68.98 90.26 81.68 84.72 85.33 84.74 85.45 80.71 82.21 81.33 84.57 87.17 82.23 89.71 83.83

an increased density of negative annotations per question.

The inherent implication of this superiority prompts a deliberate focus on the model
trained with a batch size of 128 for further in-depth analysis. Figure 6.2 systematically
presents a comparative evaluation of CodeBERT’s performance across various checkpoints,
denoted by nth epoch intervals (here batch size is 128). This granularity in assessing
performance variations at distinct training epochs elucidates the model’s evolution and
provides valuable insights into its convergence and stability. Consequently, the choice of an
optimal checkpoint emerges as a crucial consideration for achieving the desired balance
between training efficacy and computational efficiency.

The empirical analysis, delineated through the visual representations encapsulated in
figures 6.3 to 6.6, provides a nuanced insight into the performance dynamics of CodeBERT
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Figure 6.2: Comparison of performance between different epochs.

and Starencoder within the realm of the Code-Code dataset. These figures compare the
accuracy@k scores between all 17 × 17 languages, where for every pair of languages
question codes come from one language and corpus of the second language is used for
retrieval. Formally a cell (x, y) in the 17× 17 matrix of top-k accuracy scores denotes the
score for code queries from language x and the retrieval corpus of language y. Noteworthy
is the discernible precision exhibited by both models in a mono-lingual context with average
retrieval accuracy is 95.5. However, the efficacy of retrieval experiences a discernible
degradation in a cross-lingual setting as the accuracy becomes 59.1, particularly pronounced
in languages characterized by a paucity of training samples. For starencoder the average
mono-lingual retrieval accuracy is 84.19, and average cross-lingual score is 56.93. This
discerns the difficulty of the models in learning a multi-lingual understanding of codes.

In tandem, the evaluation on the NL-Code dataset underscores the exceptional performance
of Starencoder, thus substantiating its prowess in natural language understanding within
the code retrieval domain. The succinct summary presented in table 6.2 juxtaposes the
performance metrics for both models across tasks, revealing a relative underperformance of
Starencoder [46] vis-à-vis CodeBERT [18] fine-tuned on our retrieval tasks for k = 100.
For Code-Code, (α) denotes the average score for codes of any given language as the corpus,
similarly (γ) denotes average score for codes of any fixed language as query. For NL-Code,

74



C C
#

C
+

+

D G
o

H
askell

Java
Javascript
K

otlin
O

cam
l

P
H

P
P

ascal
P

erl
P

ython
R

uby

R
ust

Scala

Corpus/Context Language

C

C#

C++

D

Go

Haskell

Java

Javascript

Kotlin

Ocaml

PHP

Pascal

Perl

Python

Ruby

Rust

Scala

Q
u

es
ti

on
/Q

u
er

y
L

an
gu

ag
e

62.9 5.6 4.8 9.6 30.6 7.0 12.2 11.2 14.3 5.9 19.8 17.8 14.2 13.6 16.5 7.5 2.7

3.1 64.6 6.6 22.5 22.6 15.3 8.5 24.1 28.2 18.2 15.2 19.9 7.4 10.3 10.9 14.7 33.0

27.7 6.9 41.2 9.6 22.9 7.0 4.1 11.9 1.7 5.9 18.5 12.5 14.8 8.0 15.6 6.8 2.9

9.4 10.6 6.1 73.4 17.9 10.7 7.3 12.2 20.7 17.1 8.0 12.9 12.6 5.6 10.4 10.0 11.2

26.2 16.9 7.8 24.9 75.5 18.8 17.7 28.7 27.4 19.4 22.4 22.1 20.3 18.8 23.6 15.2 19.6

5.3 13.4 3.7 16.7 23.6 80.5 3.7 15.1 18.1 20.6 13.1 19.0 21.3 15.9 22.1 10.5 24.6

27.8 17.2 15.7 19.5 32.1 13.8 58.0 30.0 26.1 10.0 26.2 15.0 15.2 20.9 21.3 8.4 24.6

11.9 9.6 1.7 12.6 17.1 9.1 10.0 77.8 20.1 21.2 27.2 11.4 13.5 13.9 13.7 9.6 17.2

4.0 13.1 0.3 26.3 25.2 13.6 9.4 22.9 79.7 19.4 23.1 13.7 11.9 8.9 12.8 16.1 25.4

4.3 6.1 3.8 11.6 9.1 7.0 6.6 13.8 10.6 84.1 6.9 8.1 9.4 4.5 7.0 6.3 13.2

12.2 5.1 4.8 5.1 17.2 5.0 8.0 22.0 14.5 5.9 75.6 7.7 13.2 12.4 10.9 6.3 13.6

14.8 14.0 4.4 20.1 26.8 20.6 8.0 23.4 23.0 19.4 17.7 63.8 20.6 17.6 17.9 9.8 16.7

