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Abstract 

 

Plasmonic devices have become a very popular topic of research in recent 

years due to their properties which allow them to outperform conventional 

electronic devices in many aspects, the most of important of which is their 

ability to overcome the diffraction limit. This allows Plasmonic devices to 

be miniaturized to the nanometer scale, which makes them extremely 

useful for various optical applications. Here, a special class of Plasmonic 

devices called add-drop ring resonators were investigated. Various 

configurations of these resonators with different geometric shapes for the 

ring were proposed. The transmission characteristics of these structures 

were analyzed and compared by carrying out simulations to calculate the 

transmission efficiency at the drop and through ports for different 

wavelengths of light. The effect on the transmission characteristics due to 

modifications in the structures were also observed. The add-drop ring 

resonator configurations with elliptical shaped ring and round-edge square 

shaped ring both performed better than the conventional circular ring 

design, exhibiting higher transmission efficiencies at the drop port. 
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Chapter 1 

 

Introduction and Background 

 

In recent years, researches in optical devices have progressed rapidly due to the advantages 

they provide over electronic devices, which have been the most commonly used 

components for the construction and integration of miniaturized circuits [1]. Modern 

electronic devices are limited by the lack of speed and lower bandwidth.  These problems 

can be overcome by using a class of optical devices called Plasmonic devices, which work 

on the principle of the propagation of Surface Plasmon Polariton (SPP) [2] waves. These 

devices not only provide faster speeds of operation and higher bandwidth [3], but also allow 

the miniaturization of devices to the nanometer scale [4] by allowing the confinement of 

electromagnetic waves over dimensions in the nanometer range [5, 6]. These devices are 

very versatile and they can be used in many useful applications such as filters [7-9], 

biosensors [10] and optical communication systems [11]. 

 

The performance, speed and ease-of-use of semiconductor devices, circuits and 

components is dependent on their miniaturization and integration into external devices. 

However, the integration of modern electronic devices for information processing and 

sensing is rapidly approaching its fundamental speed and bandwidth limitations, which is 

an increasingly serious problem that impedes further advances in many areas of modern 

science and technology. One of the most promising solutions is believed to be in replacing 

electronic signals (as information carriers) by light. However, a major problem with using 

electromagnetic waves as information carriers in optical signal-processing devices and 

integrated circuits is the low levels of integration and miniaturization available, which are 

far poorer than those achievable in modern electronics. This problem is a consequence of 
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the diffraction limit of light in dielectric media, which does not allow the localization of 

electromagnetic waves into nanoscale regions much smaller than the wavelength of light 

in the material. 

 

The use of materials with negative dielectric permittivity is one of the most feasible ways 

of circumventing the diffraction limit and achieving localization of electromagnetic energy 

(at optical frequencies) into nanoscale regions as small as a few nanometers. The most 

readily available materials for this purpose are metals below the plasma frequency. Metal 

structures and interfaces are known to guide surface plasmon–polariton (SPP) modes, 

electromagnetic waves coupled to collective oscillations of electron plasma in the metal. 

As a result, plasmonics is an area of nanophotonics beyond the diffraction limit that studies 

the propagation, localization and guidance of strongly localized SPP modes using metallic 

nanostructures. The recent rapid development of plasmonic waveguides whose mode 

confinement is not limited by the material parameters of the guiding structure has been 

primarily driven by the tantalizing prospect of combining the compactness of an electronic 

circuit with the bandwidth of a photonic network. 

 

Utilizing the beneficial property of plasmonic devices to overcome the diffraction limit, a 

lot of recent research has been carried out on a type of plasmonic nanostructure called a 

ring resonator [12]. Ring resonators have properties which causes the resonance of the light 

within the ring at different frequencies, depending on the structure of the resonator. One of 

the most important advantages provided by ring resonators is that they can be tuned easily 

[13], i.e. the resonant frequencies can be varied by changing the dimensions of the 

resonator. Ring resonators have numerous proposed and demonstrated applications in 

sensors [14], modulators [15], filters [16], laser systems [17], optical buffers [18], and 

interferometry, etc. 

 

An add-drop ring resonator [19, 20] is a special type of ring resonator consisting of a looped 

dielectric waveguide coupled to two dielectric straight waveguides and surrounded by a 
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metal. The most commonly used ring resonator configuration has a circular ring coupled 

with waveguides. However, other configurations with various geometric variations of the 

structure have been researched to achieve better transmission characteristics and desired 

resonant properties, such as a hexagonal split ring resonator [21] and a UWB BPF using 

square ring resonator [22] etc. Modifications to ring resonator geometry and waveguide 

parameters can be analyzed to give the desired transmission characteristics for a particular 

optical application. The comparison between the transmission efficiencies and the resonant 

frequencies of these ring resonator structures can help determine which ones can be best 

used as filters and other plasmonic devices requiring a specific transmission characteristic.  

 

1.1 Overview of Surface-Plasmon-Polariton 

 

Surface plasmon polaritons are electromagnetic excitations propagating at the interface 

between a dielectric and a conductor, evanescently confined in the perpendicular direction. 

These electromagnetic surface waves arise via the coupling of the electromagnetic fields 

to oscillations of the conductor’s electron plasma. 

 

The eigenmodes of an interface between a dielectric and a metal are surface plasmon 

polaritons (SPPs) [23]. We refer to them as eigenmodes in the sense that they are solutions 

of Maxwell’s equations that can be formulated in the absence of an incident field. On a flat 

interface between dielectric and metal half-spaces with dielectric constants εd and εm, 

respectively, SPPs are transverse magnetic (TM) plane waves propagating along the 

interface. Assuming the interface is normal to z and the SPPs propagate along the x 

direction, the SPP wave vector 𝑘𝑥 is related to the optical frequency through the dispersion 

relation [24]. 

 

                                          𝑘𝑥 = 𝑘𝑜√𝜖𝑑𝜖𝑚/(𝜖𝑑 + 𝜖𝑚)                                                  (1.1) 

 

where, 𝑘0 =
𝜔

𝑐
   is the free-space wave vector. We take ω to be real and allow 𝑘𝑥 to be 

complex, since our main interest is in stationary monochromatic SPP fields in a finite area 

[25]. The details of SPP has been discussed in Chapter 2. 
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 1.2 Literature Review 

 

Plasmonic ring resonators based on SPP wave propagation have been a great field of 

interest over the recent years. A number of researches have been carried out throughout 

recent years on the same topic. However, there’s still huge scope for the researches in this 

field. Here in this section of literature review, focus have been made on the literature review 

of the published works on SPP propagation analysis through different structures with 

different geometries and most importantly, on ring resonators. 

 

The parameters of several metals have been reported to our knowledge. Jin et al. [26] 

determined the modified Debye model parameters for gold which are applicable in the 

wavelength range of 550-950 nm. Krug et al. [27] reported the gold parameters that are 

applicable in the wavelength range of 700-1000 nm. W.H.P. Pernice et al. [28] extracted 

the parameters for Nickel using Lorentz-Drude model. A.D. Rakic et al. [29] reported the 

parameters for Nickel, Palladium, Titanium and 8 other metals using Lorentz-Drude and 

Brendel-Bormann Model. M.A. Ordal et al.[30] extracted the parameters for fourteen 

metals in the infrared and far-infrared range. 

 

Bends, splitters and recombinations are inevitable parts of  optoelectronic devices. Several 

works on the analysis of SPP propagation in these shapes have been reported to our 

knowledge. G. Veronis et al. [31]  showed that bends and splitters can be designed over a 

wide frequency range without much loss by keeping centre layer thickness small compared 

to wavelength. H. Gao et al. [32]  investigated the propagation and combination of SPP in 

Y-shaped channels. B. Wang et al. [33] analyzed two structures which consist of splitting 

and recombination. 

 

 

The propagation loss of SPP is very high in metal-dielectric-metal configuration of 

plasmonic waveguide which limits the length of propagation. Even the fabrication related 

disorders have far less impact on the propagation loss than the losses that occur in metallic 
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layers of the MDM waveguide. This problem can be addressed by using both dielectric and 

plasmonic waveguide on the same chip. The dielectric waveguide will carry the 

fundamental optical mode while the plasmonic waveguide will address the sub-wavelength 

scale issue. This calls for the need of efficient coupling of optical modes from the dielectric 

waveguide to the plasmonic waveguide. Therefore, designing efficient nanoplasmonic 

couplers with different materials and structures can be a pioneering step in miniaturization 

of the integrated photonic devices. In the past years, several plasmonic couplers have been 

proposed by different researchers. G. Veronis et. Al. [34] proposed a coupler with multi-

section tapers. P. Ginzburg et al. [35] reported a λ/4 coupler to couple optical modes from 

a 0.5m to 50nm wide plasmonic waveguide. D. Pile et al. [36]  presented an adiabatic and 

a non-adiabatic tapered plasmonic coupler. R. Washleh et al. [37] reported an analysis on 

nanoplasmonic air-slot coupler and its fabrication steps. 

