ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination Course No.: EEE 4281 Course Title: Electrical Circuits and Electrical Machine Summer Semester, A. Y. 2022-2023 Time: 3 Hours Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

- a) Design RC circuits that provide θ (phase angle (θ) in degree and 0< θ < 90
 12
 degrees) leading and lagging phase shifts and justify the answer. (CO2, PO2)
 - b) Determine the total impedance (Z_T), source current (I_z), voltages (V_R, V_C) and 13 current across the capacitor (I_C) in the given R-L-C circuit in Fig. 1. (CO3, PO2)

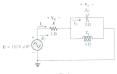


Fig. 1

- a) Discuss different power stages in DC generators and the conditions to achieve maximum power efficiency in a DC generator. (CO5, PO2)
 - b) A shunt-type DC generator delivers 195 A current at 250 V. The armature 13 resistance and shunt field resistances are 0.02 Ω and 50 Ω, respectively. The (CO5, PO2) strav losses are equal to 950 W. Determine the following:
 - Electromotive force (E.M.F.) generated.
 - Copper (Cu) losses.
 - iii) Output power of the DC generator.
 - (iv) Commercial, mechanical, and electrical efficiencies.

- a) Discuss the different speed control methods for a shunt-type DC motor. With 12 necessary justifications, distinguish the most preferred to the least preferred (CO5; PO2) method in terms of:
 - i) Effect of variation of flux.
 - ii) Effect of armature reaction,
 - iii) Associated power loss due to the application of a speed control method,
 - iv) Obtaining maximum speed compared to rated speed,
 - v) Cost of the system.
 - b) A 4-pole, 240 V, wave-connected shant motor gives 1119 kW when running 13 at 1000 r.p.m. and armature current (l_a) and field currents (l_g) of 50 A and 1.0 (CO5, PO2) A respectively. The motor has 540 conductors with total resistance (R_a) of 0.1
 - $\Omega.$ Assuming a drop of 1 volt per brush, and back E.M.F. is $E_{\rm b},$ find
 - Armature torque (T_a = 9.55 ^{n_D/a}/_n),
 - Useful flux/pole (φ),
 - (iii) Rotational losses,
 - (iv) Efficiency.
- a) Explain the simplified equivalent circuit of a loaded transformer (either 12 inductive or capacitive load). Design and formulate current, voltage, and (CO5, PO2) impedances for the following:
 - i) The equivalent circuit is referred to primary.
 - ii) The equivalent circuit is referred to secondary.
 - b) A 30 k/h, 24007/1207, 50 10 transforme: has a high voltage winding resistance of 0.1 Ω and a bindge resistance of 0.23 Ω. The low voltage (COS, PO2) winding resistance is 0.015 Ω and healwage restance of 0.0812.Ω. Calculate the equivalent winding resistance, readmont, and Impedances referred to the high voltage side and low voltage side, respectively.
- a) Define the starting torque of an induction motor. Formulate the relationship between the starting torque and synchronous speed of an induction motor (CO5, PO2) under standstill conditions.

- b) An 8-pole, 3-phase, 50 Hz induction motor has a rotor resistance of 0.025 Ω 13 per phase and a rotor standardill reactance of 0.1 Ω per phase. At what speed is (COS, PO2) the torque maximum? Evaluate the proportion of maximum torque to the starting torque.
- 6. a) Explain the following questions in brief: 12
 (CO5, PO2)
 - The basic difference between an alternator and a generator.
 - ii) The parallel operation of the alternator with advantages.
 - iii) Differences between the alternator and synchronous motor.
 - iv) The effect of load in the "V-curve" of an alternator.
 - i) Formulate the power output equation of a cylindrical rotor-type 13 synchronous generator: (CO5, PO2)

$$P = \left[\frac{EV}{Z_s}\cos(\delta - \theta) - \frac{V^2}{Z_s}\cos\theta\right]$$

Where, P, E, V, Z_s , δ and θ have their definition for synchronous generator operation.

From the power output equation above, derive maximum power output equations using derivative and approximation methods.