10.5 7.6 5.3 13.3 15.8 8.9 6.3 15.4 11.0 11.2 19.0 10.9 86.1 8.4 12.3 7.5 9.6

11.0 11.7 2.0 4.8 29.1 19.5 8.8 34.2 20.7 14.1 27.0 19.1 18.7 64.5 23.7 7.2 29.9

12.9 14.4 7.2 14.3 28.1 21.8 8.1 24.3 16.0 24.1 20.1 16.1 25.2 16.5 82.6 15.9 18.1

8.5 9.2 5.0 17.7 16.7 10.6 5.6 9.9 14.1 15.9 14.1 11.8 12.3 7.3 14.9 45.6 14.5

16.4 15.9 11.0 19.8 27.7 19.3 14.2 27.8 23.7 23.5 25.7 17.3 22.9 21.1 22.7 16.1 79.0

10

20

30

40

50

60

70

80

Figure 6.3: Comparison of top-1 accuracy across all language pairs for CodeBERT.
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Figure 6.4: Comparison of top-10 accuracy across all language pairs for CodeBERT.
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Figure 6.5: Comparison of top-100 accuracy across all language pairs for CodeBERT.
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Figure 6.6: Comparison of top-100 accuracy across all language pairs for Starencoder.
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the scores are reported for corpus of different languages.

Several salient observations emerge from this comparative analysis:

• The adoption of the in batch negatives strategy adversely impacts multi-lingual
datasets, exacerbating the challenge by annotating disparate codes of distinct lan-
guages, yet sharing the same problem, as negatives. This is particularly evident in
languages with fewer samples, such as C++, Java, and Python.

• The deleterious effect of in batch negatives is more pronounced in languages boasting
a larger sample size, exemplified by C++, Java, and Python.

• The cross-lingual acumen of CodeBERT, owing to its training on a diverse array of
languages (Java, Python, Go, Ruby, Javascript, C#), is discernible in its superior
performance across these languages, substantiating the model’s robust cross-lingual
code understanding.

• Starencoder exhibits diminished performance for language D, ostensibly attributable
to the scarcity of resources in both the XCODEEVAL and The Stack datasets. The
magnitude of corpus size is identified as a potential contributing factor, with larger
corpora potentially leading to attenuated scores for both CodeBERT and Starencoder.

• In the context of NL-Code, Starencoder manifests commendable performance, albeit
with a marginal diminution for language D, mirroring a parallel phenomenon observed
in the Code-Code dataset.

These nuanced insights, gleaned from a meticulous examination of the comparative perfor-
mance metrics, serve to inform a deeper understanding of the underlying intricacies and
challenges inherent in the multi-lingual code retrieval paradigm.
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Chapter 7

Code Search Engine

In order to facilitate user interactions, a sophisticated website has been carefully crafted
employing cutting-edge technologies such as ReactJS and Material-UI. This dynamic
combination not only ensures a seamless and responsive user experience but also reflects a
commitment to employing industry-leading frameworks for frontend development.

The backend of the system, serving as the backbone for query processing and information
retrieval, has been expertly developed utilizing the Flask library in the Python programming
language. Flask, renowned for its simplicity and flexibility, lends itself seamlessly to
the creation of robust web applications, allowing for the receipt of user queries and the
subsequent provision of query results from the Dense Passage Retrieval (DPR) system.

Subsequent sections of this research delve into the intricacies of the user interface, dissecting
the user-centric design principles implemented to enhance usability and overall user
satisfaction. A thorough analysis of the system’s performance metrics is also provided,
shedding light on the efficiency and responsiveness of the implemented architecture.

Moreover, a comprehensive examination of the backend HTTP server is undertaken,
exploring its role in handling and processing user queries, as well as its seamless integration
with the DPR system. This multifaceted approach not only underscores the technological
prowess employed in the development process but also serves to elucidate the nuanced
components that collectively contribute to the operational excellence of the web application.

