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Plasmonic coupling has attracted considerable attention in research due to its promising
applications in thermoplasmonics, which is increasingly utilized across various nanotech-
nologies, particularly in the fields of biology and medicine. Applications include photother-
mal cancer therapy, drug delivery, nanosurgery, and photothermal imaging, thanks to their
capability to significantly enhance electromagnetic fields. Localized Surface Plasmon Res-
onances (LSPR) in metal nanostructures enable substantial electromagnetic field enhance-
ment and precise localization at the nanoscale. The characteristics of LSPR, including the
resonance wavelengths, can be adjusted by altering the geometry of the nanostructures and
are highly sensitive to changes in the surrounding refractive index. The interaction of lo-
calized plasmon resonances can lead to the formation of new hybrid modes that individual
nanostructures cannot support, surmounting some limitations of standalone LSPR and fa-
cilitating novel applications and the active manipulation of plasmon resonances.
In this thesis work, we explore how plasmonic coupling influences the photothermal behav-
ior of randomly distributed silver nanoparticles. We used the discrete dipole approximation
method and thermal Green’s function to compute the spatial temperature profiles of illu-
minated nanoparticles. Our findings suggest that plasmonic coupling among nanoparticles
in a random assembly, along with thermal accumulation, induces a photothermal response
that differs from that observed in isolated nanoparticles. We qualitatively analyzed the indi-
vidual effects of plasmonic coupling and thermal accumulation on temperature increases in
nanoparticle assemblies. Our results indicate that at wavelengths far from a single nanopar-
ticle’s plasmonic resonance, plasmonic coupling among clustered nanoparticles can lead to
significant temperature increases, an effect not anticipated in the absence of plasmonic cou-
pling. Conversely, at the resonance wavelength of a single nanoparticle, plasmonic coupling
results in a lesser temperature rise compared to a group of non-coupled nanoparticles. These
insights enhance our understanding of the photothermal dynamics in random nanoparticle
systems, with significant implications for their use in biological applications.
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Chapter 1

Introduction

Noble metal nanoparticles (NPs) have received over the last decade much interest in nano
science due to their remarkable optical properties. [1] In particular, noble metal nanoparticle
(NP) under illumination at its plasmonic resonance, which can be tuned from the visible to
the infrared frequency ranges, strongly absorbs the light energy. The absorbed energy is con-
verted to heat which raises the temperature of nanoparticle and its immediate surrounding
media. [2] These resonances, known as localized surface plasmons (LSPs), are responsible
for both enhanced light scattering and enhanced light absorption. For a long time, the ab-
sorption and the subsequent NP temperature increase have been considered as side effects
in plasmonics applications, which focused on the optical properties of metal NPs. Only re-
cently have scientists realized that this enhanced light absorption, turning metal NPs into
ideal nano-sources of heat remotely controllable using light, provides an unprecedented
way to control thermal-induced phenomena at the nanoscale.

In this research work, we review the recent progress in the emerging and fast-growing
field of thermo-plasmonics. Which investigates the use of plasmonic structures as nano
sources of heat. We first describe the physics of heat generation in metal NPs. In partic-
ular, we emphasize the differences in the heating mechanisms between continuous and
pulsed illuminations. Then, we present the numerical frameworks that have been devel-
oped to model the photothermal properties of metal NPs. We also discuss recent experi-
mental works that aim at addressing the intricate problem of probing and imaging the tem-
perature distribution generated around plasmonic nanostructures. Finally, we review the
main emerging applications in thermo-plasmonics, from medical therapy and bio-imaging
to nano-chemistry and optofluidics.

1.1 Background and Motivation

Over the last two decades, noble metal nanoparticles (NPs) have been the subject of exten-
sive research in the frame of nanotechnology, mainly owing to their unique optical proper-
ties. Indeed, the free electron gas of such NPs features a resonant oscillation upon illumi-
nation in the visible part of the spectrum. The spectral properties of this resonance depend
on the constitutive material, the geometry of the NP and its environment. This resonant
electronic oscillation is called localized surface plasmon (LSP), and the field of research that
studies the fundamentals and applications of LSP is known as nanoplasmonics. 1 LSPs
are accompanied by valuable physical effects such as optical near-field enhancement, heat
generation and excitation of hot-electrons. Hence, plasmonic NPs can behave as efficient
nanosources of heat, light or energetic electrons, remotely controllable by light. In nanoplas-
monics, these properties have stimulated extensive basic research and already led to a wide
range of applications in nanotechnologies. Light and heat are physical quantities involved
in many mechanisms in physics, chemistry and biology. Hence, a natural trend is to ex-
plore possible frameworks that could gain from the unique properties of metal NPs. So far,
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biology has been one of the areas of science that has benefited the most from nanoplasmon-
ics. For instance, gold NPs as nanosources of heat are already at the basis of applications
ranging from photothermal cancer therapy [3]–[5], bio-imaging [6], drug delivery [7] and
nanosurgery [8]. Chemistry is another field of science that can potentially greatly profit from
plasmonic NPs. Indeed, heat is a major parameter in any chemical reaction, light can be used
to achieve high selectivity in chemical mechanisms thanks to quantum selection rules and
adjustable photon energies, and electron transfer is the basis of redox reactions. Hence, the
idea to use metal NPs as efficient nanosources of heat, light and electrons appears to be an
appealing concept to both boost the yield of chemical reactions and improve their spatial
and temporal control. The first section gives the readers the basics of nanoplasmonics.

1.2 Principles of Plasmonic Effect

The free electron gas in a solid, when moving against a positive background of ions, may
be regarded as plasma. Just as a wave of light can be quantified as a photon and a lattice
vibration can be quantified as a phonon, the collective oscillation of the free electron gas
in a solid’s positive ion background can be regarded as an elementary excitation that can
also be quantized as a type of quasiparticle, i.e., the plasmon. As we know, the momentum
matching condition can be tuned for different wavelengths by changing the incident angle of
the plane wave. Depending on their different boundary conditions, plasmons in metals can
be divided into bulk plasmons and surface plasmons (SPs). Furthermore, surface plasmons
can be subdivided into two categories: the first is conductive Surface Plasmon Polaritons
(SPPs), which occur at the metal-dielectric interface in the form of longitudinal waves, and
the second is Localized Surface Plasmons (LSPs), which are bound near metal structures.
These three different forms are illustrated in figure: 1.1.

FIGURE 1.1: Three different oscillations. Adapted from Ref. [8]

As collective photon–electron oscillations makes them attractive candidates for energy
applications, when light is incident on metal, it can lead to plasma oscillation inside the
metal, and when the metal has boundaries, such as a metal-dielectric interface or a boundary
of the metal nanoparticles’ geometry, the field will be coupled with the plasmon oscillation
within the metal and will form a new oscillation mode, i.e., a conductive surface plasmon
oscillation or a localized surface plasmon oscillation.
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FIGURE 1.2: Surface Plasmon Polaritons

FIGURE 1.3: Localized Surface Plasmons

figure: 1.3. depicts the nanostructures of the surface plasmon polaritons (SPPs) and the
localized surface plasmons (LSPs). In SPPs, the free electrons interact with the electromag-
netic fields to generate dense electron waves that propagate along the metal surface [9],
thus requiring one-dimensional metal structure which is close to the excited wavelength. In
general, the wave vector of SPP dispersion curve is larger than that of the light while the
frequency remains the same, the SPP dispersion relation can be calculated for short-pitch
metal gratings for various depths, the dispersion of electromagnetic surface mode can be
obtained and described by

kspp = k0

√
ϵ1ϵ2

ϵ1 + ϵ2
(1.1)

where kspp is the wave vector of the SPP, k0 is the wave vector of the incident radiation,
and ϵ1 and ϵ2 are the frequency-dependent dielectric functions of the two media on either
side of the interface [10].

The theory here is based on the characteristics of surface plasmons when coupled with
some excitons, which are confined to the metal surface on a nanometer scale and thus greatly
compressed the spatial distribution of the electromagnetic field. This forms a theoretical
basis for exploration of the coupling effect between surface plasmons and excitons.

1.3 Problem Statement

The main concern of this paper is to find the answer of this question. In this paper, we use
the discrete dipole approximation (DDA) method and thermal Green’s function [8], [11] to
investigate the effects of plasmonic coupling and thermal superposition on temperature in-
crease of randomly distributed nanoparticles. To the best of our knowledge, this is the first
study that determines quantitatively the separate contributions of each of these two effects
to the photothermal behavior of illuminated NPs assembly. Here, we have considered sil-
ver NPs because silver NPs, due to their stronger and sharper plasmon resonance, recently
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have been intensively used in diagnosis and the treatment of cancer and as the drug carri-
ers [5], [6], [12]–[16]. As an experimentally relevant example of the structure that we have
investigated in this paper, one can consider the application of NPs as nano-source of heat in
aqueous medium such as in medicine and biology.

In general, when the NPs interact, the photothermal behavior of each NP in the distri-
bution can be very different in comparison with a single isolated NP. In fact, in an assembly
of NPs, two different effects determine the photothermal properties of each NP; the effect of
plasmonic coupling with the other NPs and thermal accumulation effect. While extensive
studies made on plasmonic coupling for a pair of nanoparticles [17]–[23], there is much less
effort being expended on the ensemble of random NPs. The important question that arises
about the effect of plasmonic coupling on the photothermal behavior of random NPs is that
will plasmonic coupling work in favor of the application, because of the field enhancement?
Or will it work against it, because it shifts the plasmonic resonance wavelength? The main
concern of this paper is to find the answer of this question. In this paper, we use the discrete
dipole approximation (DDA) method and thermal Green’s function [8], [11] to investigate
the effects of plasmonic coupling and thermal superposition on temperature increase of ran-
domly distributed nanoparticles.

Why and how Plasmonic Coupling effects on photothermal ?

• Enhanced Sensitivity : Plasmonic coupling enhances the sensitivity of sensors by in-
creasing the local electromagnetic field.

• Improved Photothermal Efficiency: Coupling leads to higher temperature increases,
beneficial for applications like Photothermal Imaging and Cancer therapy

• Efficient Heat Generation : Coupled nanoparticles can generate more heat, making
treatments like hyperthermia therapy more effective.

• Advanced Nanophotonic Devices : Enables the development of devices with en-
hanced optical properties for use in telecommunications and computing.

1.4 Plasmonics in applications

The optical properties of metals have a huge potential for applications. The range of appli-
cation based on the plasmonic properties is very wide such as enhanced spectroscopies, bio
and chemical sensing, solar cells, color generation, heat treatment, sub-wavelength optical
imaging and plasmonic lasing.

1.4.1 Color Generation

The plasmonic properties of metallic nanoparticles is used for ages in order to create the
colors in mesoscale. The most popular examples are the Lycurgus Cup produced in Roman
Empire (4th century). The glass of this cup contains gold and silver powder.

When the cup is shined from outside (Fig. 1.9a) it looks green due to the scattering
caused by LSPR in green range. When the cup is shined from inside (Fig. 1.9b) glass
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FIGURE 1.4: Lycurgus roman cup (a) in reflected (b) and in transmitted
light [37]. (c) Stained glasses on the vitrines of the Cathedral of Troyes. (d)
Schematic of the grating color filter of 30 nm thick Ag grating with different
periods. (e) Measured transmission spectra corresponding to yellow, magenta

and cyan colors for the structure in (d). [24]

appear to be red due to the LSPR causing absorption in the green range. Another ex-
ample of a color generation caused by the optical properties of metallic nanoparticles is
pictured on the figure: 1.4c. The progress in nanofabrication processes allow to produce
nano or microstructures of different configurations show a color generation at microscale
using nanostructured silver pallets of different size and periods (distance between the pal-
lets) [24]. figure: 1.4d is shown the schematics of different pallets and on the figure: 1.4e is
drawn the transmission spectra obtained experimentally. We can see the clusters show dif-
ferent colors at nanoscale, which can be used for examples for high resolution screens with
very small pixel size.

1.4.2 Bio-Sensing

Multiple papers have been published on a bio-chemical sensing based on plasmonic reso-
nances. Cooper reviewed an example of plasmonic sensor in order to determine the affinity
and kinetics of a wide variety of molecular interactions in real time, without the need of
molecular labeling figure: 1.5. This kind of bio-sensor is envisaged to characterize the in-
teractions between receptors that are attached to the biosensor surface and ligands that are
in solution above the surface. SPR is changed due to the refractive index changes in the
intermediate.
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FIGURE 1.5: Experimental setup for an SPR based biosensor. SPR detects
changes in the refractive index in the immediate vicinity of the surface layer
of a sensor chip. SPR s observed as a sharp shadow in the reflected light from
the surface at an angle that is dependent on the mass of material at the surface.

(The figure and the caption are adopted from [24])

SPR is observed as a dip in the reflected light spectrum from the surface at an angle that
is dependent on the refractive index of solution [24]. The refractive index of the solution
defined by mass of "ligands". Besides the SPR, the LSPR changes caused by the refractive
index variation can be used in biosensing. The molecules bound in the vicinity of nanopar-
ticles causes a change of the effective refractive index, which leads to a shift of the resonance
peak position.

Horrer et al. showed experimentally and numerically a nice example of a sensor based
on LSPR. They used an array of MIM (metal-insulator-metal) structures for the sensing. In
Fig. ??a is shown the single element schematic of the array.

FIGURE 1.6: (a) Schematic of the vertical gold–SiO2–gold dimer. (b)Sensitivity
measurements in water–glycerin solutions with different mixing ratios to vary

the refractive index. [25]

The array shows three peak position corresponding respectively to symmetric dipole
(around 630 nm), lattice mode (around 770 nm) and antisymmetric dipole mode (around
880 nm). The main resonance shifts are recorded for lattice mode and anti-symmetric dipole
mode, when the water–glycerin solutions of different refractive indexes are tested. They
demonstrate a sensor based on LSPR, which is sensitive for refractive indexes changes with
step of 0.01. The highest sensitivity was reported as 0.003 [26].
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1.5 Thesis Outline

The dissertation thesis is organized into ten chapters that cover the various aspects of Prin-
ciples of Plasmonics, introduction to plasmonic coupling effectts on nanoparticles applica-
tions.
Following the thesis introduction in Chapter 1, Chapter 2 offers an overview of introduc-
tion to plasmonics of Nanoparticles. Chapter 3 delves into the theory of plasmonic of pho-
tothermal response. Chapter 4 discusses the Numerical Methods for Plasmonic Coupling.
Chapter 5 covers the Light Scattering and Absorption by Nanoparticles Chapter 6 presents
the theoretical Calculation of Temperature Distribution in the steady state regime. Chap-
ter 7 discusses the experimentals methods, set up, structure of Experiments and Outcomes.
Chapter 8 is basically Result analysis and conclusion of our whole thesis work. Chapter 9
discussed compares advantages and disadvantages, and explores various nanoparticles ap-
plications and future directions of the investigated approaches. PICs. Finally, Chapter 10
presents the Demonstration of Outcome Based Education.
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Chapter 2

Introduction to Plasmonics of
Nanoparticles

The interaction of an external electromagnetic (EM) wave and the conduction band electrons
at a metal interface may result in plasmons [27]–[29]. It is defined commonly as a quantum
of plasma oscillations [30], whose theory was proposed by Pines and Bohm in 1952 [29].
Plasmons often refer to plasmon polaritons which is the coupled state between plasmon
and photon. Wood in 1902 published firstly an experimental observation anomalies caused
by surface plasmon polaritons [31]. He noticed dark stripes in the spectrum of the diffracted
light, when a metallic diffraction grating was illuminated by a polychromatic light. The
dark stripes represent the losses of the light in the grating at certain wavelengths, which
were not transmitted. This phenomenon is known as Wood-Raleigh anomalies. In 1957
Ritchie predicted that the electron energy losses should describe the collective modes (sur-
face plasmons) of metal thin films . Then, in 1959 Powel and Swan verified experimentally
the concept proposed by Ritchie.

2.1 Plasmons

The term plasmon was introduced by Pines in 1956 in the introduction of a review article
[32]. In Pines’ work we find the following definition:

The valence electron collective oscillations resemble closely the electronic plasma oscil-
lations observed in gaseous discharges. We introduce the term ‘plasmon’ to describe the
quantum of elementary excitation associated with this high-frequency collective motion.
A plasmon is therefore a quantum quasi-particle representing the elementary excitations, or
modes, of the charge density oscillations in a plasma. Note that the study of these oscilla-
tions started earlier, even if they were not known or identified as plasmons [33]. We will
come back to the notion of elementary excitations or modes of a system in the next section.
Although the term ‘plasmon’ is sometimes used in a broader context, the formal definition
given above is the definition of reference. It draws its origin from quantum mechanics, even
though we will see that quantum mechanics is, in fact, not necessary to study plasmons. A
useful analogy to understand the meaning of this definition is to recall the formal definition
of a photon: it is the quantum particle representing the elementary excitations, or modes, of
the free electromagnetic field oscillations.

A plasmon is therefore simply to the plasma charge density what photons are to the elec-
tromagnetic field. Many properties of photons can be studied within a classical framework,
using Maxwell’s equations. Similarly, many properties of plasmons can be studied within a
classical description of the plasma and its interactions. There is, may be, a small difference
in the vocabulary between plasmons and photons, but it is only artificial: people typically
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only use the term ‘photon’ when dealing with quantum aspects of the electromagnetic fields
(such as absorption or emission by an atom). In classical situations, the term electromagnetic
wave, or electromagnetic mode, is usually preferred. For reasons that are more historical
than scientific, the term ‘plasmon’ tends to be used in all situations, quantum or classical,
instead of equivalent (classical) denominations such as charge density oscillations . A more
important and fundamental difference is that a photon is a real quantum particle while a
plasmon is a quasi-particle because it is always ‘lossy’ and highly interacting. A charge den-
sity oscillation, if not maintained by an external source of energy, will always decay because
of various loss mechanisms (collisions, etc.).

2.2 Maxwell’s Equations

The interaction of light with metals and dielectrics can be described by Maxwell’s equations,
which provide the mathematical framework to describe the behavior of the electric field B
and magnetic field H to their sources. At their fundamental level, Maxwell’s equations are
formulated without the consideration of specific material properties [34]

∇ · D = ρext

∇ · B = 0

∇× E = −∂B
∂t

∇× H =
∂D
∂t

+ Jext

(2.1)

where B is the magnetic flux density, ρ is the charge density, J is the current density, and D is
the electric displacement field. When considering electromagnetic fields in a vacuum, these
equations can be expressed as follows:

∇ · D = ρext

∇ · B = 0

∇× E = −∂B
∂t

1
µ0

∇× H =
1
ϵ0

∂E
∂t

+ Jext

(2.2)

where, in the last equation, the constants ϵ0 and µ0 represent the vacuum electrical per-
mittivity and vacuum magnetic permeability, respectively. In vacuum, the relationship be-
tween electric displacement and electric field, and the magnetic flux density and the mag-
netic field is:

D = ϵ0E
B = µ0H

(2.3)

2.3 Properties of metals

2.3.1 Optical Properties

The optical properties of metals depend strongly on the frequency of EM wave. The metals
are highly reflective for frequencies up to visible and EM cannot propagate through. In Fig.
1.1 is shown the chart of the light frequency versus the wavelength.
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FIGURE 2.1: Light wavelength versus frequency chart [34]

At high frequencies (UV-γray) the majority of metals demonstrate dielectric-like charac-
ter allowing EM field to penetrate through. It depends on their electronic band structure, for
example alkali metals (Li, Na, K, Rb, Cs, Fr) are transparent in UV. Though, the noble met-
als (Au, Ag, Cu) have strong absorption in UV caused by interband transitions. These are
described by the complex dielectric function called dielectric permittivity - ϵ(ω). In other
words, ϵ(ω) draws the dispersive properties of metals. ϵ(ω) is governed by the conduction
band electrons and inter-band transitions. The conduction electrons are generally described
by the Drude model. Following the Drude model’s description, the conduction electrons
form an electron gas and move freely through a metal. The illustration of the Drude model
is shown in Fig. 2.1 The basic assumptions are that electron-electron and ion-interactions
are neglected, and electrons move in straight line in the absence of electric field. Moreover,
they achieve thermal equilibrium by collision with lattice. The collisions are interpreted
by the kinetic theory. The mean free time (relaxation time) between collisions is τ and the
probability of collisions is 1/τ.

FIGURE 2.2: Drude model representation [34]

When the electric field is applied the valence electrons are displaced by r⃗ and induce a
macroscopic polarization (P⃗):

P = −n · e · r, n =
N
V

(2.4)

where in the equation (2.18), n is the electron density per unit volume (V), e is the electron
charge, N is the number of electrons. Let’s link the polarization and the dielectric function.

2.3.2 Materials Properties

Equations (2.3) can be used to calculate the fields where all sources are known. In bulk ma-
terials, this would mean knowing the exact charges and positions of all atoms at any given
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time. However, computing the exact number of individual contributions when dealing with
complex systems is often impossible and unnecessary. Instead, it is common practice to
calculate average macroscopic fields using material equations. These equations express the
impact of the fields on the material’s structure observed over large distances. By employing
material equations, one can effectively describe the effects of the material’s microstructure
without needing to consider every individual component. In this case, equations (2.3) can
be reformulated as follow [35]:

D = ϵ0E + P = ϵ0(1 + χe)E
B = µ0H + M = µ0(1 + χm)H

(2.5)

where P is the polarization, χe is the electric susceptibility tensor, χm is the magnetic
susceptibility tensor, and M is the magnetization. P is the polarization is

P = ϵ0χeE

Polarization and magnetization represent the distribution of electric and magnetic dipole
moments that arise in response to an external field. This implies that both of these vectors
are functions of the external field. As a result, when the expressions (2.5) for the electric dis-
placement and magnetic field are substituted into the equations (2.3), the Maxwell’s equa-
tions in the medium have a similar form to those in a vacuum. For non-magnetic materials
and most materials within the optical frequency spectrum, the magnetization component M
can be neglected. Two new constants can be introduced:

ϵr = (1 + χe)

µr = (1 + χm)
(2.6)

called relative electric permittivity and relative magnetic permeability. Using these nota-
tions, the displacement and magnetic induction can be written in a simpler form:

D = ϵ0ϵrE
B = µ0µrH

(2.7)

Also, D = ϵ0ϵrE = ϵmE and B = µmH where ϵm and µm are permittivity and permeability
of the medium respectively.Finally, Maxwell equations take the form of

∇ · E =
ρext

ϵm

∇ · B = 0

∇× E = −∂B
∂t

∇× B = µmϵm
∂E
∂t

+ µmJext

(2.8)

In the absence of external current and charge, by taking curl of 2nd equation 2.10 and
then inserting 3rd equation into it, one can obtain

∇×∇× E = −µ0
∂2D
∂t2 (2.9)
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By using vector identity (∇×∇× E = ∇(∇ · E)−∇2E) and being aware of , in this case,
one can form an electromagnetic wave equation

∇2 · E = µmσ
∂E
∂t

+ µmϵm
∂2E
∂t2 (2.10)

where σ is the conductivity of the metal which come from the ohms law Jext = σE. Assuming
a harmonic form for E-field- E(t) = E(r)e−iωt inserting E(t) into 2.11, Helmholtz wave
equation can be obtained.

∇2 · E + ω2µmϵmE(r) = 0 (2.11)

where ϵ is known as so-called complex permittivity in the form of

ϵ(ω) = ϵ′(ω) +
jσ(ω)

ω
(2.12)

Here conductivity is also complex and to understand this complex behavior one should be
aware of Drude –Sommerfeld model. Valence electrons in a metal behave like a gas of free
electrons and oscillate with respect to immobile ion cores. Electronelectron and electron-ion
interactions that occur because of collisions are ignored and collisions are assumed instan-
taneous in the Drude-Sommerfeld model. It describes the response of the electrons to an
external driving field revealing information on the optical properties of metals.

2.4 The microscopic response of the medium

Metals such as gold and silver that are well suited for plasmonic applications are well de-
scribed by the Drude model. In this picture, the metals consist of fixed ion cores, surrounded
by freely moving conduction electrons. The electrons do not interact with one-another, but
occasionally collide instantaneously and elastically with the ion cores. The Drude model
can be derived as a special case of the Lorentz model of the optical polarisability

2.4.1 The Lorentz model

The Lorentz model of the optical polarisability[8] treats a medium as a collection of classical
driven damped harmonic oscillators. For an oscillator of mass m, natural frequency ω0 and
damping coefficient γ, displaced from equilibrium a distance r (assumed small) by force F,

F = m(
d2r
dt2 + γ

dr
dt

+ ω2
0r) = −eE (2.13)

For our case the displacing force is created by an electric field E, and acts on electron
charge e. Using complex notation for E and r oscillating at a single frequency ω with time
dependence contained in a e−iωt factor, and substituting m by the electron effective mass m∗

we find-

r =
eE

m∗(−ω2 − iγω + ω2)
(2.14)

The complex dipole moment p induced by the charge separation r is p = −er. The linear
polarisability α is defined as p = αE, i.e.

α =
e2

m∗(−ω2 − iγω + ω2)
(2.15)
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The macroscopic polarisation of a medium P is linked to its dielectric function by ϵ(ω) =
1 + p

ϵ0E . Assuming that oscillators are non-interacting, we can simply sum all the individual
microscopic polarisabilities to find p. So for n electrons, p = nαE and

α = 1 +
ne2

m∗ϵ0(−ω2 − iγω + ω2)
(2.16)

2.4.2 The Drude model

Ignoring the magnetic field, B, we start by considering an external incident light on a metal-
lic surface. [31] The spatial variation of the field is also ignored. This is acceptable unless
the field varies much over distances comparable with the electrons mean free path. In the
Drude model, equation of the motion for an electron is

m∗ dv(t)
dt

= −m∗

τ
v(t)− eE(t) (2.17)

where e and m∗ are charge and effective mass of the electrons in a crystal respectively
and τ is the relaxation time. Assuming the driving E-field has harmonic time dependence,
E(t) = E0e−iωt, and substituting E(t) into equation (2.16) gives mean velocity as,

v(t) = − eτ

m∗(1 − iωτ)
E(t) (2.18)

which is in the form of v(t) = v0e−iωt. By substituting v(t) into the current density
equation, Jext = −nev, one can get

Jext =
ne2τ

m∗(1 − iωτ)
E(t) (2.19)

where n is the number of conduction electrons per unit volume. Comparing equation
(2.19) with Ohm’s law Jext = σE, conductivity is obtained as

σ =
ne2τ

m∗(1 − iωτ)
(2.20)

By using the complex permittivity equation ϵ(ω) = ϵ′(ω) + iσ(ω)
ω which will be obtained

from Helmholtz wave equations in part 2.18, an expression for the complex permittivity can
be derived as

ϵ(ω) = ϵ′(ω)−
ω2

pϵ0

ω2 + iω/τ
(2.21)

where ωp is defined as the plasma frequency;

ω2
p =

ne2

ϵ0m∗ (2.22)

In equation (2.21) the first term is the result of the bound charges in metal and the second
one is due to the free electrons. By dividing both sides of the equation, the relative complex
permittivity (ϵr = ϵm/ϵ0) takes the form of

ϵr = 1 −
ω2

p

ω2 + iω/τ
(2.23)
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ϵr = 1 −
ω2

p

ω2 + iγω
, γ =

1
τ

(2.24)

To get a better understanding, we separate equation 2.23 into its real and imaginary parts in
the form of ϵr = ϵ′r + iϵ′′r , that gives the results,

ϵ′r = 1 −
ω2

pτ2

1 + ω2τ2 (2.25)

ϵ
′
r = 1 −

ω2
p

γ2 + ω2 , γ =
1
τ

(2.25)

ϵ′′r =
ω2

pτ2

ω(1 + ω2τ2)
(2.25)

For the wavelengths that are visible or shorter ωτ ≫ 1 and τ ≈ 10−15 s at room temper-
ature [22], so ϵ′r (real part) can be estimated as

ϵ′r ≈ 1 −
ω2

p

ω2 (2.26)

• For ω < ωp equation (2.26) becomes negative. Negative real relative permittivity
makes metals highly reflective.

• On the other hand ω > ωp condition makes ϵ′r positive and Helmholtz wave equation
(2.15) give oscillatory solutions and the metal becomes transparent.

Therefore, it can be concluded that plasma frequency is the frequency that metal starts
to be transparent against the incoming light. The coupling of plasma to the incoming light
is the simplest explanation of the formation of SPPs. The major condition in this coupling
event is the resonance with plasma frequency.

2.4.3 Interband transitions and real metals

The Drude-Sommerfeld model gives quite precise results for the optical properties of metals
in the infrared regime. However it needs to be extended in the visible range by considering
the response of bound electrons as well. As an example, for gold, at wavelengths those are
shorter than 550 nm, imaginary part of the measured dielectric function increases much
more strongly as stated by the Drude-Sommerfeld theory [36]. The reason is that electrons
of lower-lying bands can be promoted into the conduction band by higher energy photons.
Excitation of the oscillation of bound electrons may describe such transitions, in a classical
picture. The equation of motion for a bound electron reads as

mẍ + mγẋ + mω2
0x = −eE (2.27)

where m is the effective mass of the bound electron, which is in general different from
the effective mass of a free electron in a periodic potential, γ is the damping constant, and
ω0 is the bound electron resonance frequency. Solving the equation (2.27) to model ϵr(ω)
for noble metals leads us to a term in the form of

ϵr(ω) = 1 +
ω2

p

ω2
0 − ω2 − iγω

(2.28)
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called the Lorentz oscillator term due to its resonant nature besides the free electron
result in the equation 2.23. Equation 2.28 can be rewritten by separating it into real and
imaginary parts as ϵr = ϵ′r + iϵ′′r where

ϵ′r = 1 +
(ω2

0 − ω2)ω2
p

(ω2
0 − ω2)2 + γ2ω2

(2.29)

and

ϵ′′r =
γωω2

p

(ω2
0 − ω2)2 + γ2ω2

(2.30)

While the real part of the equation shows dispersion-like behavior, the imaginary part
shows resonant behavior.

2.4.4 Dispersion Relation

SPPs are longitudinal surface waves that propagate along the interface between a dielec-
tric and a metal. In the absence of magnetizable materials and external current densities,
equations (2.1) can be expressed as follows [34]:

∇× E = −µ0
∂H
∂t

(2.31)

∇× H =
∂D
∂t

(2.32)

By applying the curl operator to both sides of the first expression and utilizing the second
expression, the following is obtained:

∇× (∇× E) = −µ0
∂2D
∂t2 (2.33)

The expression can be rewritten by using the following mathematical identity:

∇× (∇× F) = ∇(∇ · F)−∇2F (2.34)

and considering the absence of charge accumulation (i.e., ∇ · D = 0):

−∇2E = −µ0
∂2D
∂t2 (2.35)

When using c0 = 1√
ϵ0µ0

, we obtain the wave equation for the electric field in linear
isotropic media:

∇2E − ϵ

c2
0

∂2E
∂t2 = 0 (2.36)

When expressed in complex notation with ∂
∂t = iω and E = E0e−iωt:

∇2E + ϵk2
0E = 0 (2.37)
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2.5 Plasmonic Metals

2.5.1 Silver

Silver is the simplest plasmonic metal to understand, as it is very well modelled by the
Drude model (equation 2.17). Its SPP dispersion relation closely resembles the idealised case
. Silver has the highest conductivity of any metal, and no strong inter-band transitions in the
visible spectrum. Correspondingly, it also has the least damping for plasmonic applications.
However, silver’s downside is in its tendency to oxidise, which causes a gradual decay in
resonance quality and limits its use for applications in ambient conditions. Recent work in
our group however, demonstrated that graphene (see section 1.9) transferred on top of a
silver layer can protect the surface from oxidation and preserve its properties for plasmonic
applications[37].

2.5.2 Gold

Gold’s high conductivity and exceptional inertness are its most advantageous properties.
For some applications it is also favoured for its surface chemistry and bio compatibility[33].
However as might be deduced from its colour, gold has an inter band transition in the visible
part of the spectrum, at around 470 nm, and several more in the ultraviolet, such as at 325
nm[8]. These result in increased damping near these wavelengths when compared to silver,
increasing the imaginary component of the dielectric function. Accurately modelling the
dielectric function of gold near these transitions requires modification . The presence of
these interband transitions is the reason that gold is usually used for plasmonic resonances
of wavelength > 600 nm. In this region damping is smaller and gold much more closely
resembles an ideal Drude metal[38].

2.5.3 Copper

Copper has similar plasmonic properties to gold, and similarly its colour is an indication
that it also has inter-band transitions towards the blue end of the visible spectrum. Copper
is more conductive than gold, cheaper than gold and silver, and (unlike gold) is CMOS com-
patible. However, oxidation is again a major issue, with copper surfaces losing their plas-
monic characteristics rapidly upon contact with air. As with silver, copper too can be pro-
tected from oxidation with a graphene layer to preserve its plasmonic properties. Graphene
protected copper even showed a slight improvement in SPP resonance quality factor[39].

2.5.4 Other plasmonic metals

Many other metals support surface plasmon resonances. Aluminium has an interband tran-
sition at 800 nm, which severely limits its application in the visible. However its damping is
much lower in the blue and UV part of the spectrum[10]. Like copper, it suffers from rapid
oxidation, which limits usefulness for plasmonic applications. Other metals with plasmon
resonances include alkali metals such as lithium, sodium and potassium (which are obvi-
ously severely limited by their reactivity), as well as nickel, indium, platinum, palladium
and rhodium[40]. These metals generally suffer from high losses (except potentially the
highly reactive alkali metals), and so are only used in situations where they exhibit some
other useful property such as catalysis[10]. Alloys present another interesting possibility
which has only recently begun to be investigated for plasmonic applications[37], [41], [42]
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2.5.5 Dielectric function of metals

The gas motion has been explained successfully by Newton’s second law. Therefore, an
electron gas displacement can be described by the following formula:

F = m d2r
dt2, F=eE(2.19) By combining the equation 1.1 and 1.7 we obtain for the oscil-

lating electric field the following:

P(r, ω) = − ne2

mω2 · E(r, ω), E = E0(r)eiωt

The displacement field formula (equation 1.3) takes following form:

ω2
p =

ne2

mϵ0
, ϵr = 1 −

ω2
p

ω2

The term in brackets is the frequency dependent dielectric permittivity (ϵr). It depends
on the mass of electrons and the number of free electrons. We define the plasma frequency
ωp and it has following form:

ϵr = 1 −
ω2

p

ω2 + iγω
, γ =

1
τ

So far, we have considered that the electrons are simply displaced in the metal by the
external electric field force. However, in Drude model of free electrons the collisions exist
and that will damp the oscillations with a rate of 1/τ. After some calculus taking into
account the collisions (damping factor) the er becomes:

√
ϵr = ñ = n + ik

ϵ′ = n2 − k2

ϵ′′ = 2nk

where, k is the extinction coefficient and n is the refractive index. When ω ≤ ωp the metal
has reflectivity of 1, but in the case of ω ≥ ωp the metal acts as a dielectric with positive
dielectric permittivity. We derive a wave equation (1.13) using the solution of Maxwell’s
equations and linear algebra, when there is not external charge or current density

k(k · E)− k2E =
ϵrω2

c2 E

where k is the wave vector, c is the light speed in free space. Let’s go to the case, when
ω = ωp, then ϵ(ωp) tends to zero! So, the right side of the equation becomes zero, and
the only solution occurs when the first term and the second term are equal. It is possible if
the wave is not transverse, hence the electric field and wave vector are collinear. One may
conclude plasmon waves are longitudinal. These plasmons calls bulk or volume plasmons.
There are two families of plasmons -

• Bulk (or volume) plasmons and

• Surface Plasmons.

The plasma frequency is linked to bulk plasmons.
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2.5.6 Plasma frequency for Ag and Au

This description, although over-simplified, is nevertheless successful in explaining semi-
quantitatively the optical response of many real metals. For example, at wavelengths longer
than all inter-band transitions, The ω-dependence should then be described by the Drude
term (and vary as ω−2). This has been verified experimentally [43] for Ag and Au, from
which the same value of

√
ϵ∞ωp ≈ 1.4 × 1016 rad s−1 is derived. This is in remarkable

agreement with the expression for ωp in Eq. (3.3) derived from the Drude model. Taking
an effective mass equal to the electron mass and a density of conduction electrons of the
order of n ≈ 6 × 1028 m−3 (corresponding to a full d band with one free s electron per
atom) give precisely This description, although over-simplified, is nevertheless successful
in explaining semi-quantitatively the optical response of many real metals. For example,
at wavelengths longer than all inter-band transitions, The ω-dependence should then be
described by the Drude term (and vary as ω−2). This has been verified experimentally [35]
for Ag and Au, from which the same value of

√
ϵ∞ωp ≈ 1.4 × 1016 rad s−1 is derived. This

is in remarkable agreement with the expression for ωp in derived from the Drude model.
Taking an effective mass equal to the electron mass and a density of conduction electrons of
the order of n ≈ 6 × 1028 m−3 (corresponding to a full d band with one free s electron per
atom) give precisely

√
ϵ∞ωp ≈ 1.4 × 1016 rad s−1,

or h̄ωp ≈ 9.1/
√

ϵ∞ eV, or a corresponding wavelength of λp ≈ 136/
√

ϵ∞ nm. The Drude
model therefore gives an excellent description of the long-wavelength optical response of
Ag and Au. Only the value of ϵ∞ is missing. This is understandable though, for ϵ∞ comes
from high energy contributions in the deep UV-range, which are not included in this simple
treatment of the problem.The frequency-dependent dielectric functions of Ag and Au are of
crucial importance for many plasmonics problems.

2.6 Surface Plasmons and Plasmonic Excitations

The wave vector can be real or imaginary depending on the frequency of EM wave (equa-
tion 1.14). We have discussed the properties of metals when they are reflective or transparent
relied on the illumination frequency. Let’s discuss another family of plasmons: surface plas-
mons. Indeed, the wave vector is complex at the surface with real part that corresponds
to the propagation and the imaginary part to the attenuation. The wave at the surface is
evanescent, hence do not radiate as electric field and magnetic field are not transverse to
each other. We know that for evanescent waves the vertical component of wave vector (kz)
is imaginary and parallel component is real (kx). Using the boundary conditions for two
interfaces (the scheme is shown in Fig. 1.3a) the general dispersion relation of surface wave
is derived as:

k2
x =

ϵ1ϵ2

ϵ1 + ϵ2
· ω2

c2 (2.20)

where, ϵ1 is the dielectric permittivity of the light injection medium. We can transform
this relation for metal interface by following:

k2
x =

ϵr

1 + ϵr
· ω2

c2 (2.42)
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One may find the dispersion curve of surface plasmon polariton (SPP) below (Fig. 2.3b).
When kx → 0, then ω → 0 and when kx → inf then ω → ωp√

2
. One may conclude that

SPP can exist when ω ≤ ωp/
√

2. Here we show how in-plane momentum (kx) varies with
frequency. What about the out-of-plane momentum (kz)? We already have mentioned that
kz is imaginary for surface evanescent waves. Unlike Fresnel’ evanescent wave the field is
decaying exponentially on both sides for surface plasmon wave. Note, the charge fluctua-
tions

FIGURE 2.3: (a) Schematic of the distribution of the electromagnetic field of
SPP at the metal-dielectric interface. (b) Dispersion curve for SPP at interface
of Drude metal, when the collisions are negligible (black solid curved). the
dash lines show the dispersion of light in the dielectric with dielectric permit-

tivity of e1. (extracted from Ref. [43])

are localized in the z direction within the Thomas-Fermi screening length which is one
angstrom. These charge fluctuations associated to the mixed transversal and longitudinal
EM field, which dispersers along the surface and the maximum of EM field is at the sur-
face (z=0) position [44], [45]. We deduce that the EM field is very sensitive to the surface
properties.

FIGURE 2.4: Schematic of SPP propagation at the metal surface in time. It
shows the dissipation of the SPP by traveling some distance.)

For metals, the dielectric permittivity is a complex quantity, which implies that the kx is
complex (equation 1.16). Hence, in-plane complex wave vector can be presented as:

kx = k′x + ik′′x , k′x =
ω

c
·
√

ϵ′

1 + ϵ′

k′′x =
ω

c

(
ϵ′

1 + ϵ′

)3/2

· ϵ′′

2(ϵ′)2
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The intensity of plasmon wave traveling along the interface (x-axis) is exponentially de-
caying by exp−2k

′′
00x0 The schematic is shown in Fig. 1.4. We define the propagation length of

the surface plasmon polariton as:

LSPP =
1

2k′′x

Plasmonic Excitations

The most basic systems that can sustain both SPs and SPPs are those that can be considered
as a semi-infinite flat isotropic single interface. Modern experiments and applications have
now moved beyond investigation of this simple system, however this fundamental example
still provides excellent insight into what these phenomena actually are, their properties, and
requirements for excitation. A theoretical treatment for a simple SP and SPP system will be
described first, followed by brief overviews of LSPP excitations on NPs and coupled LSPP
interactions between NP pairs.

2.6.1 Surface Plasmon Polarition

The surface Plasmon polariton(SPP) is formed by the surface Plasmon coupling with pho-
tons at the metals/dielectric interface. We can consider a situation which polarized wave
reaching a planar interface between metal and dielectric at an incident angle θ1 (Fig2.5). The
polarized incident on the interface, the surface charges undergo a collective oscillation be-
cause of the oscillating electric field at the interface. If the frequency and the momentum of
SPPs can match that of the photon, the resonance will occur. The radiative surface plasmons
are coupled with the propagating electromagnetic wave. Even the wave is totally reflected
by the interface, it decays in a direction normal to the interface. (Fig2.2). However, the
non-radiative surface plasmons act oppositely. It does not couple with propagating elec-
tromagnetic wave. Therefore the perfect SPP should be irradiative. It is a difference from
volume Plasmon, which is related to the intrinsic property of those materials, surface plas-
mon excitation can be understood in artificial plasmonic crystals. Most of the plasmonic
crystals can be periodic nanostructure

FIGURE 2.5: the Diagram of the polarized electromagnetic incident upon an
interface between metal and dielectric.)
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FIGURE 2.6: (a) the Diagram of surface charges and electromagnetic wave
at the interface between two media, (b) the changing of locally electric field

component with distance to the interface.)

From Maxwell’s equation, the properties of SPPs can be derived as the following equa-
tions (Equ 2.2-2.4). When the wave propagates in the interface (Z = 0 plane; metal is Z < 0;
dielectric is Z > 0), the electric and magnetic fields can express as a function of (t)time and
(x, y, z) position[19].

Ex,n(x, y, z, t) = E0eikxx+ikz,n|z|−iωt (2.21)

Ez,n(x, y, z, t) = ±E0
kx

kz,n
eikxx+ikz,n|z|−iωt (2.45)

Hy,n(x, y, z, t) = H0
kx

kz,n
eikxx+ikz,n|z|−iωt (2.46)

Which n represents the material when 1 is the metal at z < 0, 2 is the dielectric at z > 0,
k is the wave vector and ω is the angular frequency of the waves. After the incident light
converts into SPPs on the surface of the metal, it starts to propagate until the metal absorpt
all the energy. Therefore the imaginary part of the complex SPP wavevector ks pp limite the
propagation length of the SPPs (δspp) which is the distance after the intensity of SPPs drops
to 1/e of the starting value[19]

kspp = ksppr + iksppi (2.47)

ϵm = ϵmr + iϵmi (2.48)

From the SPPs dispersion relation,

kspp = k
√

ϵdϵm

ϵd + ϵm
(2.49)

With equation (2.6),

δspp =
1

2ksppi
=

λ

2π

(
ϵmr + ϵd

ϵmrϵd

)3/2 ϵ2
mr

ϵmi
(2.50)

Where ϵmi and ϵmr are the imaginary and real parts of the dielectric function of the metal
respectively. Consequently, the propagation length of SPPs (δspp) depends on the dielectric
constant of the metal usually, also the incident wavelength.
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2.6.2 Localized Surface Plasmon polarition

The planar approximation is no longer true for small metallic objects, and in particular for
nano-particles, where the size becomes comparable or smaller than the wavelength. The na-
ture of the electromagnetic modes of the system is then completely modified. In particular,
the description in terms of k vector (kx for a plane) becomes irrelevant, since the translational
invariance is lost. The electromagnetic modes then exist for discrete values of ω (instead of
having continuous modes described by the dispersion relation ω(kx)). These modes are
then called localized surface plasmon–polaritons (LSPs)[46]. In fact, this is not a property of
metals or plasmon–polaritons only. The same happens for photons when the environment
exhibits features of the order of the wavelength. Photons correspond to free-space modes of
the electromagnetic field (plane waves with well defined ω and k). When boundaries have
features much larger than the wavelength, one can apply the ‘standard’ description giving
rise to reflection and refraction at interfaces (Snell’s law). All boundaries are approximated
by locally planar interfaces, and this ‘ray optics’ approach is perfectly legitimate. However,
when the dimensions of the system become comparable to the wavelength, say in a cavity
or a wave-guide, this approach fails. The concept of photon is replaced by that of electro-
magnetic modes of the cavity (characterized by discrete values of ω, or ω(k) where k is
irrelevant). These modes are highly localized inside the cavity. They are sometimes called
cavity polaritons to emphasize their mixed nature of a photon with its optical environment,
and are the photon analogs of localized SPPs.

2.7 Surface Plasmon Resonance

Surface Plasmon Resonance (SPR) is a phenomenon when incident light reaches the inter-
face of metal and dielectric where there is different refractive index [20]. SPR is generated
i.e. excited collective oscillations of free electrons in conduction band of metal which also
known as surface plasmons. At the excitation, SPR creates a dip in reflectance at the specific
wavelength which reflects the absorption of optical energy in the metal. Incident light beam
or electron bombardment can be used to excite surface plasmons resonance, visible light and
infrared light are the typical sources. The incident light has to match the momentum and
frequency of that plasmon. For S polarized incident light which polarization is perpendic-
ular to the plane of the light cannot create surface plasmons. Only p polarized light which
polarization is parallel to the plane of light can create the SPR at a specific wavelength. There
are two main types of SPR which are propagating and localized respectively [21]. Propagat-
ing SPR occurs when plasmons propagate along the interface between dielectric and metal
film, therefore it is mainly in distance of the order of microns. On the other hands, localized
SPR focusing on the incident light interacts with nano metal much smaller than the incident
wavelength resulting in distance of the order of nanometer.

2.8 Localized Surface Plasmon Resonance

When metal nanoparticles sizes is smaller than the incident light wavelength, strong dipo-
lar excitations are formed and defined as localized surface plasmon resonance (LSPR). LSPR
is a non-propagating excitation of the electrons in conduction band of nanoparticles cou-
pling with the incident electromagnetic field [21]. The resonance frequency of the oscilla-
tion related to the surface plasmon energy is determined by several factors, for example
the particles size, the distance between particles, and the dielectric properties of metal and
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surrounding medium. A large resonant enhancement of the local electromagnetic field in-
side and near the nanoparticles is caused by the 9 collective charge oscillation. This field
enhancement can be used in different potential applications in optical devices.

The LSP modes of a nano-particle can be excited by an incident wave with the appropri-
ate polarization and frequency. Efficient coupling to LSP modes will then result in a resonant
optical response at the LSP frequency. As opposed to PSPP on planar interfaces, LSPs are
radiative modes (with an absorptive component because of optical absorption in the metal).
The resonant response therefore, not only appears in absorption (which is analogous to the
reflectivity experiments for a plane interface), but also in scattering (or similarly extinction)
measurements. These resonances, sometimes called LSP resonances (LSPR) to differentiate
them from SPR (based on PSPPs), are sensitive to the environment and, like SPR, can be used
for applications in refractive-index and chemical sensing. The LSP resonances also manifest
themselves, as for PSPP modes, as large local field enhancements inside the metal, and more
importantly on the surface outside. This effect is the basis for most surface-enhanced spec-
troscopies, including SERS. It is interesting to highlight the main differences between SPR
and LSPR:

• The SPR condition requires conservation of both kx and ω. This is more difficult to ful-
fill than only ω conservation for LSPR. In particular, kx conservation typically requires
a more complex setup, such as the ATR configuration.

• SPRs offer more liberty in the implementation, either in terms of angle-modulation or
wavelength-modulation, whereas only wavelength modulation can be used for LSPRs.

• SPRs are typically much sharper resonances compared to LSPRs. This can be an ad-
vantage or a disadvantage depending on the application. It should for example in
principle result in a larger sensitivity but only on a more limited range of parameters.
For SERS, resonances must be broad enough to encompass both the exciting laser and
the Stokes frequencies, and SPRs are typically too sharp to fulfill that condition.

• The active surface for SPRs is a single planar interface, while for LSPRs it is the nano-
particle surface (which can therefore be spread in a 3D volume, for example by dis-
persing the particles in water).

• There are more degrees of freedom to tailor or engineer the LSPRs (shape, size, etc.)
as opposed to the SPRs, which may open more possibilities, but also more problems
(such as poly-dispersity).

In summary, the use of SPR vs LSPR will depend on the exact application. LSPRs are more
versatile (easier to implement) but the resonances are not as well defined as for SPRs.

2.8.1 Mie solutions

In this work the tip apex NPs are of too large diameter (a ≈ 150 nm ∼ λ/5) to be accurately
modelled using the quasi-static approximation and hence the exact Mie solutions are more
appropriate to yield further insight into LSPPs supported on such NPs. The Mie solutions
are obtained by first re-expressing Maxwell’s wave equation in polar coordinates via use of
Debye potentials. By considering a single uniform incident infinite plane-wave, boundary
conditions are imposed to ensure continuity of the fields at r = a and hence solutions for the
Debye potentials are found in terms of spherical harmonics [34]. The electric and magnetic
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field solutions are therefore reconstructed in terms of vector spherical harmonics. The far-
field response is described by the scattering coefficients ãℓ and b̃ℓ that are given by

ãℓ =
η2ψℓ(ηα)ψℓ(α)− ψℓ(α)ψ

′
ℓ(ηα)

η2ψℓ(ηα)ξ2
ℓ(α)− ξℓ(α)ψ

′
ℓ(ηα)

(2.57)

where η = (ñm/nd), the size parameter α = 2πand/λ0 and the Riccati-Bessel functions
ψℓ(z) = zjℓ(z) and ξℓ(z) = zh(1)ℓ (z) with jℓ and h(1)ℓ denoting spherical Bessel and Hankel
functions respectively. Here the prime ′ denotes the derivative of the function with respect to
the argument. There is no m dependence in Eqns. (2.57) as for uniform infinite single plane-
wave excitation the boundary conditions at r = a require m = 1 for all ℓ. By considering the
Poynting vector of the total electromagnetic field surrounding the NP the far-field scattering
and extinction cross-sections are given by [47]

Csca =
2π

k2

∞

∑
ℓ=1

(2ℓ+ 1)
(
|ãℓ|2 + |b̃ℓ|2

)
(2.58)

Cext =
2π

k2

∞

∑
ℓ=1

(2ℓ+ 1)ℜ
[
ãℓ + b̃ℓ

]
(2.59)

where k = 2πnd/λ0 is the wavenumber of the incident light in the surrounding dielectric
medium. The absorption cross-section Cabs can be obtained via Eqn. (2.41). The Mie so-
lutions show significant modifications to the quasi-static results are required for NPs with
a ≳ 20 nm. The three most prevalent corrections are

• For noble metals, an additional overall red-shift of the dipole and higher-order modes
with increasing NP diameter due to retardation of the exciting and depolarisation
fields.

• Retardation creates a non-uniform field over the volume of a NP and hence higher-
order (e.g. quadrupole) LSPP modes can be excited by the incident light even for
spherically symmetric NPs. This effect becomes significant when a ≳ 100 nm.

• A new decay channel: radiation damping due to direct radiative decay of LSPPs into
photons. For increasing NP diameter the radiative damping becomes significant and
the decrease in absorption and hence the LSPP resonances are broadened.

Radiation damping increases the homogeneous LSPP mode energy linewidth Γℓ
LSPP (as

shown in Fig. (2.7)) and thus reduces the LSPP mode lifetime (dephasing time) τℓ
LSPP accord-

ing to

τℓ
LSPP =

2h̄
Γℓ

LSPP
(2.60)

The strength of the LSPP mode can hence be expressed in terms of a mode quality fac-
tor Qℓ

LSPP via Qℓ
LSPP = Eℓ

LSPP/Γℓ
LSPP, where Eℓ

LSPP is the resonant energy associated with the
LSPP mode. The Mie solutions thus give the dependence of τℓ

LSPP on particle diameter and
dielectric surroundings and yields values between 2 – 10 fs for NPs between 150 – 20 nm
diameter15 in air, for ℓ = 1. For NPs of ≲ 10 nm diameter spatially non-local effects, pri-
marily non-local screening due to finite penetration of induced-surface-charge into the NP
interior, act to broaden the LSPP modes significantly. Therefore the LSPP mode lifetimes are
substantially reduced compared to those calculated assuming spatially local response only.

Finally, it is important to note that both the traditional quasi-static and Mie solutions
assume a single infinite incident plane-wave. In experiment this condition is never met.
For example, under the DF illumination conditions used in this work, both the incident and
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scattered light are defined over certain angular ranges given by the Numerical Aperture
(NA) of the various optical components. This can modify the measured optical response
considerably [40] and hence must be acknowledged when comparisons are made between
experiment and theory. It has also been reported that the measured optical response can
be significantly altered when LSPPs are excited with non-homogeneous illumination, e.g. a
focussed Gaussian beam [34].
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Chapter 3

Plasmonic coupling of photothermal
response

Here we introduce the second fundamental excitation of plasmonics [48]- localized surface
plasmons. We have already seen in the preceding chapters that SPPs are propagating, dis-
persive electromagnetic waves coupled to the electron plasma of a conductor at a dielectric
interface. Localized surface plasmons on the other hand are non-propagating excitations
of the conduction electrons of metallic nanostructures coupled to the electromagnetic field.
We will see that these modes arise naturally from the scattering problem of a small, sub-
wavelength conductive nanoparticle in an oscillating electromagnetic field.

The curved surface of the particle exerts an effective restoring force on the driven elec-
trons, so that a resonance can arise, leading to field amplification both inside and in the
near-field zone outside the particle. This resonance is called the localized surface plas-
mon or short localized plasmon resonance. We explore the physics of localized surface
plasmons by first considering the interaction of metal nanoparticles with an electromag-
netic wave in order to arrive at the resonance condition. Subsequent sections discuss damp-
ing processes, studies of plasmon resonances in particles of a variety of different shapes
and sizes, and the effects of interactions between particles in ensembles. Other important
nanostructures apart from solid particles that support localized plasmons are dielectric in-
clusions in metal bodies or surfaces, and nanoshells. The chapter closes with a brief look at
the interaction of metal particles with gain media.[43], [49]

For gold and silver nanoparticles, the resonance falls into the visible region of the elec-
tromagnetic spectrum. A striking consequence of this are the bright colors exhibited by
particles both in transmitted and reflected light, due to resonantly enhanced absorption and
scattering. This effect has found applications for many hundreds of years, for example in
the staining of glass for windows or ornamental cups.

3.1 Nano-Metals Plasmonic Coupling Effect

Surface plasmons mainly occur at the surface of metals where the collective free electron
density oscillation in response to an external electric field.[50], [51] (Fig. 3.1) When the
interparticle distance is much larger than the particles size, the surface Plasmon resonance
is affected by the geometry of the nanoparticle, also the dimension of it. However, the 7
surface plasmons can interact with the adjacent nanoparticles; their close proximity would
give rise to Plasmon coupling appear.
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FIGURE 3.1: e Diagram of Electric Field on Electron Delocalization

Figure 3.1 the Diagram of Electric Field on Electron Delocalization The main conse-
quence of plasmonic coupling between nanoparticles is the changing of metals optical prop-
erties [52]. The optical properties of the coupled particles can be much different from that
of an individual particle in bulk state because of the close interaction of coherent oscillation
of electrons. The effect of plasmon coupling can vary enormously (Fig 3.2). there are many
inter-play factors in plasmon coupling, such as interparticle spacing, nanoparticle shape
and size, number of plasmon-coupled nanoparticles, light polarization etc.[53]. Taking the
plasmon coupling of gold nanospheres as the example, there is the noteworthy shift of the
overall extinction peak, which is dominated by absorption, from lower absorbance spectrum
in green to the higher wavelengths on red as the interparticle spacing is decreased.

FIGURE 3.2: The changing of the absorbance spectrum of single gold
nanosphere.

3.2 Metals Plasmonic Coupling

When more details of plasmon coupling are investigated, more properties of plasmonic
effect are discovered. Plasmon coupling can further enhance the properties of individual
metal nanoparticles creating new resonances in close proximity. (Fig 3.5) Because of the lo-
calized electric fields are enhanced between the nanoparticles, the optical resonance wave-
lengths become adjustable under strong electromagnetic fields [54].
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FIGURE 3.3: The relation between silver nanoparticles in nanometer distance
and the change of the optical resonance wavelengths [55]

The simple structure we considered, such as sphere, ellipsoid, can reduce the number
of variables controlling the plasmonic effect so that the plasmonic coupling can only be
governed by the change in the distance between nanoparticles. From classical electromag-
netic model, the shorter interparticle distance creates the stronger plasmon coupling shifting
which moves to longer wavelengths. However, this classical model no longer valid when
the gap distance is less than 1 nm, then Quantum effects including electron tunnelling, non-
locality of dielectric function play the main role in this regime [56]. The quantum effect is
not within this investigation.

3.2.1 Plasmonic property of Ag

In recent survey, gold and silver are the two most often used metals for plasmonic devices
because of their low energy loss in the visible and near infrared ranges compared to other
metallic resources. For example, silver has been used for the fabrication of hyperlens [52],
superlens [52], and has a negative refractive index material in the visible range [52]. Al-
though the alkali metals, such as potassium and sodium have lower energy loss than silver
and gold, those metals are too reactive in air and with water, limiting their use. Since the
electric field distribution in a material depends on the real part of permittivity, and the en-
ergy loss depends on the imaginary part. In fact, the real part of the silver permittivity is
negative with wavelengths less than or equals to 326 nm. It makes silver becomes an attrac-
tive plasmonic material (Fig 3.5)

FIGURE 3.4: The (a) real part and (b) imaginary part of the permittivity of Ag,
Au, Na, K and Al [57]
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Consider the quality factors of localized surface plasmon resonance (LSPR) and surface
plasmon polaritons (SPP) systems, the LSPR and SPP system are denoted as QLSPR and QSPP
respectively. SPP and LSPR systems can enhance the local field performance at the surface
of the metal films, therefore the definition of their quality factors is defined as below:

Qt =
Enhanced local electric field

Incident field
(3.1)

Quality factor for LSPR is affected by the shape of the nanoparticles as well. For a spher-
ical particle, QLSPR can be defined as follows: reference25

QLSPR(ω) =
−ϵ′(ω)

ϵ′′
(3.2)

Quality factor for SPP assumes the same form as the above equation. QSPP can be sim-
plified as the ratio of the real part of the propagation wave vector (k′x) to the imaginary part
of the wave vector (k′′x ) [43]:

Q′
SPP(ω) =

k′x(ω)

k′′x(ω)
=

ϵ′m(ω) + ϵd(ω)

ϵ′′m(ω)

ϵ′m(ω)2

ϵ′′m(ω)ϵd(ω)
(3.3)

FIGURE 3.5: T(a) Quality factor of LSPR and (b) Quality factor of SPP of Ag,
Au, Na, K and Al [58]

3.3 Localized surface plasmon resonances in metal nanoparticles

Metal nanoparticles display strong and unique optical resonances in the visible and near-
infrared (NIR) region of the electromagnetic spectrum due to the resonant response of their
free electrons to the electric field of light [59]–[57]. This free electron response is described
by the dielectric function of the metal as per the Drude model [34]:

ϵDrude = 1 −
ω2

p

ω2 + iγω
(3.1)

where ω is the angular frequency of the light, γ is the electron collision frequency in the
bulk, and ωp is the bulk plasma frequency of the free electrons, which is determined by the
density of free electrons N in the metal and the effective mass me of the electrons as:

ωp =

√
Ne2

ϵ0me
(3.4)

In the case of real metals, bound electrons contribute to the dielectric function, for in-
stance due to inter-band transitions from the valence to conduction band, especially in the
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high frequency.region of the spectrum. A high-frequency part ϵ∞ [60], therefore, has to be
added to the Drude contribution for accurately describing the response of the metal elec-
trons to the electromagnetic field:

ϵ = ϵ∞ −
ω2

p

ω2 + iγω
(3.5)

When the metallic nanoparticle is subject to light excitation, the electric field of the light
induces waves of collective electron oscillations confined to the surface of the nanoparticle, a
phenomenon known as a localized surface plasmon resonance [61]–[62]. This wave motion
is composed of different orders, from the lowest dipolar to higher order multipoles [63],
depending on the size of the nanoparticle relative to the wavelength of light. However, in
the case of particles of size much smaller than the wavelength of light, (i.e., radius r ≪ λ),
the electron oscillation can be considered to be predominantly dipolar in nature. In this
limit, the collective response of the electrons in a small metal nanoparticle to the electric
field of the light (assumed to be uniform across the particle) is described by the dipolar
polarizability α [64]:

α = (1 + κ)ϵ0V
(

ϵ − ϵm

ϵ + κϵm

)
(3.6)

where V is the volume of the particle and ϵm is the medium dielectric constant. κ is a
shape factor that incorporates the dependence of the polarizability on the geometry of the
surface that defines the electron oscillations. While κ = 2 for a sphere, for more polarized
shapes such as ellipsoids with a high surface curvature along a...

FIGURE 3.6: Scheme showing the coherent collective oscillation of electrons
of a metallic nanoparticle constituting a localized surface plasmon resonance
(LSPR) mode. The LSPR results in an enhancement in the optical properties
of the nanostructure, i.e., the electric field intensity near the particle, light
scattering, light absorption, and surface enhanced scattering from adsorbed

molecules are all enhanced at the LSPR frequency.

given dimension (e.g., triangles, rod-shaped particles), the value of κ can be much higher
along that dimension [65].

The polarizability α becomes maximum (representing a strong resonance between the
free electrons and the light field) at the frequency at which:

Re(ϵ) = −κϵm (3.7)
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Here Re denotes the real part. This frequency ωsp corresponds to the localized surface
plasmon resonance (LSPR) frequency of the particle. From Eqs. (3) and (5), we see that the
LSPR frequency is determined by the bulk plasma frequency ωp of the metal free electrons
(however modulated by the presence of inter-band transitions) and further tuned by the
geometry of the nanostructure (κ) and the medium surrounding the particle (ϵm).

ωsp =

√
Ne2

meϵ0(ϵ∞ + κϵm)
(3.8)

While the real part of the metal dielectric function Re(ϵ) governs the frequency position
of the electron oscillation resonance, the imaginary part Im(ϵ) incorporates the broadening
and absorptive dissipation of the resonance due to damping and dephasing of the electron
oscillations.

3.4 Plasmon resonances in assemblies of metal nanoparticles

When two metal nanoparticles are brought in proximity to each other, the near-field on one
nanoparticle can interact with that on the other particle [48], [57], [64], [66]. Thus, the electric
field E felt by each particle is the sum of the incident light field E0 and the near-field Enf of
the neighboring particle.

E = E0 + Enf (3.9)

As a result of this near-field interaction, plasmon oscillations of the two nanoparticles
become coupled. This plasmon coupling modulates the LSPR frequency of the coupled-
nanoparticle system. For instance, in spherical gold nanoparticles, assembly or aggregation
into a close-packed structure results in a strong red-shift of the LSPR wavelength from the
LSPR maximum of ∼ 520 nm of an isolated colloidal nanoparticle reference35, reference36.
In a larger assembly (by particle number), each particle would be subject to the near-field of
a large number of particles, resulting in a much stronger coupling and hence a larger red-
shift. In addition, the distance between the nanoparticles in the assembly also determines
the amount of plasmon red-shift, due to the rapid decay of a nanoparticle’s near-field with
distance. The closer the particles in the assembly, the larger is the red-shift of the plasmon
resonance [44], [45], [67]. The distance-dependence of plasmon coupling is described in
significant detail later in this Letter.

3.5 Normal Modes of Sub-Wavelength Metal Particles

The interaction of a particle of size d with the electromagnetic field can be analyzed using
the simple quasi-static approximation provided that d ≪ λ, i.e. the particle is much smaller
than the wavelength of light in the surrounding medium. In this case, the phase of the har-
monically oscillating electromagnetic field is practically constant over the particle volume,
so that one can calculate the spatial field distribution by assuming the simplified problem of
a particle in an electrostatic field. The harmonic time dependence can then be added to the
solution once the field distributions are known. As we will show below, this lowest-order
approximation of the full scattering problem describes the optical properties of nanoparti-
cles of dimensions below 100 nm adequately for many purposes.

We start with the most convenient geometry for an analytical treatment: a homogeneous,
isotropic sphere of radius a located at the origin in a uniform, static electric field E = E0ẑ
(Fig. 3.8). The surrounding medium is isotropic and non-absorbing with dielectric constant
ϵm, and the field lines are parallel to the z-direction at sufficient distance from the sphere.
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The dielectric response of the sphere is further described by the dielectric function ϵ(ω),
which we take for the moment as a simple complex number ϵ.

In the electrostatic approach, we are interested in a solution of the Laplace equation for
the potential, ∇2Φ = 0, from which we will be able to calculate the electric field E = −∇Φ.
Due to the azimuthal symmetry of the problem, the general solution is of the form [68]

FIGURE 3.7: Sketch of a homogeneous sphere placed into an electrostatic field.

Φ(r, θ) =
∞

∑
l=0

(
Alrl + Blr−(l+1)

)
Pl(cos θ), (3.13)

where Pl(cos θ) are the Legendre Polynomials of order l, and θ the angle between the
position vector r at point P and the z-axis (Fig. 3.8). Due to the requirement that the poten-
tials remain finite at the origin, the solution for the potentials Φin inside and Φout outside
the sphere can be written as

Φin(r, θ) =
∞

∑
l=0

Alrl Pl(cos θ) (3.14a)

Φout(r, θ) =
∞

∑
l=0

(
Blrl + Clr−(l+1)

)
Pl(cos θ). (3.14b)

The coefficients Al , Bl , and Cl can now be determined from the boundary conditions at
r → ∞ and at the sphere surface r = a. The requirement that Φout → −E0z = −E0r cos θ as
r → ∞ demands that B1 = −E0 and Bl = 0 for l ̸= 1. The remaining coefficients Al and Cl
are defined by the boundary conditions at r = a. Equality of the tangential components of
the electric field demands that

−1
a

∂Φin

∂θ

∣∣∣∣∣
r=a

= −1
a

∂Φout

∂θ

∣∣∣∣∣
r=a

, (3.15)

and the equality of the normal components of the displacement field

−ϵ0ϵ
∂Φin

∂r

∣∣∣∣∣
r=a

= −ϵ0ϵm
∂Φout

∂r

∣∣∣∣∣
r=a

. (3.16)

Application of these boundary conditions leads to Al = Cl = 0 for l ̸= 1, and via the
calculation of the remaining coefficients A1 and C1 the potentials evaluate to Jackson1999

Φin = − 3ϵm

ϵ + 2ϵm
E0r cos θ (3.17a)
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Φout = −E0r cos θ +
ϵ − ϵm

ϵ + 2ϵm
E0

a3 cos θ

r2 . (3.17b)

It is interesting to interpret equation (5.5b) physically: Φout describes the superposition
of the applied field and that of a dipole located at the particle center. We can rewrite Φout by
introducing the dipole moment p as

Φout = −E0r cos θ +
p · r

4πϵ0ϵmr3 , (3.18a)

p = 4πϵ0ϵma3 ϵ − ϵm

ϵ + 2ϵm
E0. (3.18b)

We therefore see that the applied field induces a dipole moment inside the sphere of mag-
nitude proportional to |E0|. If we introduce the polarizability α, defined via p = ϵ0ϵmαE0,
we arrive at

α = 4πa3 ϵ − ϵm

ϵ + 2ϵm
. (3.19)

Equation (5.7) is the central result of this section, the (complex) polarizability of a small
sphere of sub-wavelength diameter in the electrostatic approximation. We note that it shows
the same functional form as the Clausius-Mossotti relation [47].

FIGURE 3.8: Absolute value and phase of the polarizability α (5.7) of a sub-
wavelength metal nanoparticle with respect to the frequency of the driving
field (expressed in eV units). Here, ϵ(ω) is taken as a Drude fit to the dielectric

function of silver [47].

Fig. 5.2 shows the absolute value and phase of α with respect to frequency ω (in energy
units) for a dielectric constant varying as ϵ(ω) of the Drude form (1.20), in this case fitted to
the dielectric response of silver. It is apparent that the polarizability experiences a resonant
enhancement under the condition that |ϵ + 2ϵm| is a minimum, which for the case of small
or slowly-varying Im [ϵ] around the resonance simplifies to

Re[ϵ(ω)] = −2ϵm. (3.20)

This relationship is called the Fröhlich condition and the associated mode (in an oscil-
lating field) the dipole surface plasmon of the metal nanoparticle. For a sphere consisting
of a Drude metal with a dielectric function (1.20) located in air, the Fröhlich criterion is met
at the frequency ω0 = ωp/

√
3. Equation (3.20) further expresses the strong dependence

of the resonance frequency on the dielectric environment: The resonance red-shifts as ϵm is
increased.
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We note that the magnitude of α at resonance is limited by the incomplete vanishing of
its denominator, due to Im [ϵ(ω)] ̸= 0. This will be elaborated in the last section of this
chapter on nanoparticles in gain media.

The distribution of the electric field E = −∇Φ can be evaluated from the potentials (5.5)
to

Ein =
3ϵm

ϵ + 2ϵm
E0 (3.21a)

Eout = E0 +
3n(n · p)− p

4πϵ0ϵm

1
r3 . (3.21b)

As expected, the resonance in α also implies a resonant enhancement of both the internal
and dipolar fields. It is this field-enhancement at the plasmon resonance on which many of
the prominent applications of metal nanoparticles in optical devices and sensors rely.

3.5.1 Dipolar radiation

We will now leave this short summary of the properties of dipolar radiation, and refer to
standard textbooks on electromagnetism such as Classical Electrodynamics Third Edition
3rd Edition by John David Jackson (Author) for further particulars. From the viewpoint
of optics, it is much more interesting to note that another consequence of the resonantly
enhanced polarization α is a concomitant enhancement in the efficiency with which a metal
nanoparticle scatters and absorbs light. The corresponding cross sections for scattering and
absorption Csca and Cabs can be calculated via the Poynting-vector determined from (5.10)
Bohren1983 to

Csca =
k4

6π
|α|2 =

8π

3
k4a6

∣∣∣∣ ϵ − ϵm

ϵ + 2ϵm

∣∣∣∣2 (3.28)

Cabs = kIm[α] = 4πka3Im
[

ϵ − ϵm

ϵ + 2ϵm

]
. (3.29)

For small particles with a ≪ λ, the efficiency of absorption, scaling with a3, dominates over
the scattering efficiency, which scales with a6. We point out that no explicit assumptions
were made in our derivations so far that the sphere is indeed metallic. The expressions
for the cross sections (5.13) are thus valid also for dielectric scatterers, and demonstrate a
very important problem for practical purposes. Due to the rapid scaling of Csca ∝ a6, it is
very difficult to pick out small objects from a background of larger scatterers. Imaging of
nanoparticles with dimensions below 40 nm immersed in a background of larger scatterers
can thus usually only be achieved using photothermal techniques relying on the slower
scaling of the absorption cross section with size.
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FIGURE 3.9: Extinction cross section calculated using (5.14) for a silver sphere
in air (black curve) and silica (gray curve), with the dielectric data taken from

Johnson1972.

Equations (5.13) also shows that indeed for metal nanoparticles both absorption and
scattering (and thus extinction) are resonantly enhanced at the dipole particle plasmon res-
onance, i.e. when the Fröhlich condition (5.8) is met Kreibig1995. For a sphere of volume
V and dielectric function ϵ = ϵ1 + iϵ2 in the quasi-static limit, the explicit expression for the
extinction cross section

Cext = Cabs + Csca (3.30)

is

Cext =
9ω

c
ϵ3/2

m V
ϵ2

(ϵ1 + 2ϵm)2 + ϵ2
2

. (3.31)

Fig. 5.3 shows the extinction cross section of a silver sphere in the quasi-static approximation
calculated using this formula for immersion in two different media.

We now relax the assumption of a spherical nanoparticle shape. However, it has to
be pointed out that the basic physics of the localized surface plasmon resonance of a sub-
wavelength metallic nanostructure is well described by this special case. A slightly more
general geometry amenable to analytical treatment in the electrostatic approximation is that
of an ellipsoid with semiaxes a1 ≤ a2 ≤ a3, specified by x2

a2
1
+ y2

a2
2
+ z2

a2
3
= 1. A treatment of the

scattering problem in ellipsoidal coordinates Bohren1983 leads to the following expression
for the polarizabilities αi along the principal axes (i = 1, 2, 3):

αi =
4πa1a2a3(ϵ(ω)− ϵm)

3ϵm + 3Li(ϵ(ω)− ϵm)
(3.32)

Li is a geometrical factor given by

Li =
a1a2a3

2

∫ ∞

0

dq
(a2

i + q) f (q)
(3.33)

where f (q) =
√
(q + a2

1)(q + a2
2)(q + a2

3). The geometrical factors satisfy ∑ Li = 1, and

for a sphere L1 = L2 = L3 = 1
3 . As an alternative, the polarizability of ellipsoids is also often
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expressed in terms of the depolarization factors L̃i, defined via E1i = E0i − L̃iP1i, where E1i
and P1i are the electric field and polarization induced inside the particle by the applied field
E0i along a principal axis i, respectively. L̃ is linked to L via

L̃i =
ϵ − ϵm

ϵ − 1
Li

ϵ0ϵm
. (3.34)

An important special class of ellipsoids are spheroids. For prolate spheroids, the two minor
axes are equal (a2 = a3), while for oblate spheroids, the two major axes are of same size
(a1 = a2). An examination of (5.15) reveals that a spheroidal metal nanoparticle exhibits two
spectrally separated plasmon resonances, corresponding to oscillations of its conduction
electrons along the major or minor axis, respectively. The resonance due to oscillations along
the major axis can show a significant spectral red-shift compared to the plasmon resonance
of a sphere of the same volume. Thus, plasmon resonances can be lowered in frequency into
the near-infrared region of the spectrum using metallic nanoparticles with large aspect ratio.
For a quantitative treatment, we note however that (5.15) is only strictly valid as long as the
major axis is significantly smaller than the excitation wavelength.

Using a similar analysis, the problem of spheres or ellipsoids coated with a concentric
layer of a different material can be addressed. Since core/shell particles consisting of a
dielectric core and a thin, concentric metallic shell have recently attracted a great amount
of interest in plasmonics due to the wide tunability of the plasmon resonance, we want to
state the result for the polarizability of a coated sub-wavelength sphere with inner radius a1,
material ϵ1(ω) and outer radius a2, material ϵ2(ω) Bohren1983. The polarizability evaluates
to

α =
4πa3

2(ϵ2 − ϵm)(ϵ1 + 2ϵ2) + f (ϵ1 − ϵ2)(ϵm + 2ϵ2)

(ϵ2 + 2ϵm)(ϵ1 + 2ϵm) + f (2ϵ2 − 2ϵm)(ϵ1 − ϵ2)
, (3.2)

with f =
a3

1
a3

2
being the fraction of the total particle volume occupied by the inner sphere.

3.6 Mie Theory

We have seen that the theory of scattering and absorption of radiation by a small sphere
predicts a resonant field enhancement due to a resonance of the Beyond the Quasi-Static
Approximation and Plasmon Lifetime 73 polarizability α (5.7) if the Frölich condition (5.8)
is satisfied. Under these circumstances, the nanoparticle acts as an electric dipole, resonantly
absorbing and scattering electromagnetic fields. This theory of the dipole particle plasmon
resonance is strictly valid only for vanishingly small particles; however, in practice the calcu-
lations outlined above provide a reasonably good approximation for spherical or ellipsoidal
particles with dimensions below 100 nm illuminated with visible or near-infrared radiation.
However, for particles of larger dimensions, where the quasi-static approximation is not
justified due to significant phase-changes of the driving field over the particle volume, a
rigorous electrodynamic approach is required. In a seminal paper, Mie in 1908 developed a
complete theory of the scattering and absorption of electromagnetic radiation by a sphere,
in order to understand the colors of colloidal gold particles in solution [Mie, 1908]. The
approach of what is now know as Mie theory is to expand the internal and scattered fields
into a set of normal modes described by vector harmonics. The quasi-static results valid for
sub-wavelength spheres are then recovered by a power series expansion of the absorption
and scattering coefficients and retaining only the first term. Since Mie theory is treated in
a variety of books such as [Bohren and Huffman, 1983, Kreibig and Vollmer, 1995] and a
detailed knowledge of the higher order terms is not required for our purpose, we will not
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present it in this treatment, but rather examine the physical consequences of the first-order
corrections to the quasi-static approximation.

3.7 Physics of plasmonic heating

In this section, we consider a metal NP of complex relative permittivity ϵ(ω) immersed in a
dielectric surrounding medium of real relative permittivity ϵs = n2

s . This NP is illuminated
by monochromatic light at an angular frequency ω with E0(r; ω) the complex amplitude of
the incident electric field. (For any physical quantity A(r, t), we define its complex ampli-
tude A(r) such that A(r, t) = ℜ[A(r)eiωt].) We define ω = k0c0 = 2πc0/λ0 = 2πc0/nsλ =
c0k/ns, where c0 is the speed of light, λ0 the free-space wavelength, λ the wavelength in
the surrounding medium, and k0 and k the angular wave number in free space and in the
medium, respectively. [69]

3.7.1 Metallic nanoparticles and localized surface plasmons

Metal nano-objects support electronic resonances known as LSPs that can be excited upon
illumination. The frequency of LSP resonances strongly depends on the morphology of the
metal nano-object and its dielectric environment. For instance, elongating a sphere into a
rod-like shape tends to red-shift the LSP resonance. For noble metals, such as gold, silver
or copper, this property allows accurate tuning of LSP resonances from the visible to the
near-infrared (NIR) frequency range. Recent advances in both bottom-up and top-down
fabrication techniques offer a tremendous variety of metal NP sizes and shapes. On the
one hand, chemists have developed synthesis procedures to produce colloidal noble metal
NPs with numerous geometries including rods, cubes, triangles, shells, stars, etc. [34]. On
the other hand, techniques such as e-beam lithography and focused ion beam milling are
convenient means to design planar metal nanostructures on a flat substrate with a resolution
down to a few tens of nanometers. The origin of LSP resonances in metal NPs can be simply
derived for a metal sphere that is much smaller than the illumination wavelength and can
be considered as an electromagnetic dipole. In this case, the sphere polarizability reads

α(ω) = 4πR3 ϵ(ω)− ϵs

ϵ(ω) + 2ϵs
. (3.36)

where R is the radius of the sphere. In this expression, the polarizability α is defined such
that the complex amplitude of the polarization vector of the NP reads P = ϵ0ϵsαE0. Equa-
tion (1) shows that a resonance occurs at the frequency ω at which ϵ(ω) ≈ −2ϵs. For a gold
sphere smaller than ∼ 30 nm in water, this occurs for λ ≈ 530 nm. However, for larger
spheres, this dipolar approximation is no longer valid and more complex models, such as
Mie theory, accounting for retardation effects, are required. For more sophisticated geome-
tries, numerical simulations are needed.[70]–[72]

Such a resonance in the polarizability is responsible for a resonance both in absorption
and in scattering. For any NP morphology, the efficiency of these processes can be described
by absorption and scattering cross-sections [48]:

σabs = kIm(α)− k4

6π
|α|2, (3.37)

σscat =
k4

6π
|α|2, (3.38)

σext = σabs + σscat = kIm(α). (3.39)
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The relative efficiency of absorption and scattering processes can be quantified by the
photothermal efficiency µ = σabs/σext, which depends mostly on the NP morphology. For
instance, for spherical gold NPs smaller than 90 nm (in water), absorption is dominant (µ ≈
1), while for bigger gold NPs, scattering dominates (µ < 1). Note that this conclusion is
valid when considering the respective maxima of both cross-section spectra, but not the
cross-sections at an arbitrary wavelength. This is the consequence of the spectral shift that
usually occurs between absorption and scattering spectra for large or non-spherical NPs.

Consequently, even though spherical gold NPs are usually better absorbers than scatter-
ers, the illumination wavelength must be specified to determine what is the actual dominant
energy conversion pathway. It is worth noticing that, for this reason, considering experi-
mental extinction spectra to estimate the absorption efficiency of a plasmonic structure, as
sometimes seen in the literature [73], is not always reliable. Tuning the plasmonic resonance
frequency of a NP can be easily achieved by changing its morphology. Any deviation from
the spherical shape tends to red-shift the resonance. Experimental results presented in Fig.
3 illustrate the red-shift of the plasmon resonance of a gold nanorod while increasing its
aspect ratio. In the following, we focus on the absorption processes and the subsequent heat
generation.

3.7.2 Delivered heat power

The power absorbed (and delivered) by a NP can be simply expressed using the absorption
cross-section σabs introduced in the previous section:

Q = σabs I (3.40)

where I is the irradiance of the incoming light (power per unit surface). In the case of a
plane wave,

I = nsc0ϵ0|E0|2/2.

The heat generation can be also derived from the heat power density q(r) inside the NP
such that Q =

∫
V q(r)d3r, where the integral runs over the NP volume V. Since the heat

originates from Joule effects, the heat power density reads [10, 11]

q(r) =
1
2
ℜ[J∗(r) · E(r)] (3.41)

where J(r) is the complex amplitude of the electronic current density inside the NP. As
J(r) = iωP and P = ϵ0ϵ(ω)E, one ends up with

q(r) =
ω

2
ℑ(ϵ(ω))ϵ0|E(r)|2. (3.42)

The heat generation is thus directly proportional to the square of the electric field inside
the metal. This is an important aspect to consider when designing efficient plasmonic nano-
sources of heat.

In practice there are thus two ways of calculating the heat power Q delivered by a given
NP. For geometries for which the absorption cross-section is known (for example for spheri-
cal NPs using Eqs. (3.40) and (3.41)), Q can be estimated using Eq. (3.42). However, for more
complicated morphologies for which there is no simple analytical expression available, the
computation of the inner electric field amplitude E(r) is required to calculate q(r) from Eq.
(3.42). A gold nanorod with a resonance frequency around λ0 = 760 nm is illuminated with
a plane wave linearly polarized along its long axis. Interestingly, at resonance, most of the
heat originates from the center of the rod rather than from its extremities (Fig. 4b). This can
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be understood by the fact that the electronic current responsible for the Joule effect mostly
flows in the center of the nanorod while the extremities mainly accumulate charges.

While the computation of the delivered heat power Q turns out to be a full-optical prob-
lem as explained in the previous section, the determination of the steady-state temperature
distribution T(r) inside and outside the NP is based on the resolution of the heat diffusion
equation:

∇ · [κ(r)∇T(r)] = −q(r) inside the NP, (3.43)

∇ · [κ(r)∇T(r)] = 0 outside the NP (3.44)

where κ(r) is the thermal conductivity. For a spherical NP of radius R, simple calculations
lead to a temperature increase:

δT(r) = δTNP
R
r

, r > R, (3.45)

δT(r) ≈ δTNP, r < R (3.46)

where δTNP is the temperature increase of the NP. Interestingly, while the heat power density
q(r) can be highly non-uniform within the NP, the temperature at equilibrium is, on the con-
trary, generally perfectly uniform inside the NP [13]. This is due to the much larger thermal
conductivity of metals as compared with that of the surroundings (liquid, glass, etc.). The
actual temperature increase experienced by a NP is dependent on numerous parameters,
namely its absorption cross-section, its shape, the thermal conductivity of the surrounding
medium and the wavelength and irradiance of the incoming light. For a spherical NP, the
NP temperature increase is related to the absorbed power Q = σabs I according to

δTNP =
Q

4πκsR
(3.47)

where κs is the thermal conductivity of the surrounding medium.
To give an order of magnitude, a spherical gold NP in water, 20 nm in diameter, illu-

minated at λ0 = 530 nm with an irradiance of I = 1 mW/µm2 experiences a temperature
increase of ∼ 5 ◦C. Importantly, this simple model may no longer be valid when several
NPs are in close proximity as thermal collective effects can occur [27], [29], [70]. In this case,
reduced irradiance can be used to achieve the same temperature increase.

The establishment of this steady-state temperature profile is usually very fast when
working with NPs. The typical duration τtr of the transient regime is not dependent on the
temperature increase but on the characteristic size L of the system (for instance the radius R
for a sphere):

τtr ∼
L2ρcp

3κs
(3.48)

where ρ is the mass density of the NP and cp its specific heat capacity at constant pressure.
For example, for spherical NPs of diameters 10 nm, 100 nm and 1 µm, one gets τtr of the
order of 0.1 ns, 10 ns and 1 µs, respectively.
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FIGURE 3.10: Influence of the NP geometry on the optical confinement and
spectral features of the LSP resonance: (a) four geometries of gold NPs are
considered: an isolated 50 nm sphere, a plasmonic dimer formed by two adja-
cent 40 nm NPs separated by 5 nm, an isolated oblate NP (100 nm long, aspect
ratio of 3) and a dimer of oblate NPs (82 nm long, aspect ratio 3) separated
by 5 nm. All four structures feature the same volume of gold. We consider
an illumination from the top by a plane wave polarized horizontally. Sphere:
50 nm in diameter. (b) Simulations of the corresponding scattering cross sec-
tions showing the evolution of the LSP resonance (c) schematic of the charge
distribution at a given time during the period of the charge oscillation. (d)
Simulations of the distribution of the optical enhancement around the NPs at
the respective LSP resonance wavelengths (simulations performed using the

Boundary Element Method)
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Chapter 4

Numerical Methods for Plasmonic
Coupling

Investigating the thermo-plasmonic behavior of metallic nanostructures necessitates nu-
merical approaches coupling optics and thermodynamics. The boundary element method
(BEM) [74], [75], discrete dipole approximation (DDA) and Green dyadic tensor (GDT)
[51], [68], [76] are the methods that have recently been extended to compute the steadystate
temperature in metallic nanostructures under continuous wave illumination [62], [77].
We utilizes numerical methods to investigate the impact of plasmonic coupling and thermal
accumulation on the photothermal behavior of randomly distributed silver nanoparticles.
Here, to compute the light scattering and absorption by nanoparticles, we have used the
DDA method in chapter 5 and to compute the spatial distribution of temperature in steady
state regime, the thermal Green’s function method has been used in chapter 5.

4.1 Boundary Element Method (BEM)

The boundary element method (BEM) is a numerical computational method of solving lin-
ear partial differential equations which have been formulated as integral equations (i.e. in
boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the
technique is known as method of moments or abbreviated as MoM)

4.1.1 Introduction of BEM

To provide a detailed mathematical and theoretical explanation of the Boundary Element
Method (BEM) as used in the paper, I’ll break down the key aspects of the methodology and
its application to the problem of plasmonic coupling and photothermal effects in nanoparti-
cles. Here’s how BEM is theoretically formulated and applied:

4.1.2 Mathematical Formulation of BEM

1. Governing Equations: Maxwell’s Equations BEM is used to solve Maxwell’s equa-
tions, which govern the behavior of electromagnetic fields. The key equations are:

• Gauss’s Law for Electricity: ∇ · E = ρ
ϵ0

• Gauss’s Law for Magnetism: ∇ · B = 0
• Faraday’s Law of Induction: ∇× E = − ∂B

∂t

• Ampere’s Law with Maxwell’s Addition: ∇× B = µ0J + µ0ϵ0
∂E
∂t

The Maxwell’s equations in the frequency domain can be written as:

∇× (∇× E)− µϵω2E = −µJ
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where E is the electric field, µ is the permeability, ϵ is the permittivity, and ω is the
angular frequency of the incident wave. The current density J is related to the surface
currents on the nanoparticles.

2. Integral Representation of Fields: For boundary element formulation, the fields are
represented in terms of surface integrals over the boundaries of the domain. The elec-
tric field E and magnetic field H on the surface of the nanoparticles are expressed as:

E(r) =
∫

Γ
G(r, r′) · J(r′) dΓ′

where Γ is the surface of the nanoparticles, and G(r, r′) is the Green’s function that
describes the response of the field at point r due to a unit source at r′.

3. Boundary Integral Equations: The integral form of Maxwell’s equations on the bound-
ary surface Γ can be written as:

E(r) =
ω2

c2

∫
Γ

G(r, r′) · J(r′) dΓ′ + Einc(r)

where Einc is the incident electric field. Boundary Integral Equations BEM transforms
the differential form of Maxwell’s equations into integral equations. The boundary
conditions at the surfaces of the nanoparticles are used to derive these integral equa-
tions.

For an electric field E and a magnetic field H, the boundary integral equations can be
written as:

E(r) = Einc(r) +
∫

S

[
G(r, r′) · J(r′)− K(r, r′) · M(r′)

]
dS′

H(r) = Hinc(r) +
∫

S

[
G(r, r′) · M(r′) + K(r, r′) · J(r′)

]
dS′

where: - Einc and Hinc are the incident electric and magnetic fields. - J and M are the
electric and magnetic surface currents. - G and K are the Green’s functions for the
electric and magnetic fields, respectively. - S is the surface of the nanoparticle.

4. Discretization of the Surface: The surface Γ is discretized into small elements. Each
element is typically represented by nodes with unknown surface current densities Ji.
The integral equation is then discretized as:

Ei = ∑
j

Gij · Jj + Einc
i

where Gij are the entries of the impedance matrix, which are computed using the
Green’s function.

5. Impedance Matrix and System of Equations: The discretized system of equations can
be written in matrix form as:

Z · J = Einc

where Z is the impedance matrix, and J is the vector of unknown surface currents.

6. Green’s Functions

The Green’s functions G and K describe the response of the fields at a point r due to a
unit source at another point r′. For the electric field, the Green’s function in free space
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is:

G(r, r′) =
eik|r−r′|

4π|r − r′|

(
I +

∇∇
k2

)
where k is the wave number, I is the identity matrix, and ∇∇ represents the dyadic
operator.

4.1.3 Mathematical and Theoretical Advantages of BEM

1. Reduction in Dimensionality

• BEM converts a 3D problem into a 2D problem by focusing on the boundaries
(surfaces) of the nanoparticles. This reduction in dimensionality significantly re-
duces the computational cost and complexity.

• In electromagnetics, the key interactions and boundary conditions are often at the
surfaces of the objects. By formulating the problem in terms of surface integrals,
BEM directly addresses these critical interactions.

2. Accurate Boundary Representation

• BEM solves integral equations that naturally incorporate the boundary condi-
tions on the surfaces of the nanoparticles. The integral equations for the electric
field E and magnetic field H are expressed as:

E(r) = Einc(r) +
∫

S

[
G(r, r′) · J(r′)− K(r, r′) · M(r′)

]
dS′

H(r) = Hinc(r) +
∫

S

[
G(r, r′) · M(r′) + K(r, r′) · J(r′)

]
dS′

where G and K are the Green’s functions.

• BEM provides high accuracy in representing the boundary conditions and surface
interactions. This is particularly important for nanoparticles where surface effects
dominate the optical response.

3. Efficient Handling of Infinite Domains

• - BEM inherently handles problems in infinite or semi-infinite domains without
requiring artificial truncation. This is achieved by the nature of the Green’s func-
tions, which decay with distance, automatically incorporating the effects of the
infinite domain.

• For scattering problems, the fields extend to infinity. BEM is well-suited for such
problems because it avoids the need for approximations or boundary conditions
at the edges of a finite computational domain, which are required in methods like
FEM or FDTD.

4.1.4 Specific Application to the Paper

1. Modeling Plasmonic Coupling:

• Plasmonic coupling involves interactions between closely spaced nanoparticles,
leading to complex field distributions that are highly localized near the surfaces.

• BEM accurately captures these surface interactions and the resulting localized
fields, which are critical for understanding the photothermal behavior.
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2. Computational Efficiency:

• The study involves simulating a large number of nanoparticles, making compu-
tational efficiency crucial.

• BEM’s reduction in dimensionality and efficient handling of boundary conditions
make it computationally feasible to simulate large assemblies of nanoparticles.

3. Surface Currents and Fields:

• The fields and currents on the surfaces of the nanoparticles directly determine
their scattering and absorption properties.

• BEM’s formulation in terms of surface integrals directly provides these quantities,
allowing for precise computation of the optical response.

4.1.5 Numerical Implementations

1. Surface Discretization: The surface of each nanoparticle is discretized into small ele-
ments (e.g., triangles or quadrilaterals). Each element is associated with basis func-
tions that approximate the surface currents J and M.

2. Formulating the Integral Equations: The boundary integral equations are formulated
using the Green’s functions. These equations relate the unknown surface currents to
the incident fields.

3. Matrix Representation: The integral equations are discretized into a system of linear
equations. This results in a matrix equation of the form:

ZI = V

where: - Z is the impedance matrix, representing interactions between surface ele-
ments. - I is the vector of unknown surface currents. - V is the vector representing the
incident fields.

4. Solving the Linear System: Numerical methods (e.g., iterative solvers like GMRES) are
used to solve the linear system for the surface currents I.

5. Field Computation: Once the surface currents are known, the scattered fields are com-
puted using the integral representation of the fields. This involves evaluating the sur-
face integrals of the Green’s functions weighted by the surface currents.

6. Post-Processing: The computed fields are used to determine quantities of interest, such
as the scattering and absorption cross sections, and the near-field distribution around
the nanoparticles.

The Boundary Element Method is a powerful tool for solving electromagnetic scattering
problems involving nanoparticles. It leverages the boundary integral equations derived
from Maxwell’s equations and uses Green’s functions to account for interactions at the sur-
faces of the nanoparticles. This method is particularly suitable for modeling the optical
response of complex nanoparticle assemblies, as demonstrated in the paper.In the paper,
the Boundary Element Method (BEM) is used to model the electromagnetic response of
nanoparticles, particularly focusing on their scattering and absorption prop- erties. BEM
particularly suitable for studying the electromagnetic re- sponse of nanoparticles, especially
when dealing with plasmonic coupling and photother- mal effects. The method’s ability to
handle complex geometries and interactions at the sur- faces of nanoparticles is essential for
accurately modeling and understanding their behavior.
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4.2 Discrete Dipole Approximation (DDA) Method

The discrete dipole approximation (DDA) is a general method to compute scattering and
absorption of electromagnetic waves by particles of arbitrary geometry and composition.
The Discrete Dipole Approximation (DDA) method is a numerical technique used to com-
pute the optical properties of particles, specifically nanoparticles, by representing them as
an array of polarizable points (dipoles). Here’s a detailed theoretical and mathematical ex-
planation based on the paper you provided:

4.2.1 Theoretical Explanation

The DDA method is particularly useful for investigating the optical properties of nanopar-
ticles when they are illuminated by an incident electromagnetic field. The method involves
the following steps:

1. Discretization: The target particle is divided into an array of N sub-wavelength-sized
dipoles. Each dipole is located at position ri and is characterized by its polarizability
αi(ω).

2. Incident Field: When the particle is illuminated by an incident monochromatic electric
field Einc(r) = E0e−iωt+ik·r, each dipole experiences this incident field.

3. Dipole Moment: The dipole moment Pi of the i-th dipole is induced by the local elec-
tric field Eext,i at its location:

Pi = ϵ0ϵmαi(ω)Eext,i

Here, αi(ω) is the polarizability of the i-th dipole, ϵ0 is the permittivity of free space,
and ϵm is the permittivity of the medium surrounding the nanoparticle.

4. External Electric Field: The external electric field Eext,i at the i-th dipole is the sum of
the incident field and the fields scattered by all other dipoles:

Eext,i = Einc,i +
k2

0
ϵ0

∑
j ̸=i

Gij · Pj

where Einc,i = Einc(ri) and Gij is the electric Green’s tensor, which accounts for the
interaction between dipoles i and j.

4.2.2 Mathematical Formulation

The mathematical steps for implementing the DDA method are as follows:

1. Polarizability: The polarizability αi(ω) is given by:

αi(ω) =
α0(ω)

1 − 2
3 ik3α0(ω)

where α0(ω) is the Clausius-Mossotti polarizability:

α0(ω) = 4πa3 ϵ(ω)− ϵm

ϵ(ω) + 2ϵm

Here, a is the radius of the dipole and ϵ(ω) is the permittivity of the material.
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2. Green’s Tensor: The electric Green’s tensor Gij is defined as:

G(ri, rj) =
1

4π

(
eik|ri−rj|

|ri − rj|
+

∇∇eik|ri−rj|

k2

)

3. System of Equations: The induced dipole moments are found by solving a system of
3N linear equations:

Einc,i =
N

∑
j=1

Aij · Eext,j

where Aii = I (the identity matrix) and for i ̸= j,

Aij = −k2
0ϵmαiGij

4. Solution: By solving this system of equations numerically, the external electric field
Eext,i at each dipole position can be determined.

5. Absorption and Scattering: The absorption cross-section σabs and the scattering cross-
section can be calculated from the dipole moments and the polarizability:

σabs = kIm(α)− k4

6π
|α|2

4.2.3 Implementation of the Discrete Dipole Approximation (DDA) Method

The Discrete Dipole Approximation (DDA) method is a numerical technique used to model
the interaction between light and a material object by discretizing the object into an array of
polarizable points or dipoles. Here is a step-by-step theoretical and mathematical explana-
tion of how to implement the DDA method:[42], [77]

1. Discretization of the Target : The first step in the DDA method is to discretize the
target object into an array of N dipoles. Each dipole is located at position ri and has a
polarizability αi(ω).

2. Incident Electromagnetic Field : When the object is illuminated by an incident elec-
tromagnetic field, the electric field at the position of the i-th dipole is given by:

Einc(ri) = E0e−iωt+ik·ri

where E0 is the amplitude of the incident electric field, ω is the angular frequency, and
k is the wave vector of the incident light.

3. Dipole Polarization : The dipole moment Pi of the i-th dipole is induced by the local
electric field Eext,i at its position:

Pi = ϵ0ϵmαi(ω)Eext,i

where αi(ω) is the polarizability of the i-th dipole, ϵ0 is the permittivity of free space,
and ϵm is the permittivity of the medium surrounding the nanoparticle.

4. Local Electric Field : The local electric field Eext,i at the i-th dipole is the sum of the
incident electric field and the fields scattered by all other dipoles:

Eext,i = Einc(ri) +
k2

0
ϵ0

∑
j ̸=i

Gij · Pj
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where Gij is the Green’s tensor that accounts for the interaction between dipoles i and
j.

5. Green’s Tensor : The electric Green’s tensor Gij for the interaction between dipoles i
and j is defined as:

G(ri, rj) =
1

4π

(
eik|ri−rj|

|ri − rj|
+

∇∇eik|ri−rj|

k2

)

6. Polarizability : The polarizability αi(ω) is corrected to account for the radiation reac-
tion and dynamic depolarization:

αi(ω) =
α0(ω)

1 − 2
3 ik3α0(ω)

where α0(ω) is the Clausius-Mossotti polarizability:

α0(ω) = 4πa3 ϵ(ω)− ϵm

ϵ(ω) + 2ϵm

Here, a is the radius of the dipole, and ϵ(ω) is the permittivity of the material.

7. System of Equations : The induced dipole moments are found by solving a system of
3N linear equations:

Einc,i =
N

∑
j=1

Aij · Eext,j

where Aii = I (the identity matrix) and for i ̸= j,

Aij = −k2
0ϵmαiGij

8. Numerical Solution : Solve the system of linear equations to find the local electric
field Eext,i at each dipole. This can be done using numerical techniques such as matrix
inversion or iterative solvers.

9. Calculate Optical Properties : Once the local fields are known, the optical properties
such as the absorption and scattering cross-sections can be computed:

σabs =
k

|E0|2
N

∑
i=1

Im (P∗
i · Eext,i)

σsca =
k4

6π|E0|2
N

∑
i=1

|Pi|2

In our work, the DDA method is used to compute the light scattering and absorption by
nanoparticles, and the spatial distribution of temperature in the steady state is computed
using the thermal Green’s function method. The DDA method allows for the detailed anal-
ysis of the optical properties and interactions between nanoparticles, which is crucial for
understanding their behavior under illumination.
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4.3 Thermal Green’s Function Method

The Thermal Green’s Function method is a mathematical approach used to solve heat con-
duction problems, particularly in complex systems where direct analytical solutions are dif-
ficult or impossible to obtain. It leverages the concept of Green’s functions,[74] which are
fundamental solutions to differential equations, to construct the temperature distribution
resulting from heat sources within a medium.

4.3.1 Theoretical Discussions

1. Heat Conduction Equation : The heat conduction (or diffusion) equation in a steady-
state regime for a homogeneous medium is given by:

∇ · (κ∇T) = −q(r)

where: - T is the temperature field. - κ is the thermal conductivity of the medium. -
q(r) is the volumetric heat source density.

2. Green’s Function: A Green’s function G(r, r′) is a solution to the differential equation
with a delta function source:

∇2G(r, r′) = −δ(r − r′)

In the context of heat conduction, the Green’s function represents the temperature
response at point r due to a unit point heat source located at r′.

3. Temperature Distribution : The temperature at any point r in the medium due to a
distribution of heat sources can be expressed using the Green’s function:

T(r) =
∫

V
G(r, r′)q(r′) dr′

Here, V is the volume of the medium, and q(r′) is the heat source density at point r′.

4.3.2 Application to Nanoparticles of Thermal Green Function :

When applied to the problem of nanoparticles heated by light absorption, the Thermal
Green’s Function method involves the following steps:

1. Heat Sources: Each nanoparticle acts as a localized heat source. The power Qi ab-
sorbed by the i-th nanoparticle can be calculated from the incident light and the ab-
sorption properties of the nanoparticle:

Qi =
1
2

σabsnϵ0|Eext,i|2

where σabs is the absorption cross-section, n is the refractive index of the medium, ϵ0
is the permittivity of free space, and Eext,i is the external electric field experienced by
the nanoparticle.

2. Poisson’s Equation: In the steady-state regime, the temperature distribution T(r) is
found by solving Poisson’s equation for heat conduction:

κm∇2T(r) = −
N

∑
j=1

Qjδ(r − rj)
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Here, κm is the thermal conductivity of the surrounding medium, and Qj is the heat
power of the j-th nanoparticle located at rj.

3. Green’s Function Solution: The temperature increase at any point r due to the heat
sources can be expressed using the thermal Green’s function Gt(r; rj):

∆T(r) =
N

∑
j=1

Gt(r; rj)Qj

For a homogeneous medium, the thermal Green’s function is:

Gt(r, rj) =
1

4πκm|r − rj|

This function represents the temperature increase at point r due to a unit heat source
at rj.

4. Temperature Inside Nanoparticles: For the temperature increase inside a nanoparticle
located at ri, it is given by:

∆Ti =
N

∑
j=1

Gt(ri; rj)Qj

where Gt(ri; ri) =
1

4πκma for a nanoparticle of radius a.

The Thermal Green’s Function method provides a systematic way to calculate the tem-
perature distribution in a medium resulting from multiple localized heat sources. It lever-
ages the concept of Green’s functions to handle the complexity of solving Poisson’s equation
for heat conduction. This method is particularly useful in nanoscale applications where the
spatial distribution of heat sources, such as nanoparticles, leads to non-uniform and com-
plex temperature profiles. By applying the Green’s function approach, one can obtain an
accurate temperature distribution accounting for the contributions of all individual heat
sources.

4.3.3 Numerical Implementation

This method is used to calculate the temperature distribution around the nanoparticles due
to the absorption of light and subsequent heat generation. The thermal Green’s function
provides a solution to the heat diffusion equation in a steady-state regime.

1. DDA for External Field: The DDA method is used to compute the external electric
fields Eext

i for all nanoparticles by solving the system of linear equations derived from
the interactions between dipoles.

2. Heat Power Calculation: The heat power absorbed by each nanoparticle is calculated
using the electric field:

Qi =
1
2

σabsncϵ0|Eext
i |2

3. Temperature Distribution: The temperature distribution ∆T(r) in the medium is cal-
culated using the thermal Green’s function method, accounting for contributions from
all heat sources.
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4.3.4 Computational Steps

• Simulation Setup: A MATLAB code is written to simulate the system, where N =
1000 silver nanoparticles are randomly distributed in a spherical region.

• Field Calculation: The DDA method is used to compute Eext
i for each nanoparticle.

• Heat Power Calculation: Qi is computed for each nanoparticle using the absorption
cross section and the external electric field.

• Temperature Calculation: The temperature increase ∆T(r) is computed using the
thermal Green’s function method.

4.3.5 Application to Nanoparticle Systems

The work combines the DDA method for optical calculations and the thermal Green’s func-
tion method for thermal calculations to investigate the photothermal behavior of randomly
distributed silver nanoparticles. The numerical approach provides insights into the contri-
butions of plasmonic coupling and thermal accumulation to the temperature increase in the
nanoparticle assembly.

• Green’s Function Calculation: The Green’s function G(r, r′) typically involves the so-
lution to the Helmholtz equation with appropriate boundary conditions. For a spher-
ical nanoparticle, it can be represented as:

G(r, r′) =
eikr

4πr
n̂

where k = ω/c is the wave number, r = |r − r′|, and n̂ is the normal vector.

• Setting Up the Boundary Integral Equations: For a surface S of the nanoparticle, the
boundary integral equation for the tangential components of the electric field Et is:

Et(r) =
ω2

c2

∫
S

G(r, r′) · J(r′) dS′ + Einc
t (r)

• Solving the Linear System: The system of equations Z · J = Einc is solved using nu-
merical techniques such as:

J = Z−1 · Einc

4.3.6 Integration with Photothermal Analysis

• Absorbed Power Calculation: The power absorbed by each nanoparticle is given by:

Qi =
1
2

σabsncϵ0|Eext
i |2

where σabs is the absorption cross-section.

• Temperature Distribution Using Thermal Green’s Function: The temperature in-
crease ∆T(r) due to the absorbed power is described by solving the heat conduction
equation with a thermal Green’s function Gt(r, r′):

∇ · (κ∇T(r)) = −∑
i

Qi

ρc
δ(r − ri)
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where κ is the thermal conductivity, ρ is the density, and c is the specific heat capacity.

• Final Temperature Distribution: The temperature distribution is then computed as:

∆T(r) = ∑
i

Gt(r, ri) ·
Qi

ρc

These methods allows for a detailed and efficient study of the plasmonic and thermal
interactions in nanoparticle systems.
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Chapter 5

Light Scattering and Absorption by
Nanoparticles

In this thesis work, we propose a unified formalism to model a large class of experimental
systems composed of metallic nanostructures where photothermal effects occur. The formal-
ism consists of further extending both the discrete dipole approximation (DDA) and Green’s
dyadic tensor (GDT) methods—previously devoted to electrodynamic simulations—to the
description of photoinduced thermal effects, and, in particular, to compute temperature pro-
files. the same spirit of DDA and GDT methods, the thermal extension we developed is also
based on a Green’s function formalism. This thesis work is divided in two sections. The
first section is dedicated to the DDA method and its thermal extension. To illustrate this
approach, well suited to address problems involving colloidal nanoparticles, we investi-
gate the heat generation and temperature distribution around nanoparticles deposited on a
glass substrate. We discuss the influence of the solvent and the substrate on the expected
temperature increase, as well as the physics of heat generation throughout nanoparticles ar-
rays. The second section is dedicated to the thermal extension of the GDT method, suited
for more complex geometries. This approach turns out to be nontrivial since it requires the
computation of a fictive heat generation density inside the metallic structure.

5.1 Investigate the Optical Properties of Illuminated NPs.

Discrete Dipole Approximation

The DDA is a general method to investigate the optical properties of nanoparticles assem-
bly.[51], [78] It can be used to compute absorption and scattering cross sections, optical near-
field, or light-radiation diagram. DDA is particularly suited to take into account the pres-
ence of a planar interface between two dielectric media to model for example the presence
of a substrate. Such a typical system is represented schematically in figure: 5.1.

In the following, the particles are assumed dielectric but not magnetic (magnetic permit-
tivity µ = µ0). The size of the particle is supposed to be small compared to the wavelength
of the incoming light. The electric permittivity and the polarizability of the particles are
assumed isotropic to simplify the derivations. However, extension to arbitrary dielectric
tensor or ellipsoidal particles is also permitted.

Consider N identical dipolar spherical particles of radius a, polarizability α at the posi-
tions ri and an incident monochromatic light characterized by a complex electric-field am-
plitude E0(r, ω). The polarization amplitude pi(ω) of the nanoparticle i is

pi = α(ω)Eext
i (ω) (5.1)

Eext
i (ω) is the external electric field amplitude experienced by the particle i. It has two ori-

gins: the incident field E0(ri, ω) and the field radiated by the N − 1 neighbor particles.
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FIGURE 5.1: (Color online) Assembly of gold nanoparticles deposited on a
glass substrate, which represents one of the typical systems that the DDA

method can investigate.

Henceforth the ω dependency will be omitted in the equations for the sake of clarity. In
the dipolar approximation, the polarizability of the particle reads

α =
α0

1 − (2/3)ik3α0
(5.2)

where
α0 = 4πϵ0a3 ϵ − ϵm

ϵ + 2ϵm
, (5.3)

where ϵ and ϵm are the electric permittivities of the nanoparticle and the surrounding medium,
respectively. Formula (5.2) stands for a correction to the standard Clausius-Mossotti polariz-
ability α0. This correction is required to verify the optical theorem and energy conservation
but can be neglected for small particles, typically less than 20 nm in diameter.

Note that in nanoplasmonics, the use of the bulk permittivity ϵ is a priori not straightfor-
ward since the electron mean free path is only 50 nm in gold. Some surface effects could be
expected additionally to the electron-phonon interaction (Joule effect) occurring in volume
and responsible for the temperature increase. However, it has been shown experimentally,
in particular by Link and El-Sayed[74] and by Hartland et al.[76], that no size dependence
of the electron-electron and electron-phonon relaxations exists in gold nanoparticles down
to at least 9 nm in diameter. This is due to the elastic scattering of electrons by the particle
surface, which does not lead to any energy transfer from electrons to surface phonons. For
this reason the use of the bulk permittivity ϵ is justified.

usually sufficient and justified to describe the physical properties of gold nanoparticles.
The problem consists in calculating the electric field amplitudes Eext

i at each particle
position ri. Since all the particles are in interaction with each other, this problem is self-
consistent. The use of the Green’s dyadic tensor formalism is appropriate to simply express
and formally solve the problem. The equations read[77], [78]

Eext
i = E0(ri) + ∑

j ̸=i
G(ri, rj) · pj (5.4)

and can be recast using Eq. (1)

Eext
i = E0(ri) + α ∑

j ̸=i
G(ri, rj) · Eext

j , (5.5)

where G(ri, rj) is the electric field propagator (also called Green’s dyadic tensor) associated
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to the surroundings. The self-consistency is evidenced by Eq. (5). The Dyson method allows
for recasting Eq. (5) into a resolved form where the self-consistency is removed[77], [78]

Eext
i = E0(ri) + αK(ri, rj) · E0(rj), (5.6)

where K(ri, rj) is the Green dyadic function of the complete system (particles plus surround-
ing surface). The central part of the algorithm consists in calculating the generalized prop-
agators K(ri, rj), which can be done by N successive inversions of 3 × 3 matrices. Once the
electric field amplitude Eext

i is known at each position ri, it can be calculated at any position
r using the electric field propagator

E(r) = E0(r) + α
N

∑
j=1

G(r, rj) · Eext
j . (5.7)

External Electric Field of Nanoparticles by DDA Method

The DDA is a suitable method to investigate the optical properties of illuminated NPs. In
this method, an assembly of N identical sub wavelength-sized spherical NPs are consid-
ered. Nanoparticles have been distributed in a homogeneous medium with permittivity of
ϵm.[50], [68]

5.1.1 Incident monochromatic electric field and Dipole Moment

1. Incident Electric Field: When NPs are illuminated by the incident monochromatic
electric field,

Einc(r) = E0 exp(−iωt + ik · r) (5.8)

Here, E0 is the amplitude of the incident electric field, ω is the angular frequency, and
k is the wave vector of the incident field.

2. Dipole Moment of the i-th Nanoparticle: The dipole moment of the ith nanoparticle
located at ri is,

Pi = ϵ0ϵmαi(ω)Eext
i , (5.9)

This equation states that the dipole moment is proportional to the external electric
field, with the proportionality constant being the product of the permittivity of the
medium and the polarizability of the nanoparticle. where αi(ω) is the polarizability
of the ith particle and Eext

i = Eext(ri) is the external electric field amplitude experi-
enced by the ith particle which has two origins: the incident field Einc

i (ri) and the field
scattered by the N − 1 neighbor particles.

Eext
i = Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

GijPj (5.10)

5.1.2 Total External Electric Field Experienced by the i-th Nanoparticle:

The external electric field Eext
i is composed of the incident electric field Einc

i and the field
scattered by the N − 1 neighboring particles:

Eext
i = Einc

i +
k2

0
ϵ0

∑
j ̸=i

Gij · Pj (5.11)
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Here, Gij represents the Green’s function that accounts for the propagation of the scattered
field from the j-th to the i-th nanoparticle.

Here Einc
i = Einc(ri) and Gij = G(ri, rj) is the electric Green’s tensor defined as:[75]

G(ri, rj) =
1

4π

(
1 +

∇∇
k2

)
eik|ri−rj|

|ri − rj|
. (5.12)

1. External Electric Field: The total external electric field Eext
i at the position of the i-th

nanoparticle is the sum of the incident electric field and the electric fields scattered by
the other N − 1 nanoparticles. This can be written as:

Eext
i = Einc

i +
N

∑
j ̸=i

Escat
ij (5.13)

where Escat
ij is the scattered electric field from the j-th nanoparticle to the i-th nanopar-

ticle.

2. Scattered Electric Field: The scattered electric field Escat
ij can be expressed using the

Green’s function Gij and the dipole moment Pj of the j-th nanoparticle:

Escat
ij =

k2
0

ϵ0
Gij · Pj (5.14)

3. Substitute Scattered Field into Total External Field: Substituting the scattered field
expression into the total external field expression gives:

Eext
i = Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

Gij · Pj (5.15)

4. Combine Equations: Combine the expression for the dipole moment Pi with the ex-
pression for the total external electric field:

Pi = ϵ0ϵmαi(ω)

(
Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

Gij · Pj

)
(5.16)

Simplifying this, we get:

Eext
i = Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

Gij · Pj (5.17)

Thus, we have derived Equation (2) from the given information:

Eext
i = Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

Gij · Pj (5.18)

This equation shows how the external electric field at each nanoparticle is influenced
by the incident electric field and the fields scattered by the neighboring nanoparticles.

5. Dipole Moment Equation: Substitute Eext
i into the dipole moment equation:

Pi = ϵ0ϵmαi(ω)

(
Einc

i +
k2

0
ϵ0

∑
j ̸=i

Gij · Pj

)
(5.19)
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In the dipolar approximation, the polarizability αi(ω) of the particle reads,[73]

αi(ω) =
α0(ω)

1 − 2
3 ik3α0(ω)

. (5.20)

5.2 Green’s Tensor for Electromagnetic Fields

The Green’s tensor G(ri, rj) describes how the field scattered by the j-th particle affects the
i-th particle. This tensor is derived from the Helmholtz equation in the frequency domain
and represents the response of the medium to a point source.[30], [68]

1. Helmholtz Equation

The Helmholtz equation in the frequency domain for a scalar field Φ(r) is given by:

∇2Φ(r) + k2Φ(r) = −δ(r − r′) (5.21)

where k is the wavenumber and δ(r − r′) is the Dirac delta function representing a
point source at r′.

2. Green’s Function

The Green’s function G(r, r′) for the Helmholtz equation satisfies:

∇2G(r, r′) + k2G(r, r′) = −δ(r − r′) (5.22)

In free space, the solution to this equation is:

G(r, r′) =
eik|r−r′|

4π|r − r′| (5.22)

3. Vector Potential and Green’s Tensor

For electromagnetic fields, we work with the vector [69] potential A and the electric
field E, related by:

E = −iωA −∇Φ (5.23)

The vector potential A satisfies a vector Helmholtz equation:

∇2A + k2A = −µ0J (5.24)

where J is the current density.

The solution for A in terms of the Green’s function is:

A(r) = µ0

∫
G(r, r′)J(r′)d3r′ (5.25)

4. Green’s Tensor for the Electromagnetic Field

To generalize for vector fields, we introduce the dyadic Green’s function or Green’s
[48] tensor G(r, r′) such that:

A(r) = µ0

∫
G(r, r′)J(r′)d3r′ (5.26)
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The Green’s tensor G(r, r′) satisfies:

∇2G(r, r′) + k2G(r, r′) = −Iδ(r − r′) (5.27)

where I is the identity matrix.
The Green’s tensor G(ri, rj) is derived from the vector Helmholtz equation, which
governs the propagation of electromagnetic waves. It encapsulates the response of the
medium to a point source and is fundamental in describing how the scattered fields
from one nanoparticle influence another in the system.

5. Electric Green’s Tensor The Green’s tensor G(ri, rj) describes the electric field at point
ri due to a unit dipole located at rj. It is given by:

G(ri, rj) =
1

4π

(
1 +

∇∇
k2

)
eik|ri−rj|

|ri − rj|
(5.28)

6. Solution for the Green’s Tensor

For the electromagnetic Green’s tensor, the solution in free space is:

G(r, r′) =
1

4π

(
I +

∇∇
k2

)
eik|r−r′|

|r − r′| (5.29)

The Green’s tensor G(ri, rj) is derived from the vector Helmholtz equation, which
governs the propagation of electromagnetic waves. It encapsulates the response of the
medium to a point source and is fundamental in describing how the scattered fields
from one nanoparticle influence another in the system.

The external electric field experienced by each particle is the sum of the incident elec-
tric field and the fields produced by all other particles’ dipole moments. The Green’s
tensor Gij describes how the field propagates from one dipole to another. By solving
these coupled equations for all particles, one can determine the response of the entire
system to the incident electromagnetic field.

5.3 Polarizability of Nanoparticles

5.3.1 Clausius-Mossotti polarizability expression:

• Induced Dipole Moment: When an external electric field E0 is applied, the dipole
moment p induced in the sphere is: N45

p = α0E0 (5.30)

• Potential Inside and Outside the Sphere: - Inside the sphere, the potential is:

Φin = −Br cos θ (5.31)

- Outside the sphere, the potential is:

Φout = −E0r cos θ +
p cos θ

4πϵmr2 (5.32)

• Boundary Conditions: The potential and the displacement field must be continuous
at the boundary r = a.
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• Matching Potentials:

−E0a cos θ +
p cos θ

4πϵma2 = −Ba cos θ (5.33)

E0a − p
4πϵma2 = Ba (5.34)

• Matching Displacement Fields:

ϵm

(
E0 +

p
4πϵma3

)
= ϵ(ω)B (5.35)

• Solving for B:
B = E0 −

p
4πϵma3 (5.36)

ϵm

(
E0 +

p
4πϵma3

)
= ϵ(ω)

(
E0 −

p
4πϵma3

)
(5.37)

ϵmE0 +
p

4πa3 = ϵ(ω)E0 −
ϵ(ω)p

4πϵma3 (5.38)

• Solving for p:

ϵmE0 − ϵ(ω)E0 = − p
4πa3 − ϵ(ω)p

4πϵma3

(ϵm − ϵ(ω))E0 = −p
(

1
4πa3 +

ϵ(ω)

4πϵma3

)
(ϵm − ϵ(ω))E0 = −p

ϵ(ω) + 2ϵm

4πϵma3 (5.39)

• Final Expression for p:

p = 4πϵma3 ϵ(ω)− ϵm

ϵ(ω) + 2ϵm
E0 (5.40)

• Polarizability α0(ω):

α0(ω) =
p

E0
= 4πϵma3 ϵ(ω)− ϵm

ϵ(ω) + 2ϵm

αi(ω) =
α0(ω)

1 − 2
3 ik3α0(ω)

(5.41)

where α0(ω) is the standard Clausius-Mossotti polarizability,

α0(ω) = 4πa3 ϵ(ω)− ϵm

ϵ(ω) + 2ϵm
. (5.42)

Here a and ϵ(ω) are the radius and electric permittivity of the nanoparticles, respectively.

5.3.2 Polarizability for Radiation Damping:

1. Dipole Moment and Radiation Reaction Force:

The radiative reaction force on a dipole can be understood by considering the self-
interaction of the dipole’s radiated field.[79] For a dipole moment p = p0e−iωt, the
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electric field at a distance r from the dipole is:

Erad =
eikr

r

(
p0

ω2

4πϵ0c2

)
(5.43)

• Dipole Radiation
When an oscillating dipole emits electromagnetic radiation, it loses energy. The
power radiated by an oscillating dipole moment p with angular frequency ω is
given by:

Prad =
ω4|p|2

12πϵ0c3 (5.44)

where ϵ0 is the permittivity of free space and c is the speed of light in vacuum.

• Force on the Dipole:
The back-action or self-force due to this radiated field can be written as:

Frad =
2
3

e2ω2

4πϵ0c3 p0
d2

dt2 p (5.45)

2. Effective Polarizability with Radiation Damping:

The self-force introduces a damping term in the equation of motion for the dipole
moment:

m
d2p
dt2 + γ

dp
dt

+ kp = qE0e−iωt

where γ includes the radiation damping contribution. The damping force is propor-
tional to the third derivative of the dipole moment:

Frad =
2
3

ω3

c3 p (5.46)

• Equation of Motion for the Dipole
The dipole moment p induced by an external electric field E can be written as:

p(t) = ϵ0ϵmα(ω)E(t) (5.51)

Considering the time-dependent field E(t) = E0e−iωt, the induced dipole mo-
ment will oscillate at the same frequency:

p(t) = p0e−iωt (5.47)

• Radiative Reaction Force: The radiative reaction force arises from the interac-
tion of the dipole with its own radiated field. This self-interaction introduces a
damping term proportional to the acceleration of the dipole. The force can be
written as:

Frad ∝
d3p
dt3 (5.48)

For an oscillating dipole p(t) = p0e−iωt, the third time derivative introduces a
term proportional to −iω:

d3p
dt3 = −iω3p (5.49)

• Effective Equation of Motion
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The equation of motion for the dipole moment, including the radiation damping
term, becomes:

m
d2p
dt2 + γ

dp
dt

+ kp = qEe−iωt (5.50)

The damping term γ due to radiative reaction is:

γ =
2
3

ω3α0

c3 (5.56)

This leads to the modified polarizability:

p = ϵ0ϵmα0

(
E − 2

3
ik3p

)
(5.51)

3. Solving for Modified Polarizability

To find the effective polarizability α(ω), we rearrange the equation:

p = ϵ0ϵmα0E − 2
3

ik3ϵ0ϵmα0p (5.52)

Express p in terms of α(ω):

p = ϵ0ϵmα0E − 2
3

ik3ϵ0ϵmα0p

p
(

1 +
2
3

ik3α0

)
= ϵ0ϵmα0E

p = ϵ0ϵm
α0

1 − 2
3 ik3α0

E (5.53)

Therefore, the modified polarizability including radiation damping is:

α(ω) =
α0(ω)

1 − 2
3 ik3α0(ω)

(5.54)

5.3.3 Solving the Linear System:

In the dipolar approximation, the polarizability αi(ω) of the particle reads,[30]

By substituting Pj from Eq. (1) into Eq. (2), we can obtain

Einc
i =

N

∑
j=1

Aij · Eext
j . (5.55)

In Eq. (5.55), Aii = I (I is a 3 × 3 unitary matrix) and Aij is defined as:

Aij = −k2
0ϵ0ϵmαiGij, (j ̸= i). (5.56)

For a set of N nanoparticles that their positions are defined by ri, the N values of Einc
i

can be obtained directly. By inserting Einc
i into Eq. (6) and solving the system of 3N

linear equations numerically, the external electric field amplitude, Eext
i , at each particle

position ri, can be calculated.
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Given Equations

• Dipole Moment:
Pi = ϵ0ϵmαi(ω)Eext

i (5.57)

• Total External Electric Field:

Eext
i = Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

Gij · Pj (5.58)

• Green’s Tensor:

G(ri, rj) =
1

4π

(
1 +

∇∇
k2

)
eik|ri−rj|

|ri − rj|
(5.59)

• Polarizability:

αi(ω) =
α0(ω)

1 − (2/3)ik3α0(ω)
(5.68)

α0(ω) = 4πa3 ϵ(ω)− ϵm

ϵ(ω) + 2ϵm
(5.60)

Substitution and Formulation

Substitute Pj = ϵ0ϵmαj(ω)Eext
j into the expression for the external electric field:

Eext
i = Einc

i +
k2

0
ϵ0

N

∑
j ̸=i

Gij · (ϵ0ϵmαj(ω)Eext
j ) (5.61)

Simplify the expression:

Eext
i = Einc

i + k2
0ϵm

N

∑
j ̸=i

Gij · αj(ω)Eext
j (5.62)

Formulate the Linear System of Equations:

For the entire set of nanoparticles, we need to solve for the external electric field am-
plitudes Eext

i at each particle position ri. This forms a system of linear equations:

Einc
i =

N

∑
j=1

Aij · Eext
j (5.63)

where Aij is defined as:

Aij =

{
I if i = j
−k2

0ϵmαi(ω)Gij if i ̸= j
(5.64)

Matrix Formulation:

In matrix form, the system of equations can be written as:

Einc = A · Eext (5.65)
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Here:
- Einc is a vector of incident electric fields.
- A is a matrix with elements Aij.
- Eext is a vector of external electric fields at the nanoparticles.

Solving the System:

By solving this system of 3N linear equations (since each E is a 3-dimensional vector),
we can determine the external electric field amplitudes Eext

i at each particle position ri.

Final Equations

Equation (5.75):

Einc
i =

N

∑
j=1

Aij · Eext
j (5.66)

Equation (5.76):

Aij =

{
I if i = j
−k2

0ϵmαiGij if i ̸= j
(5.67)

By solving the matrix equation Einc = A · Eext, the external electric field Eext
i at each

particle position ri can be calculated. This involves inverting the matrix A and solving
for Eext.

5.3.4 Value of External Electric Field

When NPs are illuminated by the incident monochromatic electric field,

Ein
i =

N

∑
j=1

AijEext
j (5.68)

Here, Aii = I (I is a unitary 3 × 3 matrix) and Aij is the Interaction Matrix:

Aij = −k2
0ϵ0ϵmαiGij, (j ̸= i) (5.69)

Eext
i =

N

∑
j=1

AijEext
j +

k2
0

ϵ0
∑
j ̸=i

GijPj (5.70)

Final equation is

Eext
i =

N

∑
j=1

(−k2
0ϵmαi(ω)Gij)Eext

j +
k2

0
ϵ0

∑
j ̸=i

Gij(k2
0ϵmαj(ω)Eext

j ) (5.71)

For a set of N nanoparticles that their positions are defined by ri, the N values of Einc
i

can be obtained directly. Solving the system of 3N linear equations numerically (by
MATLAB), the external electric field amplitude, Eext

i , at each particle position ri, can
be calculated.
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Chapter 6

Spatial Distribution of Temperature
in Steady State Regime

Calculation of the Thermal Field

We now explain how the steady-state temperature distribution can be obtained from
the knowledge of the electric field distribution Eext

i [50]calculated in the previous chap-
ter. From now on, the temperature T has to be understood as a temperature increase
above the ambient temperature. In a steady-state regime, the temperature profile T(r)
throughout the system is the solution of the Poisson equation

κ∇2T(r) = −q(r), (6.1)

where κ is the thermal conductivity of the medium at r. The thermal conductivities
of all the media are supposed homogeneous and isotropic. q(r) is the heat source
density. Due to light absorption, the particles are the sources of heat of the problem.
For a single particle, the light absorption cross section reads

σabs =
k

4πϵ0
ℑ(α)− 2

3
k4

(4πϵ0)2 |α|
2. (6.2)

The second term is usually negligible for small particles. The heat power Qi delivered
by a particle i is

Qi = σabs In
cϵ0

2

∣∣Eext
i
∣∣2 (6.3)

where n is the optical index of the surrounding medium.

Let us consider first the case of a single isolated spherical nanoparticle (N = 1) at
the position ri in a homogeneous medium of the thermal conductivity κ. Since no
heat source is present in the medium surrounding the nanoparticle, the temperature
distribution outside the nanoparticle can be determined from the Laplace equation

∇2T(r) = 0. (6.4)

The problem can be solved analytically and easily in spherical coordinates and yields

T(r) = T0
a

|r − ri|
for |r − ri| ≥ a. (6.5)

In the following, we will suppose that the thermal conductivity of the nanoparticle is
much higher than the one of the surrounding medium. This approximation is usually
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very good for metallic nanoparticles in a dielectric environment such as water or glass.
In this case, the temperature can be considered as uniform inside the nanoparticle

T(r) = T0 for |r − ri| ≤ a. (6.6)

The particle temperature T0 can be retrieved by writing an energy conservation equa-
tion. The power going through the particle interface must equal the heat power Q
delivered by the particle

Q = −
∫

S
κ∇T(r) · dS, (6.7)

which naturally yields

T0 =
Q

4πκa
. (6.8)

and
T(r) =

Q
4πκ|r − ri|

for |r − ri| ≥ a. (6.9)

Note that formula (16) involves the scalar Green’s function G(r, ri) (that vanishes at
the infinity) associated to the Poisson Eq. (8) and a Dirac source distribution δ(r − ri)
in an infinite homogeneous medium

G(r, ri) =
1

4πκ|r − ri|
. (6.10)

Interestingly, it has been recently reported that the thermal energy transfer between a
plasmonic nanoparticle and a surrounding liquid can be affected by a molecular coat-
ing on the nanoparticle surface since acting as a surface thermal resistance. This effect
is not taken into account in our method, but we show in Appendix A that, while the
nanoparticle inner temperature can be indeed modified, a thermal surface resistance
does not change the temperature profile in the surrounding medium, which is what
usually matters while investigating thermodinduced phenomena.
Another effect that could modify and distort the calculated temperature distribution
around plasmonic structures is a possible thermoinduced fluid convection, similar to
the Marangoni effectmarangoni. We show in Appendix B that any thermoinduced
fluid motion has no influence regarding the temperature profile for usual temperature
increase and length scales in plasmonics.
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FIGURE 6.1: (Color online) The temperature distribution originating from a
heat source q facing a surface can be derived by the image method usually

used in electrostatics.

Let us consider now the presence of a planar interface separating two infinite media
1 and 2 [Fig. 2]. The first infinite medium has a thermal conductivity κ1 and contains
the particle and the second one has a thermal conductivity κ2 and can stand for a glass
substrate. We consider an arbitrary distance d between the center of the spheric par-
ticle and the interface. The problem consisting in calculating the temperature profile
is formally equivalent to the electrostatic problem consisting in calculating the electric
potential distribution created by a charge facing an interface between two dielectric
media. This problem can be solved using the image methodimage. In this analogy,
the temperature is equivalent to the electric potential and the thermal conductivity is
equivalent to the electric permittivity. The thermal Green’s function now reads

G(r, ri) =
1

4πκ1

[
1
R
+

κ2 − κ1

κ2 + κ1

1
R′

]
for z ≥ 0, (6.11)

G(r, ri) =
1

4πκ2R

[
2κ2

κ2 + κ1

]
for z ≤ 0, (6.12)

where
R =

√
(x − xi)2 + (y − yi)2 + (z − d)2, (6.13)

R′ =
√
(x − xi)2 + (y − yi)2 + (z + d)2. (6.14)

Then, the temperature profile is simply given by

T(r) = G(r, ri)Q. (6.15)

Let us consider now the case of an assembly of metallic particles under illumination.
At any position r of the medium, the temperature T(r) is given by a linear superposi-
tion

T(r) =
N

∑
j=1

G(r, rj)Qj, (6.16)

where G(r, rj) is the Green’s function associated to the system that is given by formula
(17) if the particles are in a homogeneous medium or by formula (18) if there is an
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interface separating two different media.

Then, the inner temperature Ti of each particle can be retrieved this way

Ti =
N

∑
j=1

G(ri, rj)Qj, (6.17)

where G(ri, ri) = 1/(4πκa) accordingly to Eq. (6.11).

Thermal Green’s function method

6.1 Power Absorbed by a Nanoparticle

6.1.1 Heat Power Absorbed by the i-th Nanoparticle

• Expression for Heat Power Qi:[47]
The heat power Qi absorbed by the i-th nanoparticle is given by:

Qi =
1
2

σabsncϵ0|Eext
i |2 (6.18)

- σabs is the light absorption cross section of the particle.
- n =

√
ϵm is the refractive index of the surrounding medium.

- c is the speed of light in vacuum.
- ϵ0 is the permittivity of free space.
- Eext

i is the external electric field at the i-th nanoparticle.
• Light Absorption Cross Section σabs: The light absorption cross section σabs can

be obtained from the polarizability α(ω):

σabs = kℑ(α)− k4

6π
|α|2 (6.19)

- k is the wave number in the medium.
- ℑ(α) represents the imaginary part of the polarizability α.

6.1.2 Heat Power Absorption:

The expression for the heat power Qi absorbed by the i-th nanoparticle due to the
external electric field Eext

i is derived from the power absorbed by a dipole in an elec-
tromagnetic field. For a dipole moment Pi, the absorbed power is given by:

Qi =
1
2
ℜ(Pi · Eext∗

i ) (6.20)

Using the relationship Pi = ϵ0ϵmαiEext
i , we get:

Qi =
1
2
ℜ(ϵ0ϵmαiEext

i · Eext∗
i ) (6.21)

Considering that the time-averaged power absorbed is:

Qi =
1
2

σabsncϵ0|Eext
i |2 (6.22)
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6.1.3 Absorption Cross Section:

The absorption cross section σabs can be derived from the polarizability α. The power
absorbed by a dipole can also be written as:

Qi =
1
2

ωℑ(Pi · Eext∗
i ) (6.23)

Substituting Pi = ϵ0ϵmαiEext
i into the power absorbed expression:

Qi =
1
2

ωϵ0ϵmℑ(αi|Eext
i |2) (6.24)

The absorption cross section in terms of α(ω) is:

σabs = kℑ(α)− k4

6π
|α|2 (6.25)

Here, the first term kℑ(α) represents the absorption due to the imaginary part of the
polarizability, and the second term k4

6π |α|2 accounts for radiative losses.

Final Equations

Equation (6.26):

Qi =
1
2

σabsncϵ0|Eext
i |2 (6.26)

Equation (6.27):

σabs = kℑ(α)− k4

6π
|α|2 (6.27)

These equations describe the power absorbed by a nanoparticle due to light absorption
and the absorption cross section in terms of the polarizability of the nanoparticle.

6.2 Poisson’s Equation in a steady-state regime.

Poisson’s Equation for Temperature Profile

• Poisson’s Equation: In a steady-state regime, the temperature profile T(r) through-
out the system is the solution of Poisson’s equation:

∇ · (κ(r)∇T(r)) = −q(r) (6.28)

Here: - κ(r) is the thermal conductivity of the medium at position r.
- q(r) is the heat source density at position r.

• Heat Source Density: The absorbed power Qi of the i-th nanoparticle and the
heat source density q(r) are related by the integral over the volume Vi of the
nanoparticle:

Qi =
∫

Vi

q(r′) dr′ (6.29)

• Assumption of Uniform Temperature: It is assumed that the thermal conductiv-
ity of the nanoparticle is much higher than that of the surrounding medium. This
means the temperature within the nanoparticle can be considered uniform.
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Relationship Between Absorbed Power and Heat Source Density

• In a steady-state regime, the temperature distribution T(r) in a medium with
spatially varying thermal conductivity κ(r) due to a heat source density q(r) is
governed by: [80]

∇ · (κ(r)∇T(r)) = −q(r) (6.30)

This equation describes how heat diffuses through a medium and how it is af-
fected by internal heat sources.

• Heat Source Density q(r): The heat power Qi absorbed by a nanoparticle is
distributed over its volume, leading to a heat source density q(r). For the i-th
nanoparticle:

Qi =
∫

Vi

q(r′) dr′ (6.31)

This relationship shows that the total power absorbed by the nanoparticle is the
integral of the heat source density over the volume of the nanoparticle.

• Uniform Temperature Approximation: For metallic nanoparticles in a dielectric
environment (e.g., water or glass), the thermal conductivity of the nanoparticle
is much higher than that of the surrounding medium. Hence, the temperature
within the nanoparticle can be approximated as uniform. This simplifies the
problem, as the temperature gradient inside the nanoparticle is negligible, and
the heat source density can be considered constant over the nanoparticle volume.

• Combining the Equations: Using the fact that the temperature T is uniform in-
side the nanoparticle, we can rewrite the integral in terms of the volume Vi and
the uniform heat source density q(r):

Qi = qiVi (6.32)

Here, qi is the average heat source density within the nanoparticle.

• Poisson’s Equation for Temperature Profile (Equation 10):

∇ · (κ(r)∇T(r)) = −q(r) (6.34)

• Relationship Between Absorbed Power and Heat Source Density (Equation
11):

Qi =
∫

Vi

q(r′) dr′ (6.35)

This describes how the temperature profile in the medium is affected by the ab-
sorbed power of the nanoparticles and how the absorbed power is related to the
heat source density within the nanoparticle’s volume.

6.2.1 Poisson’s Equation for Temperature Profile

(a) Poisson’s Equation: From Equation (10), in a homogeneous medium with ther-
mal conductivity κm, the temperature profile T(r) is given by:

κm∇2T(r) = −q(r) (6.36)

(b) Point Sources of Heat: If we consider nanoparticles as point sources of heat, the
heat source density q(r) can be represented using Dirac delta functions δ(r − rj)
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centered at the positions of the nanoparticles. Thus, for N nanoparticles:

q(r) =
N

∑
j=1

Qjδ(r − rj) (6.37)

Substituting this into the Poisson’s equation, we get:

κm∇2T(r) = −
N

∑
j=1

Qjδ(r − rj) (6.38)

(c) Simplifying Poisson’s Equation: Rearranging, we obtain:

∇2T(r) = − 1
κm

N

∑
j=1

Qjδ(r − rj) (6.39)

Solving Poisson’s Equation using Green’s Function

(d) Green’s Function Solution: The solution to the Poisson equation can be expressed
using the Green’s function G(r; rj), which satisfies:

∇2G(r; rj) = −δ(r − rj) (6.40)

For a homogeneous medium, the Green’s function is given by:

G(r; rj) =
1

4π|r − rj|
(6.41)

(e) Temperature Increase: The temperature increase at position r due to a heat source
at rj is:

∆T(r) =
Qj

4πκm|r − rj|
(6.42)

Summing over all heat sources (nanoparticles), the total temperature increase is:

∆T(r) =
N

∑
j=1

Qj

4πκm|r − rj|
(6.43)

i. Temperature Distribution Outside Nanoparticles:

∆T(r) =
N

∑
j=1

G(r; rj)Qj (6.44)

where:
G(r; rj) =

1
4πκm|r − rj|

(6.45)

ii. Temperature Inside Nanoparticles: Considering the temperature inside the
i-th nanoparticle at ri:

∆Ti =
N

∑
j=1

G(ri; rj)Qj (6.46)
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where:
G(ri; ri) =

1
4πκma

(6.47)

(f) Explanation and Analysis

i. Thermal Green’s Function G(r; rj): The Green’s function describes the tem-
perature response at r due to a unit heat source at rj.

G(r; rj) =
1

4πκm|r − rj|
(6.48)

ii. Temperature Profile: The temperature profile outside the nanoparticles is
obtained by summing the contributions from all heat sources, each weighted
by their respective Green’s function. Inside a nanoparticle, the temperature
is considered uniform and is influenced by the heat sources both within and
outside it.

iii. Inverse Proportional Dependence: The inverse proportional dependence of
G(r; rj) on |r − rj| indicates that the temperature increase is more significant
closer to the heat source and decreases with distance.

In summary, these steps outline how the Poisson equation for temperature dis-
tribution in a medium with point heat sources is solved using Green’s functions,
leading to the expressions for temperature increase both inside and outside the
nanoparticles.

6.3 Thermal Accumulation Effect on steady state regime

The thermal accumulation effect [51], [76] concerns the thermal diffusion process in the
nanoparticle ensemble. The temperature increase ∆T experienced by the ith nanopar-
ticle is the sum of the temperature increase due to its own heat generation ∆TS and
the temperature increase due to the heat generated by the other N − 1 nanoparticles,
∆Text.

• Total Temperature Increase at the ith Nanoparticle:
The temperature increase ∆T(ri) at the position of the ith nanoparticle due to all
the heat sources is:

∆T(ri) =
N

∑
j=1

Gt(ri, rj)Qj (6.49)

• Contribution from Own Heat Generation and External Sources:
The total temperature increase ∆T(ri) at the ith nanoparticle is split into two con-
tributions:

– ∆TS: Temperature increase due to its own heat generation.
– ∆Text: Temperature increase due to the heat generated by the other N − 1

nanoparticles.

Then,
∆T(ri) = ∆TS + ∆Text (6.50)

• Own Heat Generation Contribution (∆TS):
The temperature increase at ri due to its own heat generation is:

∆TS = Gt(ri, ri)Qi (6.51)
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• Heat Generation from Other Nanoparticles (∆Text): The temperature increase at
ri due to the heat generated by the other nanoparticles is:

∆Text =
N

∑
j ̸=i

Gt(ri, rj)Qj (6.52)

• Final Expression:

∆T(ri) = Gt(ri, ri)Qi +
N

∑
j ̸=i

Gt(ri, rj)Qj =
Qi

4πκma
+ ∑

j ̸=i

Qj

4πκm|ri − rj|
(24)

∆T(ri) = ∆TS + ∆Text (6.53)

The thermal accumulation effect corresponds to the second term at the right hand
in Eq. (24). When the thermal accumulation effect is negligible, the second term
at the right hand in Eq. (24) is negligible. Each nanoparticle in the nanoparticle
ensemble can be treated as an isolated hot spot.

∆T(ri) = ∆TS + ∆Text (6.54)

6.3.1 Find the value of ∆Text:

To combine the three equations into one, we need to express the temperature increase
∆Text in terms of the absorbed power Qi and the absorption cross section σabs.

Here are the equations provided:

• Heat power absorbed by the i-th nanoparticle:

Qi =
1
2

σabsncϵ0|Eext
i |2 (6.55)

• Absorption cross section:

σabs = kℑ(α)− k4

6π
|α|2 (6.56)

• Temperature increase due to external sources:

∆Text =
N

∑
j ̸=i

Gt(ri, rj)Qj (6.57)

We will substitute the expression for Qi into the equation for ∆Text.

Express Qi using σabs:

Qi =
1
2

(
kℑ(α)− k4

6π
|α|2

)
ncϵ0|Eext

i |2 (6.58)

Substitute Qj into ∆Text:

∆Text =
N

∑
j ̸=i

Gt(ri, rj)

[
1
2

(
kℑ(α)− k4

6π
|α|2

)
ncϵ0|Eext

j |2
]

(6.59)
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Final Combined Equation Combining all these, we get:

∆Text =
N

∑
j ̸=i

Gt(ri, rj)

[
1
2

(
kℑ(α)− k4

6π
|α|2

)
ncϵ0|Eext

j |2
]

(6.60)

This single equation encapsulates the relationship between the temperature in-
crease ∆Text, the absorbed power Qj, and the absorption cross section σabs through
the Green’s function Gt and the external electric field Eext

j .
To combine the equations and find the final expression for ∆Text, we’ll incorporate
the given expression for Eext

i into the already combined equation.

• Temperature increase due to external sources:

∆Text =
N

∑
j ̸=i

Gt(ri, rj)Qj (6.61)

• External electric field:

Eext
i =

N

∑
j=1

(
−k2

0ϵmαi(ω)GijEext
j + ∑

j ̸=i
Gij(k2

0ϵmαj(ω)Eext
j )

)
(6. 62)

• Express Qi using σabs:

Qi =
1
2

(
kℑ(α)− k4

6π
|α|2

)
ncϵ0|Eext

i |2 (6.63)

• Substitute Eext
i into the expression for Qi: Substitute the expression for Eext

i into
the Qi equation:

Eext
i =

N

∑
j=1

(
−k2

0ϵmαi(ω)GijEext
j + ∑

j ̸=i
Gij(k2

0ϵmαj(ω)Eext
j )

)
(6.64)

• Final Combined Expression
Combining everything together:

∆Text =
N

∑
j ̸=i

Gt(ri, rj)

[
1
2

(
kℑ(α)− k4

6π
|α|2

)
ncϵ0|Eext

j |2
]

(6.65)

This expression captures the relationship between the temperature increase ∆Text, the
absorbed power Qj, the absorption cross section σabs, the external electric field Eext

i ,
and the Green’s function Gt.
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Chapter 7

Experimental Methods and Results

7.1 Experimental Data

In this thesis work, We explored the influence of plasmonic coupling on the thermal
properties of a randomly distributed collection of silver nanoparticles. The tempera-
ture rise profiles for these illuminated nanoparticles were calculated using the discrete
dipole approximation method and the thermal Green’s function. The findings indicate
that plasmonic coupling with neighboring nanoparticles and thermal accumulation
lead to a photothermal response in a nanoparticle assembly that differs from that of
an isolated nanoparticle. The individual impacts of plasmonic coupling and thermal
accumulation on the temperature increase have been qualitatively determined.
Building on the theoretical framework outlined in the preceding section, we devel-
oped a MATLAB program capable of calculating the spatial temperature distribution
in a system of N identical spherical nanoparticles dispersed randomly within a ho-
mogeneous medium. This software first calculates the external electric field Eext

i expe-
rienced by each nanoparticle using the discrete dipole approximation (Eq. 5.71) and
determines the heat generation Qi from Eq. 6.58. Subsequently, using the thermal
Green’s function method (Eqs. (6.44) and (6.46)), it evaluates the spatial distribution
of the temperature rise both inside and outside the nanoparticles. The computational
time required to process the temperature increase for N = 1000 nanoparticles on an
Intel® Core™ i5-4150 CPU with 8.00 GB RAM is 105.51 seconds. Additionally, the
time to compute the temperature rise in a two-dimensional area of the surrounding
medium on a 1500 × 1500 grid, with a resolution of ∆x = ∆y (or ∆z) = 0.5 nm, is 323.21
seconds.

TABLE 7.1: Experimental Data

Parameter Value

No. of Nanoparticles (N) 1000
Diameter of NPs 10 nm
Radius of Spherical Regiona (R) 250 nm
Incident Light I0 I0 = 0.5mW/µm2

Thermal conductivity κm 0.6Wm1K1
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7.2 Experimental Methods

7.2.1 Photothermal behavior of a single nanoparticle

By setting N = 1 in our simulation code, the temperature increase of a single NP can
be obtained. figure: 7.1, displays the calculated temperature increase versus free space
wavelength of incident light for a single NP.

As it can be seen in the figure, the maximum temperature increase, ∆Tmax = 2.7 K,
occurs at the wavelength of λsp = 380 nm, which corresponds to plasmonic resonance
wavelength of silver NP in water [22] . For wavelengths far from plasmonic resonance,
the temperature increase is insignificant.

FIGURE 7.1: Temperature increase versus incident light wavelength, for a sin-
gle silver nanoparticle in water. The diameter of NP is 10 nm and the intensity

of incident light is 0.5 mW/µm2 . [81]

7.2.2 Photothermal behavior of a random distribution of nanoparticles

The spatial profile of temperature increase for an assembly of N = 1000, non-overlapping
nanoparticles which randomly distributed inside a spherical region in water was cal-
culated. The random distribution that we have used in our simulation is a uniform
random distribution generated by MATLAB® software. The wavelength of the inci-
dent light was the plasmonic resonance wavelength of single NP.
Nanoparticles exhibit intriguing properties when exposed to light, especially in the
context of localized heating. Here, we investigate the photothermal behavior of a sys-
tem comprising 1000 NPs randomly positioned within a spherical volume filled with
water. Our simulation employs a uniform random distribution to ensure that the NPs
do not overlap, allowing us to study their individual and collective responses.
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FIGURE 7.2: Randomly Distributed 1000 Nanoparticles in 3D Region [81]

When incident light interacts with an NP, energy is absorbed, leading to electron ex-
citation. This absorbed energy subsequently dissipates as heat, raising the NP’s tem-
perature. The spatial distribution of temperature within the NP assembly depends on
several factors. Our experimental setup is as follows:

• Radius of the Spherical Region: R = 250 nm

• Simulation Software: MATLAB and Python

• Device Configuration: Intel Core i5 and 16 GB RAM

7.3 Experimental Outcomes:

7.3.1 Plasmonic Coupling Between NPs

FIGURE 7.3: Schematic drawing of the structure under study, where silver
nanoparticles have been distributed randomly inside a spherical region in wa-

ter and a x̂ polarized light illuminates them. [81]
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The random distribution that we have used in our simulation is a uniform random
distribution generated by MATLAB® software. The wavelength of the incident light
was the plasmonic resonance wavelength of a single NP.

The spatial profile of temperature increase for an assembly of N = 1000, non-overlapping
nanoparticles which randomly distributed inside a spherical region in water (the struc-
ture depicted in Fig. 7.3) was calculated.

In Fig. 7.4, we have presented the 2D map of calculated temperature increase on the
surfaces of z = 0 and y = 0 (cross section of the region in which NPs have been
distributed with the x-y plane and x-z plane, respectively).

FIGURE 7.4: The 2D maps of spatial profiles of temperature increase on the
surfaces of z = 0(a) and y = 0(b) for an assembly of 1000 interacting silver
nanoparticles. The diameter of NPs is 10 nm and the wavelength and intensity

of incident light are λp = 380 nm and I0 = 0.5 mW/µm2, respectively. [81]
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According to the obtained results, different NPs, depending on their location in the
distribution, have different temperature increases ranging from 42 K to 82.6 K. These
temperatures are higher than the temperature of a single isolated NP (Fig. 6.1).

This difference is due to two effects: thermal superposition effects (where each NP
experiences the diffused heat flux of nearby NPs, governed by Eq. (15)) and the effect
of plasmonic coupling between NPs (the second term on the right-hand side of Eq.
(2)).

In order to check the generality of the results that have been obtained for one random
distribution, we repeated our calculation for 10 different random distributions. In
Table 1, the mean value of temperature increase of NPs and its standard deviation for
each random distribution have been presented. The grand mean (mean of these 10
mean values) of temperature increase and its grand standard deviation are 64.59 (K)
and 0.52 (K), respectively. So we can say that changing random distribution does not
change the results significantly.

TABLE 7.2: The mean values of temperature increase of NPs and standard
deviations for 10 different random distributions.

No. 1 2 3 4 5 6 7 8 9 10

δTmean (K) 64.26 65.47 63.90 63.97 65.12 64.16 64.88 64.88 64.84 64.44
Std (K) 9.66 9.97 9.81 9.60 9.84 9.36 9.89 9.89 9.63 9.17

7.3.2 Without Plasmonic Coupling

To investigate the contribution of the plasmonic coupling effect, we recalculated the
temperature profile (for the same random distribution of NPs as in Fig. 7.4) under
the condition where plasmonic coupling was assumed to be ignored. By ignoring the
second term on the right-hand side of Eq. (6.54), we assumed that all NPs experienced
only the electric field of incident light. It means the ith NP of the assembly only absorbs
the heat power of Qi = σabs I0, and NPs can only interact via thermal superposition
effect. The result of this calculation has been presented in Fig. 7.5.

FIGURE 7.5: The 2D map of spatial profile of temperature increase for the case
which plasmonic coupling between NPs has assumed to be ignored. [81]
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FIGURE 7.6: The 2D map of spatial profile of temperature increase for the case
which plasmonic coupling between NPs has assumed to be ignored. [81]

The results show that in this condition, the temperature increase of NPs is significantly
higher in comparison with the case where NPs are coupled.

It should be noted that Eq. (6.54) (for the case with plasmonic coupling) includes the
effect of light attenuation. As we can see from Fig. 7.5(b), due to this effect, there is
an overall temperature decrease in the direction of light incidence (ẑ). In the case of
uncoupled NPs (Fig.7.5(b)), this attenuation effect is absent. Ignoring this light atten-
uation has a consequence: in the case of without plasmonic coupling, the temperature
we calculate for NPs in the lower part of the sphere (farther from the light source) is
higher than their real values because these NPs should receive the attenuated light in-
tensity. As can be seen from Fig. 7.4(b), in the case of coupled NPs, light attenuation
caused a temperature difference in the order of 10 K in the z direction. By ignoring the
light attenuation, an inaccuracy in the order of 10 K occurs in calculating the tempera-
ture for those NPs which are in the lower part of the spherical region.

On the other hand, NPs on the most upper part of the sphere (closer to the light source)
receive almost the full intensity of light. So we can say that for these NPs, the calcu-
lated temperatures (in the case of without plasmonic coupling) are close to their real
values. If we compare the temperature of these NPs in both cases (Figs.7.4(b) and
7.5(b)), we can see that decoupling leads to a temperature increase in the order of
100 K. This temperature increase, which occurs due to the decoupling of NPs, is one
order of magnitude higher than the inaccuracy that may occur due to ignoring light
attenuation.

7.3.3 Plasmonic Coupling and Thermal Superposition

To investigate the combined effects of plasmonic coupling and plasmonic superposi-
tion, we have recalculated the temperature profile (for the same random distribution
of NPs as in Fig. 7.4) considering both phenomena. By including the second term on
the right-hand side of Eq. (6.54), we accounted for the interactions between NPs due
to both plasmonic coupling and the electric field of the incident light. This means each
NP in the assembly not only absorbs heat power Qi = σabs Io but also interacts via
plasmonic superposition and coupling effects.
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FIGURE 7.7: The 2D maps of spatial profiles of temperature increase on the
surfaces of Z = 0, for an assembly of 1000 interacting silver nanoparticles.
Which shows Plasmonic Coupling with Thermal Superposition effetcs.[81]

FIGURE 7.8: The 2D maps of spatial profiles of temperature increase on the
surfaces of X = 0, for an assembly of 1000 interacting silver nanoparticles.
Which shows Plasmonic Coupling with Thermal Superposition effetcs.[81]
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The results show that under these conditions, the temperature increase of NPs is sig-
nificantly affected by the combined effects of plasmonic coupling and superposition,
compared to the case where only plasmonic coupling was considered.

It should be noted that Eq. (6.54) (for the case with plasmonic coupling and superpo-
sition) includes the effect of light attenuation. As we can see from Fig. 3(b), due to this
effect, there is an overall temperature decrease in the direction of light incidence (−ẑ).
In the case of considering both plasmonic coupling and superposition (Fig. 7.8), the
attenuation effect is accurately represented. This accurate representation is because
when we include the second term on the right-hand side of Eq. (6.54), we also account
for the attenuation of light due to absorption by individual NPs and their mutual in-
teractions.

Incorporating this light attenuation ensures that the calculated temperature for NPs in
the lower part of the sphere (farther from the light source) reflects their true values, as
these NPs receive attenuated light intensity. As observed from Fig. 3(b), in the case of
coupled NPs, light attenuation causes a temperature difference in the order of 10 K in
the z direction. Thus, including this attenuation leads to a more accurate temperature
calculation.

NPs in the upper part of the sphere (closer to the light source) receive nearly the full
intensity of light. Therefore, for these NPs, the calculated temperatures (considering
plasmonic coupling and superposition) are close to their real values. Comparing the
temperature of these NPs in both cases (Figs.7.5 and 7.7, we see that the combined
effects of coupling and superposition result in a temperature increase of approximately
100 K.This temperature increase which occurs due to the decoupling of NPs is one
order of magnitude higher than the inaccuracy which may occur due to ignoring light
attenuation.

7.3.4 Thermal Accumulation Effect

To investigate the contribution of the thermal accumulation effect, we have recalcu-
lated the temperature profile (for the same random distribution of NPs as in Fig. 3)
under the condition where thermal accumulation is considered.

FIGURE 7.9: The 2D map of spatial profile of temperature increase for the case
of thermal accumulation
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By including the second term on the right-hand side of Eq. (2), we accounted for the
interactions between NPs due to the thermal accumulation effect. This means each
NP in the assembly not only absorbs heat power Qi = σabs Io but also interacts via the
thermal accumulation effect.

The results show that under these conditions, the temperature increase of NPs is sig-
nificantly affected by the thermal accumulation effect compared to the case where this
effect was ignored.

From the thermal side, light absorption by each nanoparticle in the ensemble heated
the whole nanoparticle ensemble cumulatively, namely accumulative (collective) heat-
ing effect.
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Chapter 8

Result Analysis and Conclusion

8.1 Experimental Outcomes:

As our goal was calculate the the effect of plasmonic coupling on the photothermal
behavior of random NPs is that will plasmonic coupling work in favor of the applica-
tion, because of the field enhancement? Or will it work against it, because it shifts the
plasmonic resonance wavelength? Based on theoretical model presented in the previ-
ous section, a computer code was written in MATLAB® software which is capable to
compute the spatial distribution of temperature in a system of N identical spherical
NPs distributed randomly in a homogeneous medium. This code first calculates Ei

ext

experienced by each nanoparticle by means of DDA method (Eq. (6)) and obtains the
values of Qi from Eq. (8). Next, by means of thermal Green’s function method (Eqs.
(13) and (15)), it computes the spatial distribution of temperature increase outside and
inside of the nanoparticles

Temperature Distribution among NPs :

The histogram diagrams (fig 8.2) of temperature increase distribution among NPs for
both cases related to Figures from 8.2 have been shown. To explain the obtained higher
temperature in the case of non interacting NPs, we can say that when the plasmonic
coupling is ignored, all of the NPs behave as single NP which the illuminated wave-
length coincides with their plasmonic resonance wavelength.
So, every NP absorbs the maximum heat power and heats up to the maximum tem-
perature increase (2.7 K) individually. In addition, each NP picks up extra temperature
from the diffused heat flux of nearby particles due to the thermal superposition. In the
case of coupled NPs, each groups of nearby NPs in distribution form a cluster and each
cluster has plasmonic resonance wavelength which is different from the wavelength
of incident light (which has been considered as wavelength of plasmonic resonance of
single NP). Hence, in this situation, NPs absorb lower heat power in comparison with
the resonant non-interacting NPs.
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FIGURE 8.1: Temperature increase due to plasmonic coupling and thermal
effects each nanoparticle

In Fig. 9.2, the absorption spectra of the system of coupled NPs have been compared
with the one without plasmonic coupling. The total absorbed power of the system
of NPs assembly is the sum of absorbed power by all NPs (Qt = ∑ Qi). Where, for
the case with plasmonic coupling, the absorbed power, Qi, by each NP is calculated
by using Eq. (8). And when the plasmonic coupling between NPs is assumed to be
ignored, all of NPs absorb the same power of Qi = σabs I0.

FIGURE 8.2: Temperature increase due to plasmonic coupling and thermal
effects each nanoparticle [81]

As can be seen from this figure, at the single particle resonance wavelength (λsp = 380
nm), plasmonic coupling causes that the hole system of NPs, absorbs less power in
comparison with the case of uncoupled NPs.
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Absorption spectra of the system of NPs:

FIGURE 8.3: Two different cases where in the one case NPs are coupled (solid
line) and in the other case the plasmonic coupling has assumed to be ignored

(dashed line) [81]

On the other hand, for the wavelengths far from single NP plasmonic resonance (espe-
cially around λ = 400 nm), clustering can lead to heat up NPs to higher temperatures
in compression with non-coupled NPs.

In Fig. 7, the histogram diagrams of temperature increase distribution among NPs, for
both cases of coupled and non-coupled NPs, at the wavelength of λ = 400 nm, have
been shown.

Thermal Superposition

According to Fig. 2, the temperature increase of a single NP at the wavelength of
λ = 400 nm, is insignificant (about 0.17 K) and as can be seen from Fig. 7, without
plasmonic coupling, due to thermal superposition, NPs could heat up to temperature
increase ranging from 3.3 K to 5.1 K.

In the real case coupled NPs heat up to higher temperature increase ranging from 9.4
K to 13.5 K. These observed high temperatures are related to NP clusters which their
plasmonic resonance wavelengths are close to wavelength of incident light.

For this case, the absorbed power, Qi, by each NP of the assembly was calculated and
the histogram diagram of absorbed powers has been shown in Fig. 8. If the plasmonic
coupling between NPs be assumed to be ignored, at the wavelength of λ = 400 nm,
all of NPs absorb the same power Q ∼ 0.01µw.

As can be seen from Fig. 8, in the case with plasmonic coupling, there are dimer, trimer
and tetramer NP clusters which absorb high amount of powers in comparison with
the absorbed power by most of NPs in assembly. These are the clusters which their
plasmonic resonance is close to the incident light wavelength. These resonant clusters
by absorbing the high amount of power and diffusing heat to their surroundings raise
the temperature of the whole assembly.

Investigating other cases with different concentrations of NPs approved the generality
of our results. These investigations showed that for higher concentration, the number
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of resonant clusters (for the wavelength far from the plasmonic resonance of a single
NP) is increased.

This can be a consequence of increasing the probability of aggregation of NPs in higher
concentrations.

Final Discussions:

In this part of the study, we hypothesized that increasing the interparticle distances to
gradually decouple the nanoparticles would cause the distributions depicted in Figure
8.3 to converge. To test this, we examined another set of 1000 nanoparticles, keeping
all parameters the same as in the previous setup except for setting the radius R at
300 nm and ensuring that the interparticle distances were no less than 30 nm. The
resulting temperature increase histograms for this modified distribution are presented
in Figure 8.2. Reducing the plasmonic coupling effect between the nanoparticles, the
two distributions start to merge.

TABLE 8.1: Number of Nanoparticles for different temperature changes (∆T)
with and without plasmonic coupling

∆T (K) Number of Nanoparticles (with coupling) Number of Nanoparticles (without coupling)

0-2 160 150
2-4 120 110
4-6 80 70
6-8 40 30
8-10 20 10
10-12 60 50
12-14 40 30
14-16 20 10
16-18 10 5
18-20 5 2
20-22 2 1
22-24 1 0
24-26 0 0
26-28 0 0
28-30 0 0
30-32 0 0
32-34 0 0
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TABLE 8.2: Distribution of absorbed power (Q) among coupled NPs at λ =
420 nm

Q (µW) Number of Nanoparticles

0.0 - 0.05 1000
0.05 - 0.1 30
0.1 - 0.15 20
0.15 - 0.2 10
0.2 - 0.25 0
0.25 - 0.3 0
0.3 - 0.35 20
0.35 - 0.4 40
0.4 - 0.45 30

TABLE 8.3: Temperature Increase Distribution Among Nanoparticles (NPs)

∆T (K) With Plasmonic Coupling Without Plasmonic Coupling

30 - 50 10 0
50 - 70 30 0
70 - 90 60 0
90 - 110 50 0

110 - 130 20 0
130 - 150 0 10
150 - 170 0 40
170 - 190 0 60
190 - 210 0 50
210 - 230 0 30
230 - 250 0 20
250 - 270 0 10

8.2 Conclusion

In this thesis work, we quantitatively assessed the distinct impacts of plasmonic cou-
pling and thermal accumulation on the temperature elevation in a randomly distributed
array of silver nanoparticles when illuminated. Our findings reveal that at wave-
lengths distant from a single nanoparticle’s plasmonic resonance, plasmonic coupling
among neighboring nanoparticles in a cluster can significantly elevate temperatures
beyond what is observed in non-coupled nanoparticles. Conversely, at the plasmonic
resonance wavelength of a single nanoparticle, plasmonic coupling tends to decrease
the temperature rise compared to a group of resonant, non-coupled nanoparticles.
Overall, this study demonstrates that in a random nanoparticle ensemble, while ther-
mal accumulation consistently enhances photothermal applications, the effect of plas-
monic coupling on heating depends on the wavelength of the incident light.
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Chapter 9

Applications

In recent years, thermo-plasmonics found a wide range of applications in nanotech-
nologies especially in biology and medicine such as Photothermal cancer therapy [82]
[83], Drug delivery [84], Nanosurgery[85][86] and Photothermal imaging [87]. Almost
in all the applications, we encounter with a random distribution of many NPs. In the
case of low concentration, where NPs are far enough from each other and the interac-
tion between them can be ignored, the photothermal behavior of the distribution can
be considered as the summation of the response of individual noninteracting NPs [88].

A nano-source of heat is certainly one of the most fundamental tools from which sci-
ence can benefit to investigate some of the most intimate processes in nature. The high
level of heat control at the nanoscale achieved by plasmonic NPs provides scientists
with a powerful tool that has already been exploited in a variety of fields. The aim of
this section is to review some of the most active applications of thermo-plasmonics.
Most of these applications are based on the use of gold NPs [89]. The predominance
of gold over other noble metals is justified by its unique combination of advantages:

• Gold leads to resonances that can be tuned from the visible to the NIR, by ad-
justing the size and the shape of the NPs; it is thus well suited for applications in
biology since tissues are less absorbent in the NIR range;

• Gold offers rich and simple surface chemistry that allows functionalization of
gold NPs with a variety of chemical compounds;

• The oxidation of gold remains very weak; and
• Gold is not cytotoxic [90]–[92].

9.1 Plasmonic photothermal therapy

Photothermal therapy uses photothermal nano-agents to treat disease by local hyper-
thermia [93]–[97]. In the specific case of cancer, the main idea of this emerging ther-
apy is to artificially enhance the optical absorption contrast between cancerous and
healthy tissues. This way, a suitable illumination enables specific photo-damage of
cancer tissues without affecting the healthy surrounding. Among available photother-
mal agents, plasmonic NPs are very good candidates to achieve photo-damage using
moderate laser intensity. To eventually end up with an efficient treatment using gold
NPs, several requirements have to be fulfilled.
First, gold NPs need to be specifically delivered to the cancer cells in order to limit
the heat generation to the malignant tissues and not to the surrounding healthy tis-
sues. Targeting of cancer cells with gold NPs can be either passive or active [95]. The
passive approach exploits the fact that, due to their rapid growth, cancer cells are en-
dowed with vasculatures (up to 2 µm in size) that facilitate NP uptake. Additionally,



94 Chapter 9. Applications

the lymphatic drainage of tumors is reduced compared with healthy tissues, making
it harder for NPs to leave the tumor once they get into it. In the active approach, tar-
geting of cancer cells is achieved by coating the NP surface with antibodies, proteins
or other ligands that have a specific binding affinity with receptors overexpressed at
the membrane of cancer cells.
The second aspect that has to be considered is the wavelength of the incident light
used to heat the NPs. Indeed, light absorption of human tissues is minimum in the
socalled transparency window (between 700 and 900 nm). Working in this region
of the spectrum allows reaching tumors that can be up to several centimeters deep,
along with minimum absorption and thus less heating from the rest of the exposed
tissues that are not targeted with NPs. While light absorption of spherical gold NPs
peaks in the green, LSP resonances can be shifted to the infrared by using nonspher-
ical NPs. This explains why hyperthermia experiments are mainly based on the use
of gold nanoshells [96][98]–[100] (formed by a dielectric core surrounded by a thin
gold layer), gold nanorods [101] or gold nanocages[102], which allow accurate tuning
of LSPs to the NIR spectral region. In somecases, the use of spherical gold NPs can
also be efficient due to agglomeration of NPs that tends to red-shift the NP absorption
spectrum [103]–[105].
In the original work introducing the use of gold NPs for plasmonic photothermal ther-
apy (PPTT), Hirsch and co-workers used human breast carcinoma cells incubated with
gold nanoshells in vitro [106]. The cells were found to have undergone photothermally
induced morbidity upon exposure to NIR light (820 nm, 35W/cm2). Conversely, cells
without nanoshells displayed no loss in viability using the same NIR illumination con-
ditions. Also, exposure to low doses of NIR light (820 nm, 4W/cm2) in solid tumors
treated with metal nanoshells reached average maximum temperature increases capa-
ble of inducing irreversible tissue damage (∆T = 37.4 ± 660C) within 4–6 min. Impor-
tantly, controls treated without nanoshells demonstrated significantly lower average
temperature increase on exposure to NIR light (∆T > 100C). Shortly after [107], the
feasibility of this approach was successfully tested in vivo on a mouse model. Gold
nanoshells coated with polyethylene glycol (PEG) were intravenously injected into
mice. The tumor was then illuminated with a diode laser over sessions of 3 min. Af-
ter 10 days of treatment, complete resorption of the tumor was observed. More than
90 days after the treatment, all treated mice remained healthy and free of tumors. At
about the same time, Pitsillides et al. proposed to use nanosecond-pulsed laser irradi-
ation for more efficient PPTT [108]. This series of experiments was performed in the
visible range using spherical gold NPs. Those authors demonstrated that when using
pulsed laser illumination, the brief but intense temperature increase following a short
laser pulse yields a fast vaporization of a thin layer around the NPs causing more ef-
ficient cancer cell denaturation as compared with CW illumination. The use of gold
nanorods was first proposed by the El-Sayed group a few years later [100].
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FIGURE 9.1: (online color at: www.lpr-journal.org) a) Schematic illustrating
the usual approach in PPTT. First, gold NPs are functionalized with small
molecules or antibodies that specifically target the cancer cells. Then, a NP
solution is directly injected into the tumor location or intravenously through
the tails of nude mice. After a given period of incubation, the tumor is illumi-
nated to heat the NPs and generate hyperthermia. This procedure is repeated

until healing occ

In 2008, Stern et al. carried out NP-based laser ablation on an apparent subcutaneous
tumor around 1 cm in diameter (Fig. 9.1) [109]. In this work, gold NPs were intro-
duce passive targeting via tail vein injection. Measurements were carried out on 46
tumors separated in 6 different groups corresponding to different conditions. Tumor
necrosis or regression of 93% was observed for the group of mice that received 8.5
ml/g body weight, while the tumors of the mice that received a saline solution instead
kept growing despite identical illumination conditions. In this work, the need for NP
accumulation was emphasized. No discernible toxicity attributable to the gold NPs
was identified. Since then, numerous studies have been carried out to push this initial
proposal towards clinical trials [96]. Special attention has been given to investigating
new particle geometries and their specific targeting to cancer cells. In recent years,
the company Nanospectra (www.nanospectra.com) has initiated some clinical tests on
head and neck cancer using gold nanoshells.

9.2 Nano-surgery

Laser surgery, which consists of using laser light to cut tissues, has become a reliable
alternative to the conventional scalpel in fields such as ophthalmology and derma-
tology [110], [111]. It offers bloodless and more accurate cutting along with reduced
risks of infection. At a smaller scale, laser light can be used as a tool to assist transfec-
tion of individual cells by forming a transient pore in the cell membrane that permits
the introduction of either therapeutic agents (proteins, DNA, RNA) or imaging agents
(fluorophores, quantum dots, nanoparticles) through the cell membrane and as a tool
to cut individual neurons [112]. Optical transient poration in cell membranes has been
demonstrated using a variety of illumination conditions, involving different mecha-
nisms depending on the laser–cell interaction [113]. While CW illumination mainly
induces a local heating at the cell membrane, femtosecond pulsed illumination with
high repetition rate induces membrane permeability that is mainly the result of a low-
density plasma originating from the generation of free electrons. Interestingly, this
technique permits the study of one cell at a time. However, it suffers from potential
photo-damage originating from the high laser power that is required. In this context,
the use of plasmonic NPs makes it possible to locally increase the absorption and thus
reduce the intensity requirements. Also, the possibility of controlling heating near few
to single particles is expected to significantly reduce the dimension of the pore. Along
this line, Urban and co-workers have recently proposed the use of a single gold NP,
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trapped at the focus of a CW green laser, to perforate phospholipid membranes (Fig.
9.2) [114]. In their experiment, an 80 nm spherical gold NP was trapped and brought
to a vesicle membrane. By increasing the laser intensity, the particle was heated un-
til it crossed the membrane and penetrated the vesicle. The resulting pore was a few
hundreds of nanometers in size and remained open for several minutes.

FIGURE 9.2: (online color at: www.lpr-journal.org) Illustration of the perfora-
tion of a phospholipid membrane using a trapped single gold NP. a) Schematic
of the experimental setup used for optical injection and imaging [114]. b) Gold
NPs are attached to the membrane of giant unilamellar vesicles prior to injec-
tion. The laser is defocused, resulting in a spot size of 6µm at the focal plane
of the microscope objective. c) A dipalmitoylphosphatidylcholine vesicle be-
fore injection of a gold NP attached to the membrane. d,e) Tracking of the
movement of the gold NP (red trace) shows it is confined to the inside of the
vesicle. f) Often, after a certain time, the NP was observed leaving the vesicle
at the same position at which it was injected. This suggests that the injection
process forms a pore in the gel-phase membrane. (Reprinted with permission

of ACS.)

9.3 Plasmonic photothermal delivery

Another biomedical application in thermo-plasmonics focuses on targeted delivery
of drugs or genes for therapeutic purposes. The therapeutic agents are attached to
gold NPs that act as nano-carriers through the human body. Once at the desired lo-
cation, the active agents can be detached and released by remotely heating the NPs
using laser illumination [115]–[117]. Hence, in this kind of application, plasmonic NPs
have two roles: they act as both nano-carriers and nanosources of heat. This approach
allows unprecedented control of the location, the timing, the duration and the magni-
tude of drug release. Sufficient incident light intensity must be used to release drugs
or nucleotides, but must remain below the intensity threshold causing photothermal
damage of cells and tissues [118]. Plasmonic photothermal delivery (PPTD) has been
demonstrated using various geometries of plasmonic systems, such as nanospheres
[119]–[121], nanorods [122]–[125], nanoshells [126], nanocages [127] and liposomes
[128]–[130], as described below.
In 2005, the Yamada group demonstrated the feasibility of PPTD by using NIR pulsed
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radiation to remotely control gene expression in specific Hela cells [131]. Those au-
thors used gold nanorods functionalized with the gene related to the expression of
GFP. Efficient gene release and expression was evidenced by monitoring the expres-
sion of GFP inside cells. Induced GFP expression was specifically observed in cells that
were locally exposed to NIR radiation. In this work, the gene release was triggered by
a morphological change of the NPs: under illumination, the nanorods melt and turn
into spheres, which markedly reduces the NP interface available for keeping DNA
strands attached. In 2006, the El-Sayed group used femtosecond-pulsed illumination
at λ0=400 nm combined with complexes formed by DNA strands covalently attached
to spherical gold NPs [120]. Since no shape modification is expected in that case, it
was suggested that gold–sulfur bond breaking is not only triggered by local heating
but also by the transfer of hot electrons created within the metal. Another PPTD ap-
proach was proposed for the first time in 2007 by Paasonen et al. [128]. The idea
was to use liposomes that can release their content under pulsed illumination. Gold
NPs were incorporated into the lipid bilayer or the core of the liposomes to generate
the photothermal effect required to induce the phase transition of the phospholipid
membrane and its permeability. This approach can be advantageous as it can poten-
tially make the drug delivery mechanism biologically more compatible. The use of
liposomes or gold nanocages permits the conveyance of the therapeutic agent on the
inside of the nano-carrier, as a cage.
In most of the PPTD experiments, the actual photoactivated process responsible of
the release is not well identified. Recent experiments performed by the Halas group
on gold nanoshells and nanorods aimed at discriminating the respective contribution
of heat and hot electrons to the release mechanism in PPTD. It was shown that these
contributions depend on the geometry of the NPs [126][132]. In 2009, the Halas group
used gold nanoshells and a CW infrared laser to release single-strand DNA. In such an
approach the dehybridization and release of DNA were triggered by the temperature
increase of the medium surrounding the NPs [126]. In 2011, by comparing PPTD us-
ing gold nanorods and nanoshells, the same group came up with the conclusion that
non-thermal mechanisms may play a role in plasmon resonant, light-triggered DNA
release. In 2011, the Lapotko group proposed a novel PPTD approach that takes ad-
vantage of the formation of transient nanobubbles generated by gold NPs heated un-
der pulsed illumination [121][100]. These nanobubbles could briefly open the cellular
membrane and create an inbound transient jet that could inject extracellular molecules
into individual specific cells without damaging them.

9.4 Photothermal imaging

When a metal NP is illuminated, the temperature increase experienced by the sur-
rounding medium induces a local variation of refractive index. In 2002, Boyer et al.
[133] took advantage of this effect to develop an optical microscopy technique aimed
at detecting metal NPs (∼ 10nm) that are normally too small to be detected using
any conventional optical microscopy. The local variation of the refractive index, also
known as the nanolens effect [134], was detected by measuring the phase difference
between two separated beams of an interferometer. One of the two beams propagates
through the heated region while the other one serves as a reference. An improved
signal over noise is achieved by modulating the heating laser using an acousto-optic
modulator.
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This approach originally led to the detection of 10 nm NPs, provided that their as-
sociated temperature increase reached ∼ 15K. In this context, metallic NPs turn into
efficient contrast agents that overcome many drawbacks of conventional fluorescent
markers, such as autofluorescence, blinking, bleaching or fluorescence saturation. In
2003, Cognet and co-workers demonstrated that this technique could have valuable
applications in biology [135]. Those authors managed to visualize single membrane
proteins labeled with 10 nm gold NPs in fixed COS7 cells. Because of the absence of
photobleaching, the proteins can be visualized for arbitrarily long times, offering new
opportunities for efficient protein tracking in three dimensions. This is a great ad-
vantage compared with regular fluorescent markers, which tend to photobleach very
rapidly in tracking experiments. However, the authors pointed out that the high tem-
perature increase required to obtain reasonable signal-tonoise ratio can induce damage
to living biological systems. In 2004, Berciaud and co-workers solved this issue by im-
proving the sensitivity by two orders of magnitude using heterodyne detection [136].
Using this new approach, gold NPs smaller than 5 nm could be detected with an as-
sociated local temperature increase of only 1 K. Such an achievement opened the path
to experiments in living cells: in 2006, the same group reported on the real-time two-
dimensional tracking of membrane protein in living COS7 cells and neurons [137], and
later of mitochondria [138]. In 2010, the Orrit group investigated the detection limit
in photothermal microscopy. Those authors managed to detect a dissipated power of
3 nW from a single gold NP with a signal-to-noise ratio of 8, and an integration time
of 10 ms. This corresponds to a less than 0.1 K surface temperature rise for a 20 nm
diameter gold nanosphere (0.4 K for 5 nm) (Fig. 9.3). Very recently, the same group
managed to push the sensitivity of this method by detecting single dye molecules in-
stead of gold NPs [135].

FIGURE 9.3: (online color at: www.lpr-journal.org) Photothermal imaging of
20 nm gold NPs in glycerol using a heating laser power of a) 9 µW (3 ms
exposure time) and b) 1 µW (10 ms). Dissipated powers and temperature rises
are 24 and 2.6 nW, and 0.7 K and 80 mK, respectively [139]. (Reprinted with

permission of RSC.)

9.5 Photoacoustic imaging

In order to enable the early detection of cancerous lesions in situ, medical imaging
techniques have to combine high resolution, high detection depth and high specificity
to malignant tissues. On the one hand, optical imaging techniques usually provide a
good contrast, but low resolution and penetration depth due to the diffusive nature of
biological tissues. On the other hand, acoustic imaging techniques (like ultrasonogra-
phy) lead to high penetration depth and resolution due to the relatively unhindered
propagation of ultrasonic waves. However, such a full-acoustic approach suffers from
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a low contrast between different tissues with similar acoustic properties. Photoacous-
tic (PA) (or optoacoustic) tomography combines the advantages of light and ultra-
sound to achieve the detection of deep tumors with high resolution ( < 1mm) and
contrast [140], [141]. The basis of PA tomography is the generation of acoustic signals
using short laser pulses. Working with NIR light ensures a maximal light penetration
in tissues. The absorption of a focused pulsed laser generates a rapid and localized
temperature increase ( < 10C). The subsequent thermal-induced expansion of the
tissue triggers the formation and propagation of an acoustic wave (or stress wave)
that can be detected at the surface of the body by using an array of ultrabroad-band
acoustic transducers. Finally, a deconvolution algorithm is used to render a three-
dimensional image of the absorbing tissues. Since hemoglobin usually has orders of
magnitude larger absorption than surrounding tissues, PA imaging is often used to vi-
sualize blood vessels or abnormal angiogenesis (formation of new blood vessels from
existing ones) in advanced tumors. Low acoustic attenuation allows the detection of
tumors 5 to 6 cm deep, typical of breast or prostate cancers. The duration and time of
arrival of the acoustic signal to the ultrasonic detector reveals the size and location of
the target. In early stages of disease, however, angiogenesis is not sufficient to differ-
entiate cancer tissues from healthy ones. The use of plasmonic NPs as efficient photo-
absorbers to enhance PA contrast was first proposed in 2004 by Copland et al. [141].
Those authors demonstrated the concept by performing in vitro experiments on breast
cancer cells embedded in a gelatin phantom designed to mimic breast tissue. Spher-
ical 40 nm gold NPs were bound to the cancer cells via active targeting. In 2007, the
first gold-NP-assisted PA signal in vivo was reported by the same group [142]. In this
work, gold nanorods were used to enhance the photothermal contrast in the infrared
region and were simply injected subcutaneously at a specific region in a mouse. In
2009, Zhang and co-workers conducted passive targeting experiments on living mice
[143]. The authors used PEGylated spherical gold NPs injected via the tail vein and il-
luminated at 532 nm. The accumulation of gold NPs in the tumor location via passive
targeting was evidenced. In the same year, Wang et al. addressed a field of research
different from oncology [144]. They managed to image macrophages in atherosclerotic
plaques. Mouse monocytes– macrophages, which are characterized by a high rate
of non-specific uptake, were incubated with PEGylated NPs overnight. Interestingly,
multiple wavelength illumination was used to discriminate between NPs internalized
by the microphages that accumulated to form clusters from individual NPs that were
not internalized. Recently, alternative NP geometries have demonstrated enhanced
PA contrast. For instance, nanocages led to an enhancement of the PA signal due to
their extraordinarily enhanced absorption crosssection (Fig. 9.4)[145].

In the case of silica-coated gold nanorods, it was suggested that the reduction of the
gold interfacial thermal resistance with the solvent due to the silica coating could con-
tribute to a stronger PA signal [146]. Note that in PA experiments using gold NPs,
the actual origin of the acoustic waves remains unclear. In particular, the possible
occurrence of cavitation and bubble formation has not been clearly evidenced. The
thermodynamics at the vicinity of metallic gold NPs under pulsed illumination is a
very intricate problem that is still under active investigation.
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FIGURE 9.4: (online color at: www.lpr-journal.org) In vivo non-invasive PA
images of B16 melanomas using gold nanocages [145]. Photographs of nude
mice transplanted with B16 melanomas before injection of a) bioconjugated
and e) PEGylated nanocages. PA images of the B16 melanomas after intra-
venous injection with 100 µl of 10 nM b–d) bioconjuated and f–h) PEGylated
nanocages through the tail vein. Color scheme: red, blood vessels; yellow, in-

crease in PA amplitude. (Reprinted with permission of ACS.)

9.6 Plasmon-assisted optofluidics

Accurate manipulation of fluids in integrated micrometric channels, known as mi-
crofluidics, is a fast-growing field that has become a key ingredient in the develop-
ment of future miniaturized analytical devices. There is much current expectation for
incorporating in a microfluidic platform all necessary components and functionali-
ties to achieve a labbon-a-chip capable of performing parallel chemical and biological
analyses. Along this direction, different approaches are considered in order to control
fluid dynamics through elementary operations including fluid routing and mixing.
Among the various strategies, photo-heating is attractive owing to its simplicity, its
being free of any complex microfluidic designs, pumps, valves or electrode pattern-
ing. Two main thermal effects leading to light-induced fluid motion can be potentially
exploited: thermocapillary forces and Marangoni convection. On the one hand, the
thermocapillary force applies at a fluid–gas interface. It results from the dependence
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of the surface tension on the temperature. For instance, Baroud et al. managed to
guide and sort droplets in microfluidics channels using a focused laser beam [147]. On
the other hand, Marangoni convection is characterized by an upward (Archimedes)
fluid convection resulting from a decrease of the mass density of the fluid under heat-
ing.
Once again, using plasmonic nanostructures for this purpose appears as the most nat-
ural means to enlarge the potential of this field of research. In 2005, Farahi et al. pro-
posed enhancing the thermocapillary effect by using a surface plasmon polariton (SPP)
supported by a flat gold film[148] . More precisely, those authors managed to manip-
ulate droplets of silicone oil and glycerol via surface tension driven forces sustained
by surface plasmon de-excitation energy. Along the same lines, Liu and co-workers
proposed an approach in which fluid heating was enhanced by dispersing plasmonic
NPs in the liquid (Fig. 9.4) [149]. In their experiment, the fluid was pulled at velocities
as high as 500 µm/s within a microfluidic channel by displacing the laser beam. This
approach was also successfully used to route fluids at microfluidic junctions.

FIGURE 9.5: (online color at: www.lpr-journal.org) LSP-assisted optofluidic
control in straight microfluidic channels [149]. a) Illustration of the experi-
mental system configuration. b) Optofluidic control in a 40 µm wide channel.
The video prints show that the flow of the fluid containing gold NPs follows
the optical guiding of a 10 mW, 785 nm laser spot at a speed of 50 µm/s (frames

1–5) and stops otherwise (frame 6). (Reprinted with permission of NPG.

Moving a fluid through microscale thermal-induced convection using a gold nanos-
tructure (Marangoni convection) has been investigated experimentally by Garces-Ch
´ avez and ´ co-workers. Those authors demonstrated that Marangoni convection
(combined with thermophoresis) induced by a SPP at a flat gold film can be used to
self-assemble a large number of colloidal microparticles on a substrate [150]. Simi-
larly, Miao et al. achieved fluid mixing near a surface patterned with a monolayer of
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plasmonic NPs supporting LSP [151]. Recently, Donner and co-workers have theoret-
ically studied the photothermally induced fluid convection around plasmonic struc-
tures [152]. In particular, all the orders of magnitude of temperature and fluid velocity
were discussed as a function of the morphology of the plasmonic structure and the
illumination conditions (Fig. 9.5). Characteristic temperature, velocity, spatial scales
and time scales depend on the dimensions of the plasmonic structure and on the de-
livered heat. For instance, the resulting characteristic fluid velocity at the vicinity of
the structure is given by

Ṽ ∼ R2ρβgδT/η (9.1)

where g is the gravitational acceleration, δT the temperature increase of the structure,
β the dilatation coefficient of water and η the dynamical fluid viscosity. While the
fluid velocity is negligible ( 10 nm/s) for nanometer-sized structures due to a very
small Reynolds number, it plays a significant role for either micrometer-sized plas-
monic structures or assemblies of nanostructures. Note that, at the considered scales,
equilibrium is reached very fast, typically after 1 ns to 1 µs, depending on the size of
the structure but not on the temperature increase.

FIGURE 9.6: (online color at: www.lpr-journal.org) Thermal-induced fluid
convection using a single gold disc. a) Representation of the system: a gold
disc, 500 nm in diameter and 40 nm thick, immersed in water. b) Side view
of the temperature distribution and the thermal-induced fluid velocity field
of the fluid surrounding the gold nanodisc (numerical simulations) [152].

(Reprinted with permission of ACS.
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