27 May 2024 7

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS SUMMER SEMESTER, 2022-2023 FULL MARKS: 150

CSE 4203: Discrete Mathematics

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all <u>6 (six)</u> questions. Figures in the right margin indicate fall marks of questions with corresponding COs and POs in parentheses.

1.	a)	Determine whether the compound propositions $(P \land Q) \to R$ and $(P \to R) \land (Q \to R)$ are logically equivalent.	(CO (PO
	b)	Prove that $\sqrt{3}$ is irrational.	(CC (PC
	c)	Let $S(x)$ be the predicate "x is a student," $F(x)$ the predicate "x is a faculty member," and $A(x, y)$ the predicate "x has asked y a question," where the domain consists of all people associated with your school. Use quantifiers to express the following statements:	3 × (CC (PC
		Every student has asked Professor Gross a question. Some students have never been asked a question by a faculty member. Every faculty member has either asked Professor Miller a question or been asked a ques- tion by Professor Miller.	
	a)	Apply mathematical induction to prove that 6 divides n^1-n whenever n is a nonnegative integer.	(C) (P
	b)	Suppose that you have two different algorithms for solving a problem. To solve a problem of size n , the first algorithm uses exactly $n \log(n^2 + 1)$ operations and the second algorithm uses exactly $n^{1/2}$ operations. As n grows, which i algorithm uses fewer operations?	(C (P
	c)) List all the ordered pairs in the relation $R = \{gol(a, b) = 1\}$ on the set $\{1, 2, 3, 4, 5, 6, 7\}$. Determine whether the relation R is reflexive, symmetric, and/or transitive	() (1
Ι.	a) Use the extended Euclidean algorithm to express gcd(252, 356) as a linear combination of 252 and 356.	(()
	b) Show that $a \mod m = b \mod m$, if and only if $a \equiv b \mod m$, where $m \in \mathbb{Z}^*$ and $a, b \in \mathbb{Z}$.	(C (1
	c) List all integers between -100 and 100 that are congruent to $-1 \ {\rm mod}$ 13.	((
4.	8) If $ac \equiv bc \mod m$ and $gcd(c,m) = 1$, then show that $a \equiv b \mod m$, where $m \in \mathbb{Z}^+$ and $a, b, c \in \mathbb{Z}$.	0
	ł) Solve the following congruence using the modular inverses technique: $19x \equiv 4 \mbox{ mod } 141$	0

- a) Draw the ordered rooted tree that represents the expression (z + 3)/(2 + y) × (x (z + 7)) and answer the following questions about the tree. (C00)
 - i. Find the height and the leaf nodes of the tree.
 - Write the prefix and the postfix forms of the above expression.
 - iii Evaluate the value of the postfix notation when the value of x = 2, y = 1, and z = 6.
 - b) A chain letter starts with a person sending a letter out to 10 others. Each person is asked by each of the other other out to 10 others, and each letter contains a fit of the previous is proper in the data. Unless there are there that is a start and an in the list, each person is shown by the data of the previous and the data of the previous and the data of the previous data with a start and the out of the list. It from previous breaks the chain and no one receives more than one letter, how much money will a previous in the data ultimately receive?
- a) A sequence d₁, d₂, ..., d_n, where d_i is the degree of the i-th vertex, is called graphic if it is the degree sequence of a simple graph. Determine whether the sequence 6, 5, 4, 3, 2, 1, 2, 2, 2 is (CO2) eraphic Line (CO2)

b) Consider a graph G is represented by the following incidence matrix:

1		0	0	0	0]
1 0 0		1	1	0	1
0	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	0

i. Draw the graph G represented by the above incidence matrix.

ii. Define the bipartite graph. Determine weather graph G is a bipartite graph.

c) Differentiate between Euler circuit and Hamilton circuit with appropriate graph.

(CO4) (PO1)