In essence, this research endeavors to provide a comprehensive and scholarly exploration of
the technologies underpinning the development of the website, elucidating the intricacies
of the user interface, evaluating system performance, and dissecting the functionality
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Figure 7.1: The query input section of UI.

of the backend HTTP server. Through this thorough examination, the reader gains a
profound understanding of the intuitive design and seamless integration that characterize
this state-of-the-art web application.

7.1 User Interface

The User Interface (UI) of the system is attentively crafted to ensure a seamless and intuitive
user experience. It is composed of three fundamental components, each serving a distinct
yet interrelated purpose: Query Input, Retrieval Metrics, and Search Results Display. The
comprehensive examination of these components is imperative for a thorough understanding
of the intricacies and functionalities of the UI.

7.1.1 Query Input

This part of the UI is for user input interactions. Figure 7.1 shows the initial condition of the
UI and figure 7.2 shows the input field with a code. It consists of several components as
listed below:

1. Drop down menu for selecting language. Here the users can select in which program-
ming language are they going to type in the query code.

2. Code editor. This component is the main text input for the query. This has some
advanced text editor features built into it, which are later discussed in details. In every
200ms, if there is a change in the code written in the editor, the new query results will
be retrieved. This is a multiline text input field for users to input their code queries.
Since users are expected to write codes here, the text input is enhanced with some
code editor features such as:
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Figure 7.2: The query input filled up with an example Rust code.
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(a) Automatic indentation detection where upon entering a newline the cursor is
placed at matching indentation level as the scope of code the cursor is in.

(b) Code highlighting is enabled when the language is selected. This marks different
keywords and variables to better read the query code. Both figures 7.1 and 7.2
shows the syntax highlighting example.

3. Number of search results to request. This is a query parameter settings to represent
the number of query result to retrieve from the database. Thus as the name suggests, it
controls the query performance as retrieving more documents is computationally more
costly. As seen in figures 7.1 and 7.2 show this value to be 5, and 100 respectively.

4. Search button. A button which will request to backend for the query results. This is
only a helper button for accessibility reasons as query results are requested on any
change of the code editor text (throttled by 200ms for performance).

5. Button to enable query accuracy metrics. This button allows the user to peak into
the search accuracy of their result. As discussed in chapter 6, two documents are
considered to be similar if they solve the same algorithmic problem. As for the code
corpus of the DPR model, there is an unique id representing the problem it solves,
Thus if a user knows the unique id of the problem that the query code belongs to,
they can measure the performance of the results retrieved. Another way to measure
performance would be to include the algorithmic techniques that the code in query
uses, which is a known information for all the codes in the corpus and hence this also
allows another measure of relevance of the retrieved results. When enabled it shows
two more input fields for the unique problem id and the algorithmic tags as shown in
figure 7.3. Also figure 7.4 shows the correct information to go along with the code
shown in figure 7.2.

Figure 7.3: Inputs to generate a metric report on the retrieved results.
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Figure 7.4: Inputs with example data to generate a metric report on the retrieved results.

Figure 7.5: Retrieval metrics in UI.

Figure 7.6: Retrieved result metadata display without enabling search metrics.
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Figure 7.8: Retrieved code displayed upon clicking on the result metadata display.

Figure 7.7: Retrieved result metadata display with search metrics enabled.

7.1.2 Retrieval Metrics

This section of the UI is displayed when search metrics checkbox is selected and user has
performed some query. This consists of a plot of three lines as follows:
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1. Some basic counts are shown in figure 7.4 such as number of retrieved results and
number of results that match the problem id.

2. Problem match@k. This line shows number of codes that are from the problem id as
specified in the search metrics input in the top k results. Figure 7.5 shows the retrieval
metrics, normalized problem id match cumulative sum, and cumulative max and mean
of F1 score of input tags and tags of the retrieved results.

3. best f1 score@k. This line shows the maximum f1 score between tags selected by user
and the tags of the codes in top k results. See figure 7.5 for an example.

4. mean f1 score@k. This line shows the average f1 score between tags selected by user
and the tags of the codes in top k results. See figure 7.5 for an example.

7.1.3 Retrieved Results Display

This section of the UI is for displaying the retrieved results in order of relevance ranking
when a query is performed. For each result a expandable block is displayed. Several
metadata are displayed along with the retrieved code to help the user in inference. The
displayed information for each result as shown in figures 7.6 and 7.7 is listed below:

1. Rank of the result. It is shown as ‘Search result #i’ for ith result.

2. Source. This shows the source website for the code. For our case it is always
‘Codeforces’ as the current database consists of data from ‘Codeforces’ only.