 

For the design of plasmonic devices, metal-dielectric-metal (MDM) interfaces are very 

popular. Different types of structures have been proposed till now based on this MDM 

interface. Jacob Scheuer, Yoav Yadin and Moti Margalit proposed micro ring resonator 

structures which relates to optical cavity and more particularly to ring like cavities used in 

integrated optical devices. Add-drop multiplexer was introduced by Jun Su and Yi Ding 

which was later used in wavelength division multiplexed networks. Su and Ding proposed 

that in some embodiments, ring resonator may be used instead of Bragg gratings in a Mach-

Zehnder interferometer configuration.  

 

1.3 Thesis objective: 

 

The main objective of this thesis is to design and compare plasmonic add-drop ring 

resonator structures of various geometric shapes. More specifically, the objectives are: - 

 

 To develop a simulation model based on the FDTD method that is capable of 

simulating the devices. 

 

 To analyze and compare the transmission characteristics of the designed Nano- 
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structures by measuring the power through different ports. 

 

 To analyze important conclusions from the obtained results and discuss the 

potential applications. 

 

 

1.4 Thesis organisation  

The thesis has been arranged in the following way- 

 

 In Chapter 2, the basic theory of SPP propagation has been described. This chapter           

introduces the fundamental knowledge and necessary mathematical formulations 

of SPP propagation at the single and double interface. 

 In Chapter 3, the widely used models for modeling metals have been described in    

detail with necessary derivations. Since SPPs are created due to the coupling of 

photon energy to the free electrons of metal, modeling metals is one of the key steps 

for the simulation of SPP propagation. 

 Since we have developed our simulation model based on FDTD method, Chapter 4 

introduces the fundamentals of the FDTD algorithm for 1D and 2D simulations. 

The original formulations of Yee do not include the frequency dependent dispersion 

properties of materials. We have used the ADE based general algorithm for our 

simulation model which is discussed in Chapter 4. This chapter also discusses about 

the absorbing boundary condition. 

 In chapter 5, the Lorentz model and the six-pole Lorentz model are discussed and 

also a developed simulation model is established 

 In chapter 6 the design of add-drop ring resonators of various geometric shapes 

along with the Ex, Ey, Hz profiles on the Metal-Dielectric-Metal interfaces and the 

snapshots of Hz field is provided. 

 In chapter 7 the transmission characteristics are analyzed and compared and the 

effect of increased coupling distance is also analyzed. 

 In chapter 8, the results are summarized and a brief idea of our future work is given. 
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Chapter 2 

 

SPP Propagation Theory 

 

2.1 Introduction  

 

Surface plasmon polariton (SPP) is an electromagnetic excitation that propagates in a wave 

like fashion along the planar interface between a metal and a dielectric medium, often 

vacuum, and whose amplitude decays exponentially with increasing distance into each 

medium from the interface. Electromagnetic wave propagation is obtained from the 

solution of Maxwell’s equations in each medium, and the associated boundary conditions. 

Maxwell’s equations of macroscopic electromagnetism can be written as follows: 

 

From Gauss’s Law for the electric field     
 

 

                                           ∇. 𝐷 = 𝜌𝑒𝑥𝑡                                                                                     (2.1) 

From Gauss’s Law for the magnetic field 

                                           ∇. 𝐵 = 0                                                                                          (2.2) 

From Faraday’s Law 

                                           ∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
                                                                                 (2.3) 

From Ampere’s Law 

                                           ∇ × 𝐻 = 𝐽𝑒𝑥𝑡 +
𝜕𝐷

𝜕𝑡
                                                                         (2.4) 

Here, 

 

E is the electric field vector in Volt per meter 

 

D is the electric flux density vector in Coulombs per square meter 

 

H is the magnetic field vector in Amperes per meter 
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B is the magnetic flux density vector in Webers per square meter 

 

Jext is the current density 

 

The four macroscopic fields can be also linked further via the polarization P and 

magnetization M by 

 

                                     𝐷 = 𝜀0𝐸 + 𝑃                                                                                     (2.5) 

                                    𝐻 =
1

𝜇0
𝐵 −𝑀                                                                                    (2.6) 

Now this equation can be simplified for linear, isotropic, nonmagnetic media as 

 

                                    𝐷 = 𝜀0𝜀𝑟𝐸                                                                                         (2.7) 

                                     𝐵 = 𝜇0𝜇𝑟𝐻                                                                                       (2.8) 

where, 

 

𝜀0 is electric permittivity of vacuum in Farad per meter 

 

𝜇0 is the magnetic permeability of vacuum in Henry per meter 

 

𝜀𝑟is the relative permittivity 

 

𝜇𝑟is the relative permeability 

 

 

2.2 The EM or Electromagnetic Wave Equation 

 

The EM wave equation which describes the field amplitude in time and space can be 

derived from Maxwell’s equations. The wave equation can be derived by taking curl of 

Faraday’s law 
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                              ∇ × ∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
                                                                                    (2.9) 

or, 

                                  ∇ × ∇ × 𝐸 = ∇ × (−𝜇
𝜕𝐻

𝜕𝑡
)                                                                      (2.10) 

With the identities ∇×∇×E = ∇ (∇.E) −∇2
E and ∇×H =𝜀

𝜕𝐸

𝜕𝑡
 we can simplify 

the above equation as 

                            ∇ (∇.E) −∇2
E=−𝜇𝜀

𝜕2𝑦

𝜕𝑡2
                                                                        (2.11) 

From Gauss’s law we can conclude that the divergence of E in a constant permittivity over 

space is zero. i,e ∇.E = 0 

Therefore, the final wave equation for electric field will be 

 

                                ∇2𝐸 −  𝜇𝜀
𝜕2𝐸

𝜕𝑡2
= 0                                                                                (2.12)       

Similarly the wave equation for magnetic field can be derived as 

 

                                ∇2𝐻 −  𝜇𝜀
𝜕2𝐻

𝜕𝑡2
= 0                                                                               (2.13)  

So, the general form of wave equation can be written as 

 

                                ∇2𝑈 −
1

𝜐𝑝
2  (

𝜕2𝐻

𝜕𝑡2
) = 0                                                                             (2.14)  

If the variation of the dielectric profile is negligible over distance, then we can write 

 

                               ∇2𝐸 − 
𝜀

𝐶2
𝜕2𝐸

𝜕𝑡2
= 0                                                                                  (2.15)   

Where 𝐶 =
1

√𝜇0 𝜀0
 velocity of light 

The solution of wave equation is a harmonic function in time and space. Now if we assume 

this as a harmonic time dependence of the electric field, 

 

                                𝐸(𝑟, 𝑡) = 𝐸(𝑟)𝑒−𝑗𝜔𝑡                                                                               (2.16)   
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Therefore, we get the Helmholtz equation 

       

                                      ∇2𝐸 + 𝐾0
2𝜀𝐸 = 0                                                                           (2.17)   

where the vector of propagation 𝐾0 =
𝜔

𝐶
 , in free space 

 

 

Fig 2.1: A Cartesian coordinate system at a metal dielectric interface 

 

A typical planar waveguide geometry at a metal-dielectric interface is shown in fig 2.1. For 

simplicity let us assume that the propagation of the wave is along the x-direction of the 

Cartesian co-ordinate system and there is no spatial variation in y-direction. So, we can 

write 

 

                        𝐸(𝑥, 𝑦, 𝑧) = 𝐸(𝑧)𝑒𝑗𝛽𝑧                                                                                  (2.18)   

 

Where 𝛽 = 𝐾𝑥 which is call the propagation constant 

Now inserting the value of E the wave equation will be 

                          
𝜕2𝐸(𝑧)

𝜕𝑧2
+ (𝐾0

2𝜀 − 𝛽2)𝐸 = 0                                                                           (2.19)  

Similarly, we can derive the equation for the magnetic field H. The field E and H can be 
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decomposed in Cartesian co-ordinate system as 

 

                      𝐸 = 𝐸𝑥 . 𝑎⃗𝑥 + 𝐸𝑦. 𝑎⃗𝑦 + 𝐸𝑧. 𝑎⃗𝑧                                                                             (2.20) 

                       𝐻 = 𝐻𝑥. 𝑎⃗𝑥 +𝐻𝑦. 𝑎⃗𝑦 +𝐻𝑧. 𝑎⃗𝑧                                                                           (2.21) 

For Harmonic time dependence 
𝜕

𝜕𝑡
= −𝑗𝜔 and by solving the Ampere’s law and Faraday’s 

law, we get 

 

                    
𝜕𝐸𝑧

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑧
= 𝑗𝜔𝜇0 𝐻𝑥                                                                                 (2.22) 

 

                      
  𝜕𝐸𝑥

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝑥
= 𝑗𝜔𝜇0 𝐻𝑦                                                                                 (2.23) 

 

                       
𝜕𝐸𝑦

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑦
= 𝑗𝜔𝜇0 𝐻𝑧                                                                                 (2.24) 

 

                      
 𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔𝜀0 𝜀𝐸𝑥                                                                                 (2.25) 

 

                       
𝜕𝐻𝑥

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔𝜀0 𝜀𝐸𝑦                                                                                 (2.26) 

 

                      
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔𝜀0 𝜀𝐸𝑧                                                                                 (2.27) 

 

As the propagation is in x-direction in the form of 𝑒𝑗𝛽𝑥 which follows 
𝜕

𝜕𝑥
= −𝑗𝛽. 

The homogeneity in y- direction makes
𝜕

𝜕𝑦
= 0. So, the equation will be simplified as 

                    −
𝜕𝐸𝑦

𝜕𝑧
= 𝑗𝜔𝜇0 𝐻𝑥                                                                                          (2.28) 

 

                        
𝜕𝐸𝑥

𝜕𝑧
− 𝑗𝛽𝐸𝑧 = 𝑗𝜔𝜇0 𝐻𝑦                                                                                 (2.29) 

 

                       𝑗𝛽𝐸𝑦 = 𝑗𝜔𝜇0 𝐻𝑧                                                                                             (2.30) 

 

                       
 𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔𝜀0 𝜀𝐸𝑥                                                                                             (2.31) 

 

                       
𝜕𝐻𝑥

𝜕𝑧
− 𝑗𝛽𝐻𝑧 = 𝑗𝜔𝜀0 𝜀𝐸𝑦                                                                                 (2.32) 

 

                       𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜀0 𝜀𝐸𝑧                                                                                            (2.33) 
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The solution of the above equation can be characterized by two sets of solution with the 

polarized characteristics which are, Transverse Magnetic (TM) modes and Transverse Electric 

(TE) modes. The equations belong to TM modes are 

                           𝐸𝑥 = −𝑗
1

𝜔𝜀0 𝜀

𝜕𝐻𝑦

𝜕𝑧
                                                                                     (2.34) 

 

                           𝐸𝑧 = −𝛽
1

𝜔𝜀0 𝜀
𝐻𝑦                                                                                     (2.35) 

 

Therefore, the wave equation for TM Polarized wave will be 

 

                          
𝜕2𝐻𝑦

𝜕𝑧2
+ (𝐾0

2𝜀 − 𝛽2)𝐻𝑦 = 0                                                                              (2.36)  

Similarly, the TE polarized equations will be 

 

                          𝐻𝑥 = 𝑗
1

𝜔𝜇0 

𝜕𝐸𝑦

𝜕𝑧
                                                                                         (2.37) 

 

                        𝐻𝑧 = 𝛽
1

𝜔𝜇0 
𝐸𝑦                                                                                          (2.38) 

And the corresponding TE wave equation will be 

 

                  
𝜕2𝐸𝑦

𝜕𝑧2
+ (𝐾0

2𝜀 − 𝛽2)𝐸𝑦 = 0                                                                                   (2.39)  

 

2.3 SPP at Single Interface  

 

The simplest configuration of SPP propagation is at a single interface, that is in between a 

dielectric, having a positive dielectric constant 𝜀2 and a metal, having a negative dielectric 

constant 𝜀1. This is shown in fig 2.2. For metal the bulk plasmon frquency will be 𝜔𝑝 and 

the amplitude decays perpendicular to the z− direction. 

For the TM solutions in both spaces: metal and dielectric will be for z > 0 

                        𝐻𝑧(𝑧) = 𝐴2𝑒
𝑗𝛽𝑥𝑒−𝑘2𝑧                                                                                  (2.40)  
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F                                               Fig 2.2: SPP at the Single interface. 

 

            𝐸𝑥(𝑧) = 𝑗𝐴2
1

𝜔𝜀0 𝜀2
𝑘2𝑒

𝑗𝛽𝑥𝑒−𝑘2𝑧                                                                              (2.41)  

    

            𝐸𝑧(𝑧) = −𝐴1
𝛽

𝜔𝜀0 𝜀2
𝑒𝑗𝛽𝑥𝑒−𝑘2𝑧                                                                                 (2.42)  

 

And for z < 0 

 

            𝐻𝑦(𝑧) = 𝐴1𝑒
𝑗𝛽𝑥𝑒𝑘1𝑧                                                                                                (2.43)  

 

         𝐸𝑥(𝑧) = −𝑗𝐴1
1

𝜔𝜀0 𝜀1
𝑘1𝑒

𝑗𝛽𝑥𝑒𝑘1𝑧                                                                               (2.44)  

 

          𝐸𝑥(𝑧) = −𝐴1
𝛽

𝜔𝜀0 𝜀1
𝑒𝑗𝛽𝑥𝑒−𝑘1𝑧                                                                                   (2.45)  

The continuity of  𝐻𝑦 and 𝜀𝑖𝐸𝑧  at the metal dielectric interface gives A1 = A2 and 

          
𝑘2

  𝑘1
= −

𝜀2

𝜀1
                                                                                                                    (2.46)  

The surface wave exists at the metal dielectric interface with opposite sign of their real 

dielectric permittivities. So, we can write 

 

         𝑘1
2𝜀 = 𝛽2 − 𝑘0

2𝜀1                                                                                                            (2.47)  



24 
 

 

         𝑘2
2𝜀 = 𝛽2 − 𝑘0

2𝜀2                                                                                                            (2.48)  

The dispersion relation of SPPs propagation can be found as 

 

       𝛽 = 𝑘0√
𝜀1𝜀2

𝜀1+𝜀2
                                                                                                                  (2.49) 

The TE surface modes can be expressed as 

 

       𝐸𝑦(𝑧) = 𝐴2𝑒
𝑗𝛽𝑥𝑒−𝑘2𝑧                                                                                                     (2.50) 

 

      𝐻𝑥(𝑧) = −𝑗𝐴2
𝛽

𝜔𝜇0 
𝑘2𝑒

𝑗𝛽𝑥𝑒−𝑘2𝑧                                                                                     (2.51) 

 

     𝐻𝑧(𝑧) = −𝐴2
𝛽

𝜔𝜇0 
𝑘2𝑒

𝑗𝛽𝑥𝑒−𝑘2𝑧                                                                                        (2.52) 

for z > 0, and 
 

     𝐸𝑦(𝑧) = 𝐴1𝑒
𝑗𝛽𝑥𝑒−𝑘1𝑧                                                                                                       (2.53) 

 

    𝐻𝑥(𝑧) = 𝑗𝐴1
𝛽

𝜔𝜀0 𝜀1
𝑘1𝑒

𝑗𝛽𝑥𝑒𝑘1𝑧                                                                                          (2.54) 

 

   𝐻𝑧(𝑧) = 𝐴1
𝛽

𝜔𝜀0 𝜀1
𝑘2𝑒

𝑗𝛽𝑥𝑒𝑘1𝑧                                                                                            (2.55) 

for z < 0. The continuity of Ey and Hx requires 

 

   A1 (k1 + k2) = 0                                                                                                       (2.56) 

 

The surface requires that the real part of k1 and k2 should be greater than zero for 

confinement. This will be satisfied if A1 = A2 = 0. Therefore, there atr no surface modes 

for the TE polarization. SPP only exists for TM mode polarization. 
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2.4 SPP at Double Interface  

 

Two mostly used double interface configurations of SPP waveguides are: Metal-Dielectric-

Metal (MDM) and Dielectric-Metal-Dielectric (DMD). In these cases, SPPs are formed on 

both interfaces. When the distance is shorter than decay distance, it forms coupled mode 

of SPP. This coupled mode of propagation can also be sub-divided into even and odd 

modes, as shown in fig. 2.3. 

 

 

                                            Fig 2.3: SPP at the double interface. 
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Chapter 3 

 

Material Modelling Within Optical Range 

 

3.1 Introduction  

 
At low frequencies or for long wavelengths metals act as perfect conductors. Since they 

have zero field, they do not show any dispersive behavior. But at higher frequencies such 

as optical range metals behave as dispersive materials which means that there exists field 

inside metals. And for the frequencies higher than optical range metals act as dielectrics. 

Properties of SPPs depend highly on the material response to light. In this chapter we will 

be studying about the materials supporting SPP, descriptions and derivations of different 

models for describing the behavior of metal in the presence of light. 

Now in the presence of an external oscillating electromagnetic field, three vectors can 

determine the behavior of any material. Such as, D (electrical flux density), E (electric field 

intensity) and P (polarization density). In the frequency domain the corresponding 

equations will be, 

 

                   𝐷(𝜔) = 𝜀(𝜔)𝐸(𝜔)                                                                                         (3.1) 

                 𝑃(𝜔) = 𝜀0𝜒(𝜔)𝐸(𝜔)                                                                                    (3.2) 

                   𝐷(𝜔) = 𝜀0𝐸(𝜔) + 𝑃(𝜔)                                                                                     (3.3) 

 

Combining these two equations we get, 

 

                  𝐷(𝜔) = 𝜀0𝐸(𝜔)(1 + 𝜒(𝜔))                                                                                     (3.4) 

 

Where 𝜒 is the electric susceptibility which measures how easily it is polarized in response 
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to an applied electric field, and it is a dimensionless quantity. 

 

Finally, the relation between the permittivity and susceptibility is 

 

                 𝜀(𝜔) = 𝜀0(1 + 𝜒(𝜔))                                                                                     (3.5) 

 

So, the relative permittivity will be 

 

                 𝜀𝑟(𝜔) = 1 + 𝜒(𝜔)                                                                                          (3.6) 

 

For linear isotropic materials such as glass the above values become simple. But for a 

dispersive material, the frequency dependent permittivity and susceptibility should be modeled 

perfectly for getting the perfect response of the material for certain electromagnetic excitation. 

Some widely used material models are Drude model, Lorentz model and Lorentz-Drude model. 

 

3.2 Different Material Models  

 

3.2.1 The Drude Model  

 

The Drude model of electrical conduction was first developed by Paul Drude. In his model 

he described the metal as a volume filled with stationary positive ions, immersed in a gas 

of electrons following the kinetic theory of gases. These electrons are free to move inside 

the metal without any interaction with each other. The electrons in a metal are subjected to 

two forces,  

1. Driving force Fd  

2. Damping force Fg  

 

The driving force and the damping force can be expressed as 

 

                               𝐹𝑑 = 𝑞𝐸 = −𝑒𝐸                                                                                (3.7) 
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                               𝐹𝑔 = −Г𝜐                                                                                           (3.8) 

As the two forces are opposite to each other, the resultant force will be 

                               𝐹 = 𝐹𝑑 − 𝐹𝑔                                                                                       (3.9) 

 

From Newton’s first law of motion we can write 

 

                           𝑚𝑟′′ = −𝑒𝐸 + Г𝑟′                                                                             (3.10) 

 

where, 

 

m is the mass of an electron 

Γ is the damping constant in Newton second per meter 

r is the displacement in meter. 

v is the velocity of the electron . 

q is the electrons charge. 

 

The prime indicates differentiation order with respect to time 

 

For time harmonic electric field and time harmonic displacement the equation will be, 

  

                  𝐸(𝑡) = 𝐸0𝑒
−𝑗𝜔𝑡 ⇔ 𝐸(𝜔)                                                                            (3.11) 

                   𝑟(𝑡) = 𝑅0𝑒
−𝑗𝜔𝑡 ⇔ 𝑅(𝜔)                                                                          (3.12) 

 

From equation 3.10 the frequency domain form will be 

 

                     𝑚𝑅′′(𝜔) − Г𝑚𝑅′(𝜔) + 𝑒𝐸(𝜔) = 0                                                          (3.13) 

 

The derivatives of frequency domain will give                                                                    

  

                  −𝑚𝜔2𝑅′′(𝜔) + 𝑗𝜔Г𝑚𝑅′(𝜔) + 𝑒𝐸(𝜔) = 0                                                (3.14) 

 

Simplifying the above equation, the displacement R will give 

 

                  𝑅(𝜔) =
−𝑒

𝑚(𝑗Г𝜔−𝜔2)
𝐸(𝜔)                                                                            (3.15) 

 

The polarization for n number of electrons will be 

 

                 𝑃(𝜔) = −𝑛𝑒𝑅(𝜔)                                                                                      (3.16) 
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Or, 

                  𝑃(𝜔) =
𝑒2𝑛

𝑚(𝑗Г𝜔−𝜔2)
𝐸(𝜔)                                                                              (3.17) 

An expression for the susceptibility can also be obtained from the above equation 

and that will be 

 

                   
𝑃(𝜔)

𝜀0𝐸(𝜔)
=

𝑒2𝑛

𝜀0𝑚(𝑗Г𝜔−𝜔
2)
= 𝜒(𝜔)                                                                       (3.18) 

 

 

Now substituting this value in equation 3.6 we get 

 

                   𝜀𝑟(𝜔) = 1 +
𝑒2𝑛

𝜀0𝑚(𝑗Г𝜔−𝜔2)
                                                                             (3.19) 

 

if we consider ωp as the plasma frequency that will provide 

 

                   𝜔𝑝
2 =

𝑒2𝑛

𝜀0𝑚
                                                                                                      (3.20) 

 

So, the frequency dependent flux density will be 

 

                  𝐷(𝜔) = 𝜀0(1 +
𝜔𝑝
2

(𝑗Г𝜔−𝜔2)
)𝐸(𝜔)                                                                           (3.21) 

 

For low frequency, the term Г𝜔 ≪ 1. Therefore, the dispersive relation can be 

reduced to 

 

                𝐷(𝜔) = 𝜀0(1 −
𝜔𝑝
2

(𝜔2)
)𝐸(𝜔)                                                                              (3.22) 

 

 

3.2.2 The Lorentz Model  
 

 

The Lorentz model gives a simpler picture of the atom, as shown in fig 3.1. The model is 

a very useful tool to visualize atom-field interaction. In this model, Lorentz modeled an 

atom as a mass (nucleus) connected to another smaller mass (electron). However, electrons 

in the Lorentz model do not move freely inside the metal instead, they are bound to atoms. 

So, there is a restoring force acting between them which can be denoted by Fr. 
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                                                   Fig 3.1: Lorentz model 

        

The restoring force can be written as 

                   Fr = −kr                                                                                                      (3.22) 

 

where k is the spring constant in Newtons per meter. 

Similarly from the law of motion we can say that 

 

                  𝑚𝑟′′ + Г𝑚𝑟′(𝜔) + 𝑚𝑘𝑟 + 𝑒𝐸 = 0                                                            (3.23) 

 

In frequency domain the above equation will be 

 

                    𝑅(𝜔)(𝑚𝜔0
2 + 𝑗𝜔Г𝑚 −𝑚𝜔2 − 𝑒𝐸(𝜔) = 0                                               (3.24) 

Considering the natural frequency 𝜔0 = √
𝑘

𝑚
   we get 

                    𝑅(𝜔) =
−𝑒

𝑚(𝜔0
2+𝑗𝜔Г−𝜔2)

𝐸(𝜔)                                                                       (3.25) 

Therefore the susceptibility can be found as 

 

                
𝑃(𝜔)

𝜀0𝐸(𝜔)
=

𝑒2𝑛

𝜀0𝑚(𝜔0
2+𝑗𝜔Г−𝜔2)

= 𝜒(𝜔)                                                                (3.26) 
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So from the equation 3.4 the expression for D can be expressed in frequency domain as 

 

                  𝐷(𝜔) = 𝜀0(1 +
𝜔𝑝
2

𝜔0
2+𝑗𝜔Г−𝜔2

)𝐸(𝜔)                                                                           (3.27) 

 

3.2.3 The Lorentz-Drude Model  

 

In the Lorentz-Drude (LD) model, which is the most general form when an EM field is 

applied to a metal, the electrons of two types oscillate inside the metal, and they contribute 

to the permittivity. The free electrons contribute a permittivity of the Drude model, and the 

bound electrons contribute a permittivity of the Lorentz model. The permittivity in the LD 

model is given by 

 

                    𝜀 = 𝜀𝑓𝑟𝑒𝑒 + 𝜀𝑏𝑜𝑢𝑛𝑑                                                                                      (3.29) 

 

 

Where 

 

                    𝜀𝑓𝑟𝑒𝑒 = 1 +
𝜔𝑝

(𝑗Г𝜔−𝜔2)
                                                                                   (3.30) 

 

                    𝜀𝑏𝑜𝑢𝑛𝑑 =
𝜔𝑝

𝜔0+𝑗𝜔Г−𝜔2
                                                                                     (3.31) 

 

 

Therefore combining both the model together the electric field density D in fre-quency 

domain will be 

 

                  𝐷(𝜔) = 𝜀0(1 +
𝜔𝑝

𝑗Г𝜔−𝜔2
+

𝜔𝑝
2

𝜔0
2+𝑗𝜔Г−𝜔2

)𝐸(𝜔)                                                        (3.32) 

 

The above relation is known as the Lorentz-Drude model. 
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3.3 Material Dispersion  

 

Dispersion can be defined as the variation of the propagating waves wavelength with 

frequency. It is also sometimes defined as the variation of propagating waves wave number 

k =
2𝜋

𝜆
with angular frequency ω = 2𝜋f. So the one dimensional wave equation will be 

 

                        
 𝜕2𝑢

𝜕𝑡2
= 𝜐2

𝜕2𝑢

𝜕𝑥2
                                                                                                   (3.47) 

 

Where, 

            𝜐2 =
1

𝜀𝜇
      

The solution of the above wave equation can be written in phasor form as 

 

                   𝑢(𝑥, 𝑡) = 𝑒𝑗(𝜔𝑡−𝑘𝑥)                                                                               (3.48) 

 

Now putting this value in the wave equation we get 

 

                       (𝑗𝜔)2𝑒𝑗(𝜔𝑡−𝑘𝑥) = 𝜐2(−𝑗𝑘)2𝑒𝑗(𝜔𝑡−𝑘𝑥)                                                  (3.49) 

 

Finally from this equation we get 

 

                        𝑘 = ±
𝜔

𝜐
                                                                                                 (3.50) 

The + sign is for -x directed wave propagation and - sign is for +x directed wave 

propagation. The magnetic flux density and electric flux density for dispersive medium 

are- 

                      𝐷(𝜔) = 𝜀(𝜔)𝐸                                                                                        (3.51) 

                      𝐵(𝜔) = 𝜇(𝜔)𝐻                                                                                       (3.52) 

 

Here both 𝜀(𝜔) and  𝜇(𝜔)  are frequency dependent functions. 
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Chapter 4 

Overview of Finite-Difference 

Time-Domain Method 

 

4.1 The Yee Algorithm  

 

The algorithm used in FDTD simulations is known as the Yee algorithm. The original 

proposal was intended for homogeneous, isotropic and lossless media based on discretizing 

the volume into cells in Cartesian coordinates. The Yee algorithm solves for both electric 

and magnetic fields using the coupled Maxwell’s time-dependent curl equations, rather 

than solving for the electric field alone (or the magnetic field alone) with a wave equation. 

 

The method begins with two of Maxwell’s equations: 

 

                             𝐷
𝜕𝐻⃗⃗⃗

𝜕𝑡
= −

1

𝜇
∇ × 𝐸⃗⃗                                                                             (4.1) 

 

                             𝐷
𝜕𝐸⃗⃗

𝜕𝑡
=

1

𝜀
∇ × 𝐻⃗⃗⃗                                                                                 (4.2) 

 

The electric and magnetic fields are three dimensional vectors. Each equation can be 

converted into three coupled scalar first order differential equations. The derivatives are 

both in space and time. The curl operations of equations 4.1 and equation 4.2 yields the 

following six equations in Cartesian coordinates 

 

                           
𝜕𝐸𝑧

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑧
= 𝜇

𝜕𝐻𝑥

𝜕𝑡
                                                                                 (4.3) 

 

                           
𝜕𝐸𝑥

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝑥
= 𝜇

𝜕𝐻𝑧

𝜕𝑡
                                                                                 (4.4) 

 

                           
𝜕𝐸𝑦

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑦
= 𝜇

𝜕𝐻𝑧

𝜕𝑡
                                                                                 (4.5) 
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𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦

𝜕𝑧
= 𝜀

𝜕𝐸𝑥

𝜕𝑡
                                                                                 (4.6) 

 

                          
𝜕𝐻𝑥

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝑥
= 𝜀

𝜕𝐸𝑦

𝜕𝑡
                                                                                 (4.7) 

 

                          
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑦
= 𝜀

𝜕𝐸𝑧

𝜕𝑡
                                                                                 (4.8) 

 

 

Then the scalar differential equations are converted into difference equations. In order to 

do that, discretization is required for both space and time. For space discretization, Yee 

visualized the field components arranged within a unit cell (voxel). The electric field 

components are stored on the corresponding cell edges, while the magnetic field 

components are stored on the corresponding face centers. The fields are located in a way 

where each E component is surrounded by four 

 

H components and vice versa, which leads to a spatially coupled system of field 

circulations corresponding to the law of Faraday and Ampere. The figure 4.1 shows the 

Yee’s spatial grid. 

 

Considering a two dimensional TM (Transverse Magnetic) polarized field case, 

 

                            
 𝜕𝐸𝑥

𝜕𝑡
=

1

𝜀

𝜕𝐻𝑧

𝜕𝑦
                                                                                        (4.9) 

 

                         
𝜕𝐸𝑦

𝜕𝑡
=

1

𝜀

𝜕𝐻𝑧

𝜕𝑥
                                                                                       (4.10) 

 

                           
 𝜕𝐻𝑧

𝜕𝑡
=

1

𝜇
(
𝜕𝐸𝑥

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑥
)                                                                           (4.11) 

 

Central difference approximation is applied in each of the equations 4.9, 4.10 and 4.11 

which finally conclude in a spatial scalar difference equations in 4.12, 4.13 and 4.14. 
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                                                     Fig 4.1: Yee’s spatial grid. 

                 
𝜕𝐸𝑥

𝜕𝑡
=

1

𝜀

𝐻𝑧(𝑖,𝑗)−𝐻𝑧(𝑖,𝑗−1)

∆𝑦
                                                                          (4.12) 

 

                    
𝜕𝐸𝑦

𝜕𝑡
=

1

𝜀

𝐻𝑧(𝑖,𝑗)−𝐻𝑧(𝑖−1,𝑗)

∆𝑥
                                                                         (4.13) 

 

              
𝜕𝐻𝑧

𝜕𝑡
=

1

𝜇
(
𝐸𝑥(𝑖,𝑗+1)−𝐸𝑥(𝑖,𝑗)

∆𝑦
−
𝐸𝑦(𝑖+1,𝑗)−𝐸𝑦(𝑖−1,𝑗)

∆𝑥
)                                (4.14) 

 

In order to consider the time derivatives, the time axis is to be considered as shown in 

the figure. The electric and magnetic field are mapped half a step apart along the time axis. 

Again applying the central difference approximation, the equations 4.12, 4.13 and 4.14 

become: 

 

𝐸𝑥
𝑛+1(𝑖+

1

2
,𝑗)−𝐸𝑥

𝑛(𝑖+
1

2
,𝑗)

∆𝑡
=

1

𝜀

𝐻𝑧
𝑛+

1
2(𝑖+

1

2
,𝑗)−𝐻𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗−

1

2
)

∆𝑦
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𝐸𝑦
𝑛+1(𝑖,𝑗+

1

2
)−𝐸𝑦

𝑛(𝑖,𝑗+
1

2
)

∆𝑡
= −

1

𝜀

𝐻𝑧
𝑛+

1
2(𝑖+

1

2
,𝑗+

1

2
)−𝐻𝑧

𝑛+
1
2(𝑖−

1

2
,𝑗+

1

2
)

∆𝑦
                  

 

𝐻𝑧
𝑛+

1
2(𝑖+

1

2
,𝑗+

1

2
)−𝐻𝑧

𝑛−
1
2(𝑖+

1

2
,𝑗+

1

2
)

∆𝑡
= −

1

𝜇
(
𝐸𝑥
𝑛+1(𝑖+

1

2
,𝑗+1)−𝐸𝑥

𝑛(𝑖+
1

2
,𝑗)

∆𝑦
−

𝐸𝑦
𝑛(𝑖+1,𝑗+

1

2
)−𝐸𝑦

𝑛(𝑖,𝑗+
1

2
)

∆𝑥
)                 

 

Each field component depends on the field of previous time step itself and the 

surrounding component in Yee’s algorithm. 

 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

                        Fig 4.2: The temporal scheme of FDTD method. 

 

Numerical stability of the Yee algorithm is required to be ensured. In an unstable 

algorithm the computed magnitude of electric and magnetic field components will 

gradually increase without limit with the progression of simulation. To guarantee 

numerical stability, the EM field’s propagation should not be faster than the al-lowed 

limit which is imposed by the phase velocity within the material. This is done by 

𝐸⃗⃗                             𝐸⃗⃗                                𝐸⃗⃗                           𝐸⃗⃗ 

𝐻⃗⃗⃗                               𝐻⃗⃗⃗                             𝐻⃗⃗⃗ 

𝐸⃗⃗                             𝐸⃗⃗                                𝐸⃗⃗                           𝐸⃗⃗ 

𝐻⃗⃗⃗                               𝐻⃗⃗⃗                             𝐻⃗⃗⃗ 

𝐸⃗⃗                             𝐸⃗⃗                                𝐸⃗⃗                           𝐸⃗⃗ 

𝑡 = 2Δ𝑡 

𝑡 = 1.5Δ𝑡 

𝑡 = Δ𝑡 

𝑡 = 0.5Δ𝑡 

𝑡 = 0 

𝑥 = Δ𝑥 𝑥 = 2Δ𝑥 𝑥 = 0 𝑥 = 3Δ𝑥 
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limiting time step ∆t using the Courant-Friedrichs-Lewy criterion for the general Yee 

FDTD grid as follows: 

 

                               ∆𝑡 ≤

{
 
 

 
 

1

𝜐
𝑝√

1

(∆𝑥)2
+

1

(∆𝑦)2
+

1

(∆𝑧)2

}
 
 

 
 

                                                          (4.15) 

where ∆x, ∆y and ∆z indicate the spatial Cartesian grid increments. 

 

4.1 Absorbing Boundary Condition (ABC)  

 

In FDTD method, a space of theoretically infinite extent with a finite computational cell is 

simulated due to limited computer resources. The boundary is said to be ideally absorbing, 

without any non-physical reflection back to the region. To accomplish this, a number of 

boundary conditions such as Berenger’s perfectly matched layer (PML), have been 

proposed. An artificial layer surrounds the computational domain so that most of the 

outgoing waves are absorbed. The electromagnetic fields are made to attenuate rapidly 

until they become equal to zero, so that they do not produce any reflections. 

 

4.2 Material Dispersion in FDTD  

 

The material is said to be dispersive when the permittivity and permeability of a material 

are functions of frequency. In reality the assumption of constant relative permittivity is not 

absolutely correct. Because by doing so, instantaneous polarization of charge within a 

material is being assumed. In order to exploit the realistic wave propagation, dispersive 

FDTD techniques become necessary. The existing FDTD based algorithms for the analysis 

of material dispersion can be categorized into three types: 

 

1) the auxiliary differential equation (ADE),  

2) the Z-transform methods, and  

3) methods based on discrete convolution of the dispersion relation or the recursive 
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convolution (RC) method [38].  

 

We will highlight on the ADE dispersive FDTD method as we have applied in material 

modeling. The other methods will also be briefly discussed. 

 

4.2.1 The Auxiliary Differential Equation (ADE)  

 

Taflove introduced the auxiliary differential equation to the FDTD modeling in order to 

integrate the dispersion relation into the model. The dispersion relation is converted from 

frequency domain to time domain through Fourier transform in the basic step of the 

procedure. The Fourier transform results in a relationship between the new E field value 

and the previous E and D values, which can be added to the algorithm to update the E 

fields. The new algorithm with ADE becomes 

 

                        
𝜕

𝜕𝑡
𝐻𝑧 = −

1

𝜇
(
𝜕𝐸𝑥

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑥
)                                                                     (4.16) 

 

                        
𝜕

𝜕𝑡
𝐷𝑥 =

𝜕𝐻𝑧

𝜕𝑦
                                                                                              (4.17) 

 

In order to get the function relating D to E in a dispersive medium, we start with 

 

                   𝐷(𝜔) = 𝜀0
𝜎

𝑗𝜔
𝐸(𝜔)                                                                                   (4.18) 

 

Multiplying by   𝑗𝜔 

 

                  𝑗𝜔𝐷(𝜔) = 𝜀0𝜎𝐸(𝜔)                                                                                  (4.19) 

 

Applying the Fourier transform in equation 4.19 

 

 

                   
𝑑

𝑑𝑡
𝐷(𝑡) = 𝜀0𝜎𝐸(𝑡)                                                                                       (4.20) 

 

Discretizing equation 4.20 equation using forward difference method 
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𝐷𝑛−𝐷𝑛−1

∆𝑡
= 𝜀0𝜎𝐸(𝑡)                                                                                     (4.21) 

 

Finally solving for E, we find the update equation 

 

                 𝐸𝑛 =
𝐷𝑛−𝐷𝑛−1

𝜀0𝜎∆𝑡
                                                                                                (4.22) 

 

 

4.2.2 The Z-transform Methods  

 

The Z-transform is a faster method compared to ADE method. Sullivan used the Z-

transform method for the first time in order to introduce the dispersion relation into the 

FDTD algorithm. 

 

The Z-transform of the equation 

                𝐷(𝜔) = 𝜀(𝜔)𝐸(𝜔)                                                                                     (4.23) 

  is - 

                𝐷(𝑧) = 𝜀(𝑧)∆𝑡𝐸(𝑧)                                                                                     (4.24) 

                                                                                                    

where 𝜀(z) is the z-transform of 𝜀(𝜔) and is the sampling period. As already done in ODE, let 

us consider the material dispersion as  
𝜎

𝑗𝜔
 , the relation between D and E is given by 

 

                𝐷(𝜔) =
𝜎𝜀0

1−𝑧−1
∆𝑡𝐸(𝑧)                                                                              (4.25) 

 

Multiplying by (1 − z
−1

), we find 

 

                 𝐷(𝑧)(1 − 𝑧−1) = 𝜎𝜀0𝐸(𝑧)                                                                       (4.26) 

Or, 

                  𝐷(𝑧) − 𝑧−1𝐷(𝑧) = 𝜎𝜀0𝐸(𝑧)                                                                 (4.27) 

 

Performing inverse z-transform   

 

                    𝐷𝑛 − 𝐷𝑛−1 = 𝜎𝜀0∆𝑡𝐸
𝑛                                                                              (4.28) 
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Finally, for solving E from equation 4.28, we find 

 

 

                    𝐸𝑛 =
𝐷𝑛−𝐷𝑛−1

𝜎𝜀0∆𝑡
                                                                                            (4.29) 

 

Which is same as the final update equation derived by ADE method. 

 

4.3.3 Piecewise Linear Recursive Convolution Method  

 

Luebbers et al. formulated the first frequency dispersive FDTD algorithm using the 

recursive convolution (RC) scheme. Later it became piecewise linear recursive convolution 

(PLRC) method [39]. Initially developed for Debye media, the approach was later extended 

for the study of wave propagation in a Drude material [40], N-th order dispersive media, 

an anisotropic magneto-active plasma, ferrite material and the bi-isotropic/chiral media 

[41] [42] [43]. 

 

The RC approach, typically being faster and having required fewer computer memory 

resources than other approaches, is usually less accurate. But in case of multiple pole 

mediums, it is easier to follow the RC approach. 

 

In the initial derivation of PLRC method for a linear dispersive medium, the relation 

between electric flux density and electric field intensity is expressed as: 

 

 

                        𝐷(𝑡) = 𝜀∞ 𝜀0𝐸(𝑡) + 𝜀0 ∫ 𝐸(𝑡 − 𝜏)𝜒(𝜏)𝑑𝜏
𝑡

0
                                       (4.30) 

 

which can be discretized as: 

 

                          𝐷𝑛 = 𝜀∞ 𝜀0𝐸
𝑛 + 𝜀0 ∫ 𝐸(𝑛∆𝑡 − 𝜏)𝜒(𝜏)𝑑𝜏

𝑛∆𝑡

0
                                    (4.31) 

 

The PRC method is further preceded from this basing discrete equation. 
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4.2.3 The General Algorithm  

 

The derivation of equations for multi-pole dispersion relation is more difficult compared 

to the single pole-pair dispersion relation. For example, for six-pole Lorentz-Drude 

dispersion the required derivation process is lengthy. Additionally, the memory required 

for computation is also vast. There are various methods proposed by researchers regarding 

this topic such as Taflove’s matrix inversion method, Multi-term dispersion by 

Okoniewski, etc. However Alsunaidi and Al-Jabr proposed a general algorithm technique 

which solves various problems regarding previous methods. The major advantage of this 

technique is that it requires only one algorithm for any dispersion relation. The dispersive 

relation has the general form as 

 

                 𝐷(𝜔) = 𝜀(𝜔)𝐸(𝜔)                                                                                       (4.32) 

 

which can be expressed in terms of summation of poles 

 

               𝐷(𝜔) = 𝜀∞ 𝜀0𝐸(𝜔) + ∑ 𝑃𝑖(𝜔)
𝑁
𝑖                                                                                     (4.33) 

 

where N is the number of poles. Applying Fourier transform, this equation becomes 

 

              𝐷𝑛+1 = 𝜀∞ 𝜀0𝐸
𝑛+1 + ∑ 𝑃𝑖

𝑛+1𝑁
𝑖                                                                                      (4.34) 

or 

 

               𝐸𝑛+1 =
𝐷𝑛+1−∑ 𝑃𝑖

𝑛+1𝑁
𝑖

𝜀∞ 𝜀0
                                                                                       (4.35) 

 

This term Pi can be any form of dispersion relation such as the Debye, the Drude or just 

the conductivity term. This the final solved equation for E. 
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Chapter 5 

 

 

Parameter Extraction of Optical Materials 

 

The six-pole Lorentz-Drude model parameters for silver metal is presented. A nonlinear 

optimization algorithm has been developed in order to extract the parameters for the metals. 

The extracted parameters have been used to determine the complex relative permittivity of the 

metals in optical and near-IR region of electromagnetic spectrum. The obtained results have 

been compared with the experimental values and an excellent agreement has been found. 

 

5.1 Material Models  

 

5.1.1 Six-pole Lorentz-Drude model 

 

     5.1.1.1 Metals 

 

The complex relative permittivity function of the six-pole Lorentz-Drude model is de-

scribed by the following equation 

 

                                    
 2

2

0

2
0 2

s

r
j




  





 
  

 
                                               (5.1) 

 

where, 𝜀∞ is the infinite frequency relative permittivity, 𝜀𝑠 is the zero frequency relative 

permittivity, 𝜔 is the angular frequency, j is the imaginary unit,  δ is the damping 

coefficient and ωo is the frequency of pole air. 

 

From equation 5.1 we can see that the six-pole Lorentz-Drude model for metals can be 

described by four independent parameters which are 𝜀∞, 𝜀𝑠, 𝜔0 and 𝛿.These four 

parameters need to be optimized in order to model metals. 
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5.1.2  Single-pole Lorentz model 

 

    5.1.2.1 Dielectrics 

  

 

The frequency dependent permittivity function of Single-pole Lorentz Model is given by, 

 

 
                                                                                                   

. 

 

5.1.3 Developing the Simulation Model 

 

The simulation model we have developed is based on the FDTD method. We have utilized 

the general auxiliary differential equation (ADE) based FDTD approach in order to 

incorporate the frequency dependent dispersion property of the constituent materials. This 

algorithm is useful for the simulation of materials with different dispersive properties. The 

perfectly matched layer has been integrated at all the boundaries in order to prevent back 

reflections. 

 

Considering the material dispersion, the frequency-dependent electric flux density 

can be given by- 

 

                         𝐷(𝜔) =  𝜖𝑜𝜖∞𝐸(𝜔) + 𝑃(𝜔).                                                (5.6)           

The general Lorentz model for polarization (𝜔) is given by- 

 

                      𝑃(𝜔) =  
𝑎

𝑏+𝑗𝑐𝜔−dω2
𝐸(𝜔) ,                                                     (5.7) 

By inverse Fourier transform, it can be written in time domain as- 

                                                   (5.2) 



44 
 

.                        𝑏𝑃(𝑡) + 𝑐𝑃′(𝑡) + 𝑑𝑃′′(𝑡) = 𝑎𝐸(𝑡)                                                      (5.8) 

   

Now, turning to FDTD scheme, above equation can be presented as- 

 

              𝑃𝑛+1 = 𝐶1𝑃
𝑛 + 𝐶2𝑃

𝑛−1 + 𝐶3𝐸
𝑛.                                                  (5.9) 

 

     Where, 𝐶1 =
4𝑑−2𝑏∆𝑡2

2𝑑+𝑐∆𝑡
 , 𝐶2 =

−2𝑑−𝑐∆𝑡

2𝑑+𝑐∆𝑡
, and 𝐶3 =

2𝑎∆𝑡2

2𝑑+𝑐∆𝑡
 .  

 

The values of 𝐶1, 𝐶2, 𝐶3 depends on the material under consideration. Finally, equation of 

field intensity has the form- 

                     𝐸𝑛+1 =
𝐷𝑛+1−∑ 𝑃𝑖

𝑛+1𝑁
𝑖=1

𝜖𝑜𝜖∞
                                                                                   (5.10) 

Where N is the number of poles and 𝐷𝑛+1 is the next value of electric flux density after 

one iteration in FDTD algorithm. 
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Chapter 6 

Designing the Add-drop Ring Resonators 

 

6.1 Introduction 

 

6.1.1 Add-drop ring resonator 

 

An add-drop or channel drop ring resonator has two access waveguides, as shown in figure 

6.1. The second waveguide makes it possible to drop or add signals at the resonance 

wavelength to the signal in the input waveguide. Just like for an all-pass resonator, 

constructive interference builds up the power in the ring on resonance. Because a second 

waveguide is coupled to the micro-ring, part of this power couples to this waveguide and 

light at the resonance wavelength is dropped to the drop port, hence the name. The drop 

port will show transmission peaks at the resonance wavelengths. The output of the access 

waveguide, the through port, features a dip in transmitted power on resonance. Off 

resonance, the pass transmission is maximum and the drop port is dark. 
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Fig 6.1: An add-drop ring resonator 

 

The add-drop resonator is described by two transmission functions, one for the pass port 

and one for the drop port that are given by equation 5.10: 

 

    

                                                                                  (5.11)                                                                      

 

As an add-drop resonator has two directional coupler sections, two different amplitude self-

coupling coefficients are featured in the equations. r1 represents the self-coupling of the 

input directional coupler and r2 is the self-coupling coefficient of the directional coupler 

leading to the drop port. The transmission spectra are plotted in figure 6.2. 
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When comparing the pass port transmission to that of an all-pass resonator, we see that the 

second coupler acts as an extra loss mechanism in the microring. The add-drop resonator 

is critically coupled if r1 = ar2. Like for an all-pass microring, the pass transmission of the 

add-drop resonator at critical coupling is zero, but the FWHM of the add-drop ring is larger 

because of the higher losses induced by the drop waveguide.  

 

 

Fig 6.2: Transmission spectrum of a typical add-drop ring resonator configuration. 

 

 

6.2 Add-drop ring resonator configurations 

 

6.2.1 Basic configuration with a circular ring 

 

The basic add-drop ring resonator consists of a circular ring surrounded by two straight 

dielectric waveguides on either side. In the structure designed here shown in Fig. 6.3, the 

gray area represents silver, which is the metal used in this case, and the white area 

represents air, which is the dielectric. The entire structure measures 1000nm by 1000nm 

and is made of silver, with the circular ring and the dielectric waveguides containing air. 

Thus, a metal-dielectric-metal interface is formed on either side of this ring, for the 
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propagation of the surface plasmon polariton (SPP) waves. The geometric parameters of 

the shape are as follows. The radius of the ring, r=150nm. The gap between the ring and 

the waveguides on either side, known as the coupling distance, d=5nm.  The width of the 

waveguides and the ring, W=50nm, and this is kept constant for all the structures designed 

in this book.  

 

 

Fig 6.3: Circular add-drop ring resonator 
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 6.2.2 Variations of the geometric shape of the ring 

 

The shape of the ring in the add-drop configuration was varied to analyze and compare the 

difference in transmission characteristic from the basic circular ring. Figure 6.4 and 6.5 

show two such variations. Both are elliptical structures, one with a vertical major axis, 

called a vertical major axis ellipse, and the other with a horizontal major axis, called a 

horizontal major axis ellipse.  From the figures, it is seen that the main difference between 

these structures and the circular ring is the coupling length. The coupling length is the 

length of the ring that is in close proximity to the input waveguide. Simulations were 

carried out to observe the difference in transmission characteristics between these two sub-

structures, and also with the circular ring. In both cases, the major axis length was kept at 

660nm, and the minor axis length at 300nm. The coupling distance, d=5nm. The width of 

the ring and waveguides were kept constant at 50nm, as stated previously. 

 

 

Fig 6.4: Vertical major axis elliptical ring configuration. 
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Fig 6.5: Horizontal major axis elliptical ring configuration 

 

The next two structures consist of a normal square ring and a round-edge square ring, 

shown in Fig 6.6 and Fig 6.7 respectively. The length of the sides of each ring is, L=400nm. 

Here, the main difference between these two structures is the amount of bending at the 

corners. The bends at the corners of the round-edge square ring are less sharp compared to 

the normal square-ring. Simulations were run on these two structures to determine what 

effects the amount of bending has on the transmission characteristics. 
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Fig 6.6: Square ring configuration 
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Fig 6.7: Round-edge square configuration 

 

6.3 Simulation of the propagation of SPP waves through the ring-

resonators 

 

6.3.1 Source profile creation 

 

The profile for the propagation of surface plasmon polariton (SPP) is created by having a 

Gaussian photon pulse incident on the metal-dielectric-metal interface on the input 

waveguide side. The normalized Ex, Ey and Hz fields for the generated SPP profile is 

shown in Fig. 6.8 and 6.9.  
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Fig 6.8: Ex and Ey profiles for the generated SPP wave 
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Fig 6.9: Hz profile for the generated SPP wave 

 

The SPP wave profile obtained is incident at the input port of the first waveguide. Using 

the finite-difference-time-domain (FDTD) method and the material models obtained, the 

propagation of the SPP wave along the structures is simulated at different time intervals. 

To ensure complete convergence of the numerical analysis, very small grid sizes were 

chosen, with ∆x=5nm and ∆y=5nm. The simulation was carried out for 20000 time steps, 

to ensure the generated SPP wave reached a stable value. The time step is given by- 

 

                                                              

2 2

0.95

1 1
t

c
x y

 


 

                                                             (5.11) 

 

The plasmons propagate well without much loss along the dielectric waveguides composed 

of air, but the lossy silver medium causes the attenuation to the SPP waves as they 

propagate through it. The figures of the simulations for each of the add-drop ring resonator 

configurations are shown below. For each shape, the Hz field at resonant conditions, and 

the Hz field at non-resonant conditions is shown. 
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Circular ring 

 

 

 

 

 

 

Fig 6.10: Hz field profiles for- a) Resonant condition, b) Non-resonant condition 
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Vertical major axis ellipse ring 

 
 

 

 

 

 

Fig 6.11: Hz field profiles for- a) Resonant condition, b) Non-resonant condition 
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Horizontal major axis ellipse ring 

 

 

 

 

 

 

Fig 6.12: Hz field profiles for- a) Resonant condition, b) Non-resonant condition 
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Square ring 

 

 

 

 

 

 

Fig 6.13: Hz field profiles for- a) Resonant condition, b) Non-resonant condition 
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Round-edge square ring 

 

 

 

 

 

 

Fig 6.14: Hz field profiles for- a) Resonant condition, b) Non-resonant condition 
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Chapter 7  

Results and their Analysis 

 

7.1 Transmission characteristics 

 

7.1.1 Overview 

 

For an add-drop ring resonator, the transmission characteristics refer to the power at 

different ports of the resonator for different wavelengths of the input wave. At resonant 

conditions, maximum power is obtained at the drop port. Conversely, the power at the drop 

port is minimum under non-resonant conditions, since most of the power passes via the 

through port. The maximum power passing through the drop and through ports and the 

corresponding resonant frequencies gives a measure of the performance of a ring resonator 

and is referred to as the transmission characteristics of the device. We plotted the power at 

the drop and through ports vs wavelength to obtain the transmission characteristics of the 

different configurations. 

 

7.1.2 Calculation of power at the ports 

 

The power at the drop and through ports were calculated at different time steps. To 

calculate the power at different time steps, Poynting vector was used. Poynting vector is 

defined as the cross product of Electric and Magnetic field intensities at a certain instant or 

here, time step. Poynting vector formula is given by- 

 

                                                              𝑺⃗⃗⃗ ⃗ = 𝑬⃗⃗⃗ X 𝑯⃗⃗⃗⃗                                                       (5.12) 
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Where, 

        𝑺⃗⃗⃗ = instantaneous power, 

        𝑬⃗⃗⃗ = Electric field intensities 

        𝑯⃗⃗⃗⃗ = Magnetic field intensities 

 

 

Fig 7.1: Direction of E and H fields for calculating instantaneous power. 

 

The calculated power at the different ports were then divided by the input power at the 

input to obtain the transmission efficiency for each add-drop configuration. 

 

 

7.2 Efficiency vs Wavelength curves for different ring shapes 

 

7.2.1 Circular ring 

 

The transmission efficiency at the drop and through ports was plotted vs wavelengths 

ranging from 700nm to 2500nm and is shown in Fig. 7.2. 
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Fig 7.2: Efficiency vs Wavelength for circular ring  

 

In the figure, the red curve represents the transmission characteristics of the drop port, and 

the blue curve represents that of the through port. It is seen that, generally, when the 

efficiency through the drop port is high for a particular wavelength, the corresponding 

efficiency at the through port is low. The maximum efficiency obtained at the drop port is 

39% at a resonant wavelength of 1340nm. An additional resonant peak at a wavelength of 

1900nm is also observed, with an efficiency of 17%. 

 

7.2.2 Vertical major axis elliptical ring 

 

The transmission characteristics are shown in fig 7.3. 

 

Fig 7.3: Efficiency vs wavelength for elliptical ring (vertical major axis) 
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For the elliptical ring, the maximum efficiency obtained is 44%, which is higher than the 

basic circular ring shape. The maximum efficiency occurs at a resonant wavelength of 

2070nm. A close to ideal passband is observed between 1300nm and 2400nm, which means 

that this structure has potential use as a band-pass filter for this range of wavelengths. 

 

7.2.3 Horizontal major axis elliptical ring 

 

The transmission characteristics are shown in fig. 7.4. 

 

 

Fig 7.4: Efficiency vs wavelength for elliptical ring (horizontal major axis). 

 

From the graph it is observed that for this range of wavelengths, most of the power passes 

via the through port. The maximum efficiency obtained is a negligible 0.24%. 

 

7.2.4 Square ring 

 

The transmission characteristics are shown in fig 7.5. 
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Fig 7.5: Efficiency vs Wavelength for square ring 

 

The maximum efficiency obtained is 35% at a resonant wavelength of 2500nm. The part 

of the graph for the drop port between 1300nm and 1900nm represents something close to 

a stopband. This structure can be used as band-stop filter for this range of wavelengths, 

provided further modifications are made to enhance the stopband characteristics. 

 

7.2.5 Round-edge square ring 

 

The transmission characteristics are shown in fig 7.6. 

 

 

Fig 7.6: Efficiency vs Wavelength for round-edge square ring 
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The round-edge add-drop configuration shows the highest maximum efficiency at the drop 

port out of all the shapes, with an efficiency of 46% at a resonant wavelength of 1880nm. 

Two resonant peaks were also observed at wavelengths of 880nm and 1070nm, with 

efficiencies of 7% and 14% respectively. 

 

7.2.6 Results 

 

The transmission efficiency and the corresponding resonant wavelength for each of the 

shapes in summarized in Table 7.1. 

 

Table 7.1: Maximum transmission efficiency of each ring resonator configuration and their corresponding 

resonant wavelengths. 

 

Shape  

Maximum    

transmission       

efficiency 

(%) 

Resonant 

wavelength 

(nm) 

Circular 39 1340 

Ellipse (vertical major axis) 44 2070 

Ellipse (horizontal major 

axis) 

0.24 1040 

Square 35 2490 

Round-edge square 46 1880 

 

 

7.3 Effect of coupling distance 

 

7.3.1 Overview 

 

The transmission characteristics were also observed by increasing the coupling distance 

between the input waveguide and the ring for each add-drop configuration. In the original 

simulations shown previously, the coupling distance, d, was kept at 5nm, as seen in fig. 6.3 
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to 6.7. Here, the coupling distance is increased to 20nm and its effect on the transmission 

efficiency is discussed. 

 

7.3.2 Efficiency vs Wavelength curves 

 

The graphs of efficiency vs wavelength for each geometric add-drop configuration is 

shown in fig 7.7(a) to fig 7.7(d). Simulations on the horizontal major axis ellipse 

configuration was not carried out since it already showed negligible drop port efficiency in 

the previous simulation. 

 

 

(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Fig 7.7(a)-7.7(d):- Transmission efficiency vs. Wavelength for, a) Circular, b) Ellipse 

(vertical major axis), c) Square, d) Round-edge square for a coupling distance of 20nm. 

 

Here, it is observed that the maximum efficiency at the drop port decreases by more than 

double for each shape as a result of increasing the coupling distance from 5nm to 20nm. 

The normal square ring structure now has the highest maximum transmission efficiency of 

18.6% at a resonant wavelength of 2090nm, while the circular ring resonator has the lowest 

with a maximum efficiency of 10.77% at a resonant wavelength of 1020nm.  

The results are summarized in Table 7.2. It can be concluded that increasing the coupling 

distance significantly decreases the transmission efficiency at the drop port. 
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Table 7.2: Transmission efficiencies for increased coupling distance d=20nm 

 

Shape  

Maximum 

transmission     

efficiency 

(%) 

Resonant 

wavelength 

(nm) 

Circular 10.77 1020 

Ellipse (vertical major axis) 12 1440 

Square 18.6 2090 

Round-edge square 18.31 1080 
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Chapter 8  

Conclusion and future works 

 

8.1 Conclusion 

 

    To summarize, we have proposed various geometric shapes for the ring in the add-drop 

ring resonator configuration in addition to the common circular ring and simulated and 

analyzed their transmission characteristics by using the propagation of SPP waves through 

an MDM waveguide interface. Our main aim was to determine which particular geometric 

structure for the ring has the optimum transmission efficiency and also the resonant 

wavelengths at which the transmission peaks occur. From our studies, we have found out 

that both the round-edge square (46%) and vertical major axis ellipse resonator (46%) 

structures show higher transmission efficiencies compared to the basic circular one (35%). 

We also investigated the change in the transmission characteristics by increasing the 

coupling distance between the input waveguide and the ring and observed that the 

transmission efficiency decreased significantly for each shape. From our studies, we can 

conclude that by utilizing the different transmission characteristics of different ring shapes, 

the design of filters, plasmonic diodes and various other plasmonic nanostructures can be 

optimized. 

 

8.2 Future works 

 

8.2.1 Optical NAND gate 

 

The proposed structure of an optical NAND gate is shown in fig 8.1. The device has a 

typical Silicon on Insulator (SOI) structure with the waveguide and rings made out of 

silicon and placed on a silicon dioxide substrate. The device contains two main input ports, 

A and B, a control port C and an output port. The concept behind the design is that the 

input to the control port will always be HIGH and it will have twice the amplitude of the 

HIGH (1) input signal supplied to A and B and will be 1800 out of phase with it. The 

frequency of the HIGH input signals used here will be the resonant frequency at which 
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each input signal resonates within their corresponding rings and will appear at their 

respective drop ports. 

When both inputs A and B are zero, the control port is HIGH (1) and will result in a HIGH 

(1) output at the output port. 

When either one of the inputs A and B is HIGH (1), it will superimpose with the control 

port input and will reduce the amplitude of C by half. A HIGH (1) output will still appear 

at output port equal to the value of the input signal at A or B.  

When both A and B are on, they will superimpose with the control port input C and 

destructive interference will occur, resulting in a LOW (0) output at the output port. 

So, the device performs similarly to a NAND gate combination who’s expected results are 

summarized in table 3. 

 

 

Fig 8.1 Proposed NAND gate structure 
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Table 3:- Expected truth table of proposed NAND gate 

A B Control port Output 

0 0        1 1 

0 1        1 1 

1 0        1 1 

1 1        1 0 

 

 

8.2.2 Other works 

 

We also have plans to work on other devices in the field of silicon photonics like the 

proposed NAND gate presented above and also improve and optimize the designed 

structures by further modifications and analysis. To give a more particular view of the 

planned future works, the following list is provided- 

 

 To use the shapes with good transmission characteristics for designing devices 

suitable for various optical applications, like wavelength division multiplexing 

(WDM), coupled resonator optical waveguides (CROW) etc. 

 To design other plasmonic devices like diodes, NOR, NOT logic gates etc. 

 To use Computer Simulation Tool (CST) for improved and more efficient 

simulations of photonic structures. 
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