Name of the Program: M. Sc./PhD in Mechanical Engineering Semester: Summer Date: 17 May, 2024

Time: 10:00 am - 01:00 pm

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Semester Final Examination Course Number: MCE 6119 Course Title: Turbomachines Summer Semester : 2022 - 2023 Full Marks: 150 Time : 3.0 Hours

There are 06 (Six) questions. Answer all questions. The symbols have their usual meanings

 The impeller of a centrifugial pump has oulet diameter of 0.370 m, runs at 800 rpm, (35) and delivers 30 to 61 water. The radial velocity at the impeller exit is 2.3 m/s. The difference between the water levels at the overhead ank and the pump is 14 m. The power required to drive the pump is 8 hn, its mechanical and volumetric effectiveness being 0.96 and 0.97, respectively. The impeller vanes are backward oursed with an exit angle of 45.

Calculate

- a. ideal head developed with no slip and no hydraulic losses and
- b. the hydraulic efficiency.
- A centrifugal pump delivers water at the rate of 8.5 m³/min against a head of 10 m. (25) It has an impeller of 50 cm outer diameter and 25 cm inner diameter. Vanes are set back at outlet at an angle of 45⁹, and impeller is running at 500 rpm. The constant velocity of flow is 2 m³.

Determine -

- a. the manometric efficiency,
- b. vane angle at inlet, and
- c. minimum starting speed of the pump.
- A Pelton wheel develops 12,900 kW at 425 rpm under a head of 505 m. The (25) efficiency of the machine is 84%.

Find-

- a. discharge of the turbine,
- b. diameter of the wheel, and
- c. diameter of the nozzle.

Assume Cy = 0.98, and ratio of bucket speed to jet speed = 0.46.

 A Kaplan turbine produces 16000 kW under a head of 20 m, while running at 166 (25) rpm. The diameter of the runner is 4.2 m while the hub diameter is 2 m, the discharge being 7120 m/s.

Calculate -

- a. the turbine efficiency,
- b. specific speed,
- c. the speed ratio based on the tip diameter of the blade, and
- d. the flow ratio.
- Consider a convergent-divergent nozzle in which steam enters at 0.8 MPa and leaves (25) the nozzle at 0.15 MPa. Assuming isentropic expansion and index n = 1.135, find the ratio of cross-sectional area, the area at the exit, and the area at the throat for choked conditions (i. e., for maximum mass flow).
- 6. In an impulse turbine, the velocity of steam at the exit from the nozzle is 700 m/s (25) and the nozzles are inclined at 22⁽⁶⁾ to the blades, whose tips are both 34⁽⁶⁾. If the relative velocity of steam to the blade is reduced by 10% with passing through the blade ring, calculate the blade speed, end thrust on the shaft, and efficiency when the turbine develops 1600 kW.

Table 15	Table 13 Water of Santration Temperature	tion Temps	Caparo			Darbahas	
	Saturation		Saturation Freezer P × 10 ⁻⁵ (Misc ³)	Specific volume of Vapor v_0m ¹ (eg)	h, (KUNg)	$h_{q} (KUkg) = \chi 0.420 = (BaAP_{q})$	h_{ij} (KÚN)
1	Temperature 1		× 1.450 × 10 ⁻⁴	× 16.02	× 0.430 = (800/ba)	$\times 0.430$ = (Bitelb _m)	× 0.430 = (800 ba)
g.	ж	p	- 000			7401	1034
1	124	0	0.0061	206.3	1000-	2410	2477
2 5	1002	2	0.0122	106.4	10.14	2662	24555
8 5	1	- 20	0.0233	21,833	100.00	10.00	24.40
: :	000	10	0.0424	02.929	10000	PC24	2400
2 ;	510	97	0.0737	19.548	00/101	100-0	2382
5 5	No.	9	0.1233	12.048	001 101	NOW.	2358
19	101	89	0.1991	1997.1	10.144	9000	2333
100	141	2	0.3116	1005	10.414	XP9C-	2348
	194	80	0.4735	014/5	10.00	1440	1223
2.4	191	05	0.7010	2362	10001	WOW.	2257
100	E	100	1,0132	1.675	007616	2286	
1 1	101	120	1,9854	7690	1000	2714	2344
1.7	413	140	3.6136	8050	2001	2322	2162
100	110	160	6.1804	0.000	167.1	2777	2014
	469	180	10.0077	26(1))	10007	102.0	1039
	100	200	15.551	0.121	1 1 1 1 1	100.2	1856
	101	220	23,201	029010		1000	1764
5		240	33,490	0.0596	07/011	- AND	0991
8		090	46,940	0.0421	0.6511	2172	1541
100		-	641 101	106010	1/1623		1000
536	2	107	010	0.0216	1345.4	2148	
572	573	200	110/00				

Copyedgin 2003 by Marcel Dickne, Inc. All Rights Reserved

4

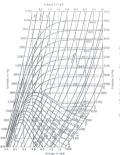


Figure A.2 Enthalpy-Entropy Diagram for Wa

reight 2005 by Murcel Debter, Inc. All Rights Reserv

Ê.,