3. Problem id. This value is the problem id that the retrieved code belongs to. If the
search metrics are enabled then it is also colored according match or mismatch with
the user inputted problem id.

4. Id. An unique id for the code.

5. User. The author of the code.

6. Language. The programming language in which the code is written in.

7. Verdict. The execution outcome of the code according to the source website. This
value is ‘OK’ if the code actually solves the problem indicated by the problem id
in the retrieved results, otherwise shows one of ‘WRONG_ANSWER’, ‘COMPI-
LATION_ERROR’, ‘RUNTIME_ERROR’, ‘TIME_LIMIT_EXCEEDED’, ‘MEM-
ORY_LIMIT_EXCEEDED’.
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Figure 7.9: Lighthouse score of the UI,

8. Tags. List of algorithmic techniques that the retrieved code needs to use in order to
solve the problem to which it belongs to. If the verdict is ‘OK’ then the code should
be using a subset of the tags shown here, otherwise wrong codes have no guarantee of
using the techniques mentioned in tags.

9. F1 score. The f1 score of tags of retrieved code and tags by user input in search
metrics input.

10. The retrieved code. This component shows the retrieved code with syntax highlighting.
This part is initially not displayed and is shown when the user clicks anywhere on the
ith result. Example of the retrieved code displayed can be seen from figure 7.8.

The UI has been audited with google’s Lighthouse and the scores are as shown in figure 7.9.
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7.2 Backend

The implemented HTTP server stands as a testament to the adept utilization of Python,
specifically employing the Flask library for streamlined web service development. Posi-
tioned as the linchpin of a sophisticated information retrieval system, the server is carefully
designed to interface with a dense vector database, colloquially referred to as the index,
housing a comprehensive corpus.

At its core, the backend orchestrates a symphony of functionalities, with its primary mandate
being the loading of the dense vector index associated with the textual corpus. Furthermore,
it exhibits an exemplary responsiveness to incoming requests, a feat achieved by encoding
the query code through a dedicated question encoder. This encoded query is then subjected
to a rigorous search operation within the index, unveiling similar codes in consonance
with the pre-defined notion of similarity, as expounded in (6.1.1). In this context, passages
within the corpus are construed as codes, while the query code serves as the interrogative
counterpart.

The runtime architecture of this server is bifurcated into two discrete stages, each wielding
paramount significance in the overall system operation. The first phase, labeled Initializa-
tion, assumes a pivotal role in setting the foundation for subsequent operations. This phase
encompasses the loading of the dense vector index, laying the groundwork for efficient and
expeditious query handling in the subsequent phase.

The second phase, denoted as Search, constitutes the essence of the server’s functionality.
Here, the encoded query undergoes a complete search against the index, leveraging the
principles delineated in (6.1.1). The search operation aims to discern codes within the
corpus that resonate with the encoded query, thereby furnishing a set of results encapsulating
semantically analogous elements.

In essence, the HTTP server, with its meticulous design and bifurcated runtime architecture,
stands as a testament to the fusion of robust programming practices, leveraging the prowess
of Python and the Flask library, and advanced information retrieval methodologies. The
server seamlessly navigates the intricate interplay between vector representations and simi-
larity metrics, epitomizing a sophisticated and efficient system for code retrieval within a
comprehensive textual corpus.

88



7.2.1 Initialization

This step covers the initialization of index, and metadata database (a separate database to
associate the indexed code with their other metadata that are not encoded in DPR). An in
memory KV-pair database is used for better performance at the cost of higher memory. It is
possible to opt-in for a slower databases based on disk storage. As the database is very large
(∼ 25M codes) both in memory and disk storage solutions have high tradeoff. Due to huge
index size of ∼ 73GB it takes some time to boot.

7.2.2 Retrieval

After initializtion, the HTTP server is started which listens for any retrieval request. An
API endpoint is exposed that expects a JSON request body with three values (e.g. ‘code’,
‘n_docs’, and ‘tags’) where ‘code’ is the query code, ‘n_docs’ is the number of top results to
retrieve, and ‘tags’ are the inputs from the metric as shown in figure 7.4.

7.2.3 Benchmark

Here we show a simple benchmark to measure the performance of the retrieval backend
when a lot of request is made asynchronously by many agents. The retrieval is performed
on a database of ∼ 25M codes loaded in memory. The table 7.1 shows time required in µs
to process a request by the backend where N is the number of simulated agents performing
the query request to the backend and R is the total number of requests performed by all N
agents. The mean time to process a single query is 4508.9µs with std. deviation of 611.4µs.
This testify for the superior efficiency of our backend retrieval system.

Table 7.1: Request/second benchmark of retrieval backend.

N R 100 1000 10000 100000

10 4633.123 4187.428 4183.531 4213.226
50 5755.965 4087.244 4187.364 4256.504

100 5888.068 4178.531 4174.995 4293.091
150 5618.593 4127.591 4130.753 4226.417
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Chapter 8

Conclusion

8.1 Executability

In our rigorous exploration documented in chapter 4, we embarked upon a pedantic journey
to delineate the delicate concepts of executability and functional similarity within the
realm of code analysis. The crux of our endeavor was to establish executability as a metric
encapsulating the ability to ascertain the functional correctness of code, while concurrently
highlighting the pivotal role of functional similarity as the linchpin for assessing the
relevance between diverse code segments.

Our findings illuminate the paradigm shift introduced by this novel protocol, positioning
it as the benchmark for evaluating LLMs in the context of code-related tasks. The
execution-based evaluation protocol, as espoused in our research, posits executability as
the foundational criterion for gauging the success of code. By elevating executability to a
paramount status, we advocate for its intrinsic importance in the overall assessment of code
quality and performance within the ambit of LLMs.

Moreover, our research underscores the criticality of functional similarity in various facets.
Not only does it play a pivotal role in constructing retrieval datasets for XCODEEVAL, as
expounded in chapter 5, but it also emerges as a cornerstone in the training and evaluation
processes of our DPR models, as discussed in chapter 6.

In essence, our work contributes not only to the theoretical underpinnings of code analysis
but also establishes a pragmatic and standardized approach to evaluating LLMs in the
intricate domain of code-related tasks. The discerning recognition of executability and
functional similarity as key pillars in this evaluation framework not only enhances our
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understanding of code semantics but also lays the foundation for future advancements in the
field.

8.2 XCODEEVALand ExecEval

We are pleased to introduce XCODEEVAL in chapter 5, a pioneering large-scale multilingual
multitask benchmark arduously designed for the fine-tune and evaluation of code-based
large language models. Encompassing seven distinct tasks related to code understanding,
generation, translation, and retrieval, XCODEEVAL operates across a rich spectrum of
up to 17 programming languages. Central to its efficacy is the implementation of an
advanced execution-based evaluation protocol, which enhances the depth and granularity of
performance assessments.

Complementing XCODEEVAL, we present ExecEval in section 4.2, an innovative
multilingual code execution engine engineered to seamlessly support all programming
languages featured within the benchmark. This specialized execution engine, ExecEval,
serves as a critical component within the framework, contributing to the holistic evaluation
of large language models.

In essence, the synergistic integration of XCODEEVAL and ExecEval forms a distinctive
framework that offers a paradigm shift in the examination and analysis of large language
models. By facilitating comprehensive investigations, this framework not only promotes a
deeper understanding but also enhances interpretability, thus opening avenues for profound
exploration.

The utilization of extensive metadata and the adoption of an execution-based evaluation
methodology are pivotal elements in this framework. Through these facets, we anticipate
the unraveling of new scaling laws and the identification of emergent capabilities. Our
aspiration is that researchers, leveraging the unique features embedded in XCODEEVAL and
the capabilities of ExecEval, will embark on journeys of exploration, contributing to the
collective understanding of large language models.

In conclusion, XCODEEVAL, in conjunction with ExecEval, embodies a sophisticated and
forward-thinking approach, fostering an environment conducive to groundbreaking research.
We remain optimistic that this framework will not only enrich the existing discourse on
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large language models but also serve as a catalyst for future breakthroughs in the field.

8.3 DPR Model

In the subsequent section, as discussed in chapter 6, the intricate tasks of retrieval for
both code-code and natural language (nl-code) domains were effectively addressed. The
utilization of dense document representations for retrieval tasks was demonstrated as a
cost-effective approach, particularly when the storage and indexing of the corpus are
deemed manageable within the confines of the host system’s computational resources.

An insightful revelation emerged during the exploration of model performance, where
a discernible enhancement in outcomes was observed with the adoption of higher batch
sizes. It is imperative to underscore that augmenting batch sizes concurrently amplifies
the memory requisites for training. A pivotal benchmark for this observation is the
indispensable necessity of a 40GB GPU when training with a batch size of 128 for the
CodeBERT architecture. This signifies that the pursuit of training with higher batch sizes
necessitates the acquisition of modern GPUs endowed with expanded memory capacities.

Furthermore, the selection of a lower batch size for the Starencoder model can be attributed
to the intrinsic intricacies associated with an increase in sequence length, which subsequently
induces a polynomial escalation in memory requirements. In this specific instance, an 80GB
GPU becomes a prerequisite for training purposes.

The comprehensive examination of both code-code models delineates their performance
across a spectrum of mono-lingual and cross-lingual settings. The empirical results
underscore the models’ remarkable proficiency in mono-lingual scenarios with an average
over 90% accuracy, exhibiting a noticeable degradation in performance when subjected to
cross-lingual evaluations, albeit maintaining a commendable score of above 55% throughout.

An accurate dissection of the nl-code retrieval task reveals an exemplary performance,
attaining accuracy levels surpassing 80%. This achievement not only validates the efficacy
of the model but also accentuates its potential for real-world applications in natural language
understanding and code retrieval domains.
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8.4 Code Search Engine

The preceding exposition, as delineated in Chapter 7, carefully elucidated a practicable
instantiation of a sophisticated code search engine. This endeavor seamlessly integrated
the substantive findings from both chapters 5 and 6. Noteworthy is the observation that the
resultant search engine exhibited an exemplary level of responsiveness, demonstrating an
impressive capability to retrieve a voluminous array of 100 documents from the corpus
within the temporal confines of mere microseconds, irrespective of the intricacy of the
queries posed.

Upon extrapolation to a real-world deployment scenario, it becomes evident that the
preeminent impediment to optimal performance would be contingent upon the network
latency inherent in the communication between the end-user and the server infrastructure.
This underscores the paramount significance of network optimization strategies in mitigating
latency concerns and ensuring the expeditious delivery of search results.

Furthermore, an intricately designed User Interface (UI) was crafted, attaining a commend-
able level of responsiveness. The UI not only facilitates seamless interaction but also offers
a nuanced and insightful statistical analysis of the results retrieved. This strategic integration
of statistical insights adds an invaluable layer of depth to the user experience, augmenting
the utility of the search engine in facilitating informed decision-making and comprehensive
data exploration. In essence, the culmination of these chapters manifests in a robust and
efficient code search engine, poised to make substantial contributions in both research and
practical application domains.

8.5 Future Works

It is imperative to underscore the versatile applicability of the DPR model, particularly in
addressing the code-clone and plagiarism detection tasks. In this context, the model exhibits
efficacy by encoding all suspected codes as both corpus and queries, subsequently assessing
their relevance through the utilization of the FAISS framework. This innovative approach
underscores the adaptability of the DPR model beyond conventional natural language
understanding tasks, extending its utility to the intricate domain of code analysis.
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Moreover, it is noteworthy that any RAG model can seamlessly integrate with the model
trained within this research framework. The Bing chat platform stands out as a prime
exemplar of the successful deployment of the RAG model, leveraging its capabilities for
search result retrieval and subsequent generation of coherent text based on the retrieved
information. This underscores the practical significance and real-world impact of the RAG
model, as exemplified through the success of Bing chat.

To propel this project further, an elusive yet imperative task is to delve into the analysis
and enhancement of cross-lingual retrieval performance. This facet necessitates a extensive
exploration of language barriers and the development of strategies to mitigate them,
thereby augmenting the model’s efficacy in multilingual contexts. Furthermore, the
imperative to cultivate generative models, not strictly bound by the constraints of retrieval
augmentation, becomes apparent. These models can significantly contribute to addressing
coding challenges presented in platforms such as XCODEEVAL, thereby expanding the
scope and impact of the undertaken research initiative.

In conclusion, the potential ramifications of this research are expansive, encompassing
advancements in code analysis, multi-lingual retrieval, and generative modeling for
coding challenges. By elucidating the intricacies of model adaptability and real-world
implementations, this research endeavors to contribute substantively to the burgeoning field
of natural language processing and artificial intelligence.
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Appendix A

Resources

Resources that are made available online in tandem with this project are listed below:

Table A.1: Links to resources made public.

XCODEEVAL
https://github.com/ntunlp/xCodeEval

https://huggingface.co/datasets/NTU-NLP-sg/xCodeEval

ExecEval https://github.com/ntunlp/ExecEval

Code Search Engine (frontend) https://gitlab.com/Jackal_1586/code-search-engine

Code Search Engine (backend) https://github.com/Jackal1586/dpr_xCodeEval
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