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ABSTRACT 

This thesis is concerned with depicting the performance of MPC as a controller in nonlinear 

systems covering various fields of engineering. The Adaptive PID controller is used as the 

generic means of controller comparison. Main Emphasis and theme of this thesis is to visualize 

the performance of MPC as a controller for the flight control of the Micro Aviation Vehicle 

Ornithopter. The velocity, altitude and angular position are taken as the flight outputs to be 

controlled. A two dimensional model of the ornithopter is selected because it accommodates the 

inseparability of thrust and lift in its system which is instrumental for describing the flight 

operation of the ornithopter. Both the acceleration phase and steady state cruise motion control 

of the ornithopter is considered. The entire nonlinear mathematical model describing the 

equations of motion of the ornithopter is simulated in the Simulink Environment of the Matlab 

Software. The performance of the Model Predictive Controller for the flight control of MAV 

ornithopter is evaluated by comparing the responses with that of an Adaptive PID controller. 

Although a very improved and significant flight control of the ornithopter is possible with the 

Model Predictive Controller, a disturbance prone scenario, changing wind direction and speed is 

needed to completely visualize the impact of Model Predictive Controller in the flight control of 

an ornithopter. Moreover a better system model comprising a three dimensional mathematical 

model is required to successfully proceed with further altitude and velocity control. Other 

directional outputs such as the angular velocity, acceleration can also be investigated. 

Hence this thesis can be considered as the basis of properly understanding the control mechanism 

of the Model Predictive Controller and finally would serve as the platform from which the flight 

control of ornithopter can be investigated with Model Predictive Controller under more realistic 

and practical instances in which the ornithopter needs to be controlled. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Almost all systems exhibit nonlinearity because the root of every possible mechanism 

existing in the nature is complex and is described by highly complicated mathematical modeling 

only derived from empirical and theoretical study of multifarious systems. To accommodate all 

the aspects working in harmony for the proper functioning of a nonlinear system is always a 

challenge and have haunted researchers over the history. When it involves imitating the 

sophisticated control mechanism of a natural being such as the bird or any other living objects, 

the difficulty escalates and makes it impossible to materialize the system in reality because of the 

limitations of science and its benefactor the engineering tool of “Technical Know How”. Human 

beings have responded to the task with a simplistic approach compatible with the available 

resources at hand. Most Nonlinear Systems are quite difficult to control and moreover requires 

the development of sophisticated controllers having the ability to anticipate and literally think 

like a human. Many intelligent controllers have evolved through generations with the expansion 

of artificial intelligence and every time human beings were fascinated by the state of the art 

performance of these smart controllers. Researchers were intrigued by knowing that human 

capability can conquer all horizons and this unquenching thirst of the scientific luminaries of 

modern days have been instrumental in the growing development of controllers of unbounding 

capabilities of which the ability of predicting the future stands out from all other highly tuned 

functions of the controllers of today. Amongst all the innovations of controllers till now, Model 

Predictive Controller (MPC) has entered into the era of intelligent controllers with a strong 
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statement. MPC have a unique controlling capability in that it can mimic the behavioral pattern 

of a human brain. It mainly imitates how the brain utilizes its sense of vision to anticipate its next 

movement. This has made the Model Predictive Controller (MPC) a very lucrative tool for 

controlling systems of diversified fields. On the other hand PID controllers have always been the 

platform and a benchmark for investigating the performance of other controllers. In many ways 

the PID controllers have been modified and computationally expanded with some innovative 

features to make it more adaptive in controlling multifarious systems of almost all field of 

engineering [53]. This thesis would investigate the performance of MPC and as a generic means 

of analysis would be compared with the benchmark adaptive PID controllers. Moreover the 

range of possibilities of MPC controlled systems would be scoured by observing its performance 

on a range of systems covering various disciplines of engineering. Initially a rudimentary 

analysis is done with a very simplistic nonlinear model comprising of the DC motor controller 

Robotic leg. After that the comprehensive features of the MPC is analyzed by launching it as a 

controller in some nonlinear plants such as the Stirred water Tank Heater (STH) which is 

extensively used in chemical processing plants and Switched Reluctance Motor (SRM) which 

quite recently has supplanted the induction motor in its use in various fields demanding variable 

speed drives and partly as a result of development of power electronic drives [37]. Finally the 

suitability and effectivity of the MPC controller is explored by thoroughly investigating the flight 

control of an ornithopter which is associated with a complex nonlinear dynamics and thereby 

demands highly sophisticated controllers for its flight control. In every control analysis of the 

systems considered in this thesis work, linearization of the nonlinear systems is carried out to 

make the process simpler and understand the crude aspects of its controllable features by making 

the system feasible for carrying out simulations in the Matlab environment. 
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Emphasis is hugely given in the implementation of a good performance controller for flight 

control of the ornithopter. Ornithopters are aerial systems mainly comprising of Micro Aviation 

Vehicles (MAVS) that mimic the flapping wing flight of birds [1]. Although many of the subtle 

controlling features of the birds involving the feather dynamics are eliminated in the design of 

the ornithopters, the swiftness and agility that the ornithopter promises to provide makes it very 

attractive in surveillance arenas of application where an unobtrusive flight is necessary and the 

aspect of swift motion is quite apparent [4] [5]. It differs from its contemporary fixed-wing 

aircraft from the fact that the dynamics of the ornithopter incorporates both the thrust and the lift 

mechanism inseparably thus making it very complicated to control. On the other hand the 

aircrafts have its wing’s fixed which means that the lift mechanism and thrust mechanism is 

separated and considered as two different entities working together separately to provide the 

flight operation. Hence in a fixed- wing aircraft both the lateral and longitudinal motion are 

separated by decoupling the lateral and longitudinal equations of motion. However, the nonlinear 

equations of motion describing an ornithopter is quite complex because the wings of the 

ornithopters are not fixed [7] [11] [12]. Hence the decoupling of the lateral and longitudinal 

equations are generally avoided and in most cases of research on ornithopters the entire system 

dynamics is considered and this necessitates the use of a very sophisticated controller that has the 

ability to modulate all the complex directions and kinematics of motion. Generally a dimensional 

approach is taken for describing the dynamics of an ornithopter [4] [6] [7]. A one dimensional 

mathematical model is done which due to its simplicity fails to provide a complete description of 

the ornithopter. A three dimensional approach is also done, but the complex nature of the 

mathematics that involves the description of 3D dynamics of the ornithopter makes it very 

difficult [14] [17] to explore the flight control of the ornithopter using the existing controllers of 
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today. The possible mechanism of controlling the ornithopter model in the three dimensional 

approach would involve the innovation of a nonlinear adaptive control system. However the two 

dimensional mathematical representation of the ornithopter although not so complicated as the 

3D model, it still contains all the necessary information depicting the kinematics of the 

ornithopter. Each and every direction of motion although incorporated in the system dynamics of 

the 2D model of the ornithopter, every equation of motion is simplistically represented [4]. The 

two dimensional approach remains as the ground in which research can be done for a realization 

of a sophisticated flight control of the ornithopter. In this thesis the two dimensional model is 

considered. Both the cruise motion and the initial acceleration phase of the ornithopter is 

elaborately encapsulated in the 2D dynamic model of the ornithopter and thus renders it possible 

to observe the flight control of the ornithopter in both of these phase of motion of the ornithopter 

using the MPC controller. The performance analysis is also evaluated by comparing the 

performance of MPC and PID controller in the two phase of motion of the ornithopter. The 2D 

mathematical model of the ornithopter was implemented using Simulink and finally the 

linearization of the Simulink model was carried out using the linearization toolbox present in the 

Simulink environment of Matlab. Finally simulations were done using Matlab providing a 

thorough performance analysis of Model Predictive Controller in the flight control of the 

Ornithopter. 

1.2 Related Work 

Many researchers worked on ornithopter modeling and control. De Laurier et al. [2] have laid 

general foundation for the aerodynamic model of the flapping wing flight known as the 

ornithopter. Fowler et al. [3] has presented a feasible design of the ornithopter explaining the 

flight control of this flapping wing flight model. A study of the unsteady aerodynamics of a 



5 
 

flapping wing was done in [4] for a flapping wing MAV in hover. A flapping wing MAV was 

studied in [14] in order to understand the modeling of MAV. A wing’s force and flow structures 

were studied in [12] for a simplified flapping motion similar to that of an insect. This is 

important in that it offers insight into the feasibility of control of the simplified ornithopter. 

Several authors [4] [7] have proposed schemes for controlling the velocity and altitude of the 

ornithopter. The simplified model of the (MAV) was studied in [12] and the control schemes 

involving feedback controllers and feed-forward control operations were investigated. PID 

controllers in the feedback loop and frequency limiting and saturated thrust and lift forces in 

ornithopters were studied in [6]. Cruise Motion and acceleration motion of the ornithopter was 

studied [6] [11] [13] to gain an insight of the desired responses of the ornithopter in such stages 

of motion. 

Moreover study on the single phase linearized SRM model was done, Ray and Davis et al. [35] 

suggested a superior approach which depended on linearizing the inductance that allowed the 

voltage to be switched at any point in the cycle and enabled control strategies to be examined 

with sufficient accuracy inclusive of component ratings. Hybrid controllers and Genetic 

algorithm based controllers was studied from [24] where hybrid controller by Paramasivam et al. 

[37] has reduced the steady state error as compared with PI-type fuzzy logic control (FLC), while 

keeping the merits of PI-type FLC. Reay et al. [38] proposed neural network based SRM drive.  

Brief study on the mathematical modeling of STH was done from a case study by Dr. Kevin 

Craig from Rennsselaer Polytechnique Institute and the use of MPC for a SISO control of the 

STH was studied in [40] where the control of the temperature of STH using single constraint 

manipulated variables was carried out. 
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Modeling Motion Control of Robotic arm was done in [35] which delineated the use of PID 

controllers in DC motors and also the simplistic representation of a robotic arm. This gave me 

the impetus to delve into the study of a simplistic approach to designing the robotic leg and use 

MPC for its control. 

 

1.3 Motivation  

As an intelligent and sophisticated control technology, the Model Predictive controller 

can give robust adaptive response of a complex aviation system highly intertwined with 

nonlinearity, external wind disturbances and random variation in parameters. Moreover its ability 

to be tuned with features such as input constraints and output constraints to maintain the stability 

of the system under severe control scenarios of a plant can solve the complicated vehicular 

motion of complicated systems and fast electronic drives. From the above literature review, we 

saw that complex feedforward controllers, adaptive feedback PI controllers, nonlinear adaptive 

controllers have been used in the systems presented in my thesis. Smart GA algorithm based and 

fuzzy logic based controllers are also widely used in mitigating the problems involved in the 

flight control of the ornithopter [7] [13]. Particle Swarm Optimization technique embedded in 

PID controllers for controlled and predictive tuning has been carried out for managing nonlinear 

control mechanisms ranging from motion control of ornithopters to electric drive control of 

Switched Reluctance Motor. No research work has so far used MPC in the flight control of 

ornithopters and the current and speed control of switched reluctance motor. Although MPC has 

been widely used in the temperature control of STH, a comprehensive analysis of the STH taking 

into account the aspect of controlling it with multivariable inputs and MPC controller for that 
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purpose has not been carried out. Good result obtained from the simulation of this research can 

instigate further experimental work using the 2D model of the ornithopter and MPC as the basis 

of control for future research work. Moreover a satisfactory flight control of the 2D model of the 

ornithopter can also facilitate and inspire researchers to develop a MPC controller for the flight 

control of the 3D model of the ornithopter. 

 

1.4 Research Objectives 

The objectives of the work can be listed as follows: 

 MATLAB Simulink Modeling of a 2D Ornithopter, A Multiple Input Single 

Output (MISO) model of a Stirred Tank Heater, a small signal single phase 

Switched Reluctance Motor (SRM) and a DC motor operated Robotic Leg. 

 Linearization of the systems making sure that the systems don’t lose its integrity 

after linearization for its proper operation using MPC controllers. 

 Evaluate the performance of the systems with conventional PID controller. 

 Evaluate the performance of the systems with the proposed MPC controller. 

 Compare the performance between the conventional PID and MPC controllers. 

 Drawing the conclusion based on the comparison of the results 

1.5          Outline of the Thesis                  

Chapter 1 represents the background of the present work, motivation and objectives and related 

work with this project. 

Chapter 2 describes briefly about MPC, its control strategies and its impact on nonlinear 

applications. 
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Chapter 3 discusses the modeling of nonlinear models comprising of systems involving various 

field of engineering such as a switched reluctance motor, a stirred tank heater and DC motor 

operated Robotic Leg. Simulation results to evaluate the performance analysis of the systems 

using both PID and MPC controllers are also manifested.  

Chapter 4 elaborately discusses the concept of an ornithopter and the detailed dynamics and 

modeling of an ornithopter for its flight control. The linearization technique for the analysis of 

the nonlinear system is discussed. Representation of the models using Simulink block diagrams 

is also described in this chapter. 

Chapter 5 presents the simulation results of the flight control of the ornithopter under different 

operating scenarios using both PID and MPC controllers.  

Chapter 6 summarizes the research work presented in this thesis and discusses the scopes of 

future works possible.  
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Chapter 2 

Model Predictive Controller (MPC) and its use in 

Nonlinear Applications 

2.1     Introduction about MPC 
 

 
2.1.1 Basic Working Principle: 
 

 
 Model predictive control (MPC) refers to a class of computer control algorithms that 

utilize an explicit process model to predict the future response of a plant [46] [51]. At each 

control interval an MPC algorithm attempts to optimize future plant behavior by computing a 

sequence of future manipulated variable adjustments. The first input in the optimal sequence is 

then sent into the plant, and the entire calculation is repeated at subsequent control intervals. 

Originally developed to meet the specialized control needs of power plants and petroleum 

refineries, MPC technology can now be found in a wide variety of application areas including 

chemicals, food processing, automotive, autonomous robots and aerospace applications,[41] 

[43].  

The working process of MPC can be well described by the game of chess. A player, when plays 

chess, tries to predict the future moves of the opponent. So, to win the match, he predicts about 

some future moves depending upon his past experiences and memories. A good player has 

always got some plans about his next moves or actions.  
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Figure 2.1 shows the basic structure of MPC in block diagrams. Depending upon the past inputs 

and outputs, model predicts the future output. It is compared with reference value and the 

subtracted result or future error is sent to the optimizer. With the help of quadratic cost function 

and suitable constraints, it creates the future inputs of the optimizer which finally becomes the 

past memory of the model for the next event. Thus an iterative method is subsequently followed 

until it reaches close to the desired reference value [34]. 

 

Figure 2.1: Basic structure of MPC 

A model is used to predict the future plant outputs based on past and current values and the 

proposed optimal future control actions. These actions are calculated by the optimizer taking into 

account the cost function (where the future tracking error is considered) as well as the constraints 

[42].  
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2.1.3          A Brief History of Industrial MPC: 

Rawlings[44] provides an excellent introductory tutorial aimed at control practitioners.Allgower, 

Badgwell, Qin, Rawlings, and Wright [47] present a more comprehensive overview of nonlinear 

MPC and moving horizon estimation, including a summary of recent theoretical developments 

and numerical solution techniques. Mayne, Rawlings, Rao, and Scokaert[48] provide a 

comprehensive review of theoretical results on the closed-loop behavior of MPC algorithms. The 

authors presented a survey of industrial MPC technology based on linear models at the 1996 

Chemical Process Control V Conference (Qin & Badgwell [49]), summarizing applications 

through 1995. Young, Bartusiak, and Fontaine [50], Downs [51], and Hillestad and Andersen 

[52] report development of MPC technology within operating companies. A survey of MPC 

technology in Japan provides a wealth ofinformation on application issues from the point of view 

of MPC users (Ohshima, Ohno, & Hashimoto [53]). The first description of MPC control 

applications was presented by Richalet et al. in 1976 Conference (Richalet et al. [54]) and later 

summarized at 1978 inAutomaticapaper (Richalet et al. [55]). They described their approach as 

model predictive heuristic control (MPHC). 

2.2: The “Receding Horizon” Idea: 

past future

Predicted Output

)(kudManipulate

Inputs

k k+1 k+Hc k+Hp

Input horizon

Output horizon

Figure 2.5: The receding horizon concept showing Optimization Problem 



14 
 

At a current instant k, the MPC solves an optimization problem over a finite prediction horizon 

[ , ]Pk k H+ with respect to a predetermined objective function such that the predicted state 

variable x̂ or output ŷ  can optimally stay close to a reference trajectory. The control is 

computed over a control horizon[ , ]Ck k H+ , which is smaller than the prediction horizon(

C PH H≤ ) [44]. If there were no disturbances, no model-plant mismatch and the prediction 

horizon is infinite, one could apply the control strategy found at current time k for all times. 

However, due to the disturbances, model-plant mismatch and finite prediction horizon, the true 

system behavior is different from the predicted behavior. In order to incorporate the feedback 

information about the true system state, the computed optimal control is implemented only until 

the next measurement instant ( , 1k k + ), at which point the entire computation is repeated [46]. 

MPC approach can be expressed considering the following finite horizon cost function [56] 

1

0 1
1

( ,[ ( ),..., ( