-

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS

SUMMER SEMESTER, 2022-2023 FULL MARKS: 150

CSE 4851: Design Patterns

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions with corresponding COs and POs in parentheses.

1.	a)	What is a design pattern? Explain why design patterns are important in software develop- ment.	5 (CO1) (PO1)
	b)	Note each of the following cases, indicate which design pattern you will apply — 1. Be able to project the implementation of an instrince at a true time. 1. Encounter of the implementation of an instrince at a true time. 1. Encounter of the second sec	2 × 5 (CO4) (PO2)
	c)	Describe the Singleton design pattern. What problem does it solve, and how is it imple- mented? Provide a simple code example demonstrating the implementation of the Singleton pattern.	10 (CO3) (PO1)
2.	a)	What are the differences between the Strategy and Decorator pattern?	5 (CO1) (PO1)
	b)	A popular colline bookstore platform that caters to redder worldwide. A customer places and ender for historical powers in the bookstore platform. The order is passed through a chain of responsibility, consisting of distinct handlers for validation, discount application, payment powers and subjuing respectively. In order moves semantly through each handler in the chain. If at any stage the order fails validation or encounters an issue, the processing is halled, ensuring a smooth and error ensistant order infillment process. Which design pattern will you apply to implement the seamic? With the corresponding code to implement the scenario sing that appropriate platem.	12 (CO4) (PO2)
	¢) "Program to an Interface, not to an Implementation" - Explain the statement with an appro- priate example.	8 (CO1) (PO1)
3.	a) An application contains an interface, Trappo, implemented by two concrete shapes (C) is related a locat across). Several composite shapes can be eviated by using these two concrete shapes. Composite objects can be within the high of a ShapeVI is its can interface. Write code for the above membred with the high of a ShapeVI is its can interface.	15 (CO4) (PO2)
	b	 Explain the intent and motivation of the Proxy pattern. Describe a real-world scenario where 	10 (CO3)

4.		Use Composite Pattern, to model the notion of a folder in Windows XP. Folders may be nested and may also contain text files and binary files. Files may be opened, closed, or drawn on the screen. Folders may also have items added and removed from them. Draw the UML diagram for the described model.	10 (CO3) (PO1)
		Perform a comparative analysis among Singleton, Prototype, and Flyweight patterns.	10 (CO3) (PO1)
5.		Draw a UML diagram for Mediator pattern between web services and web clients. As web services, the eBay auction house and Amazon are available. Plan functions to search for an item with a textual description, and to buy an Item from the service that gives you the best price.	10 (CO3) (PO1)
		Identify two design patterns that reduce memory footprint. Perform a comparative analysis between them.	10 (CO3) (PO1)
	c)	Identify a pattern that decouples an abstraction from its implementation so that the two can vary independently. Explain a scenario satisfying the statement.	10 (CO4) (PO2)
6.	a)	Write short notes on "Speculative Generality" and "Primitive Obsession".	10 (CO1) (PO1)
	b)	Consider the classes used in a movie rental system as in Code Snippet 1 and 2.	5 × 3 (CO2)
	1	public class Rental [(PO2)
	2	private Movie _movie;	
	- 3	Private intdaysRented;	
	4		
	5	public Rental (Movie movie, int daysRented) {	
	6	_movie = movie;	
	7		
	8		
	10		
	- 11		
	13		
	12		
	14		
	12		
	10		
	11		
	19		
	25		
	2	switch (getMovie().getPriceCode()) {	
	2		
	2		
	2		
	2		
	2		
	2		
	2		

30	case Movie.CHILDRENS:
31	thisAmount += 1.5;
32	if (getDaysRented() > 3)
33	thisAmount += (getDaysRented() - 3) * 1.5;
34	breaks
35	
36	return this.Amount; }

Code Snippet 1: Java program of Rental class for Question 6.b

Code Snippet 2: Java program of Novie class for Question 6.b

Answer the following questions according to Code Snippets 1 and 2.

- i. Briefly explain the terms "Code refactoring" and "Code smell".
- ii. Identify two code smells that have occurred in the code.
- iii. Refactor the code removing the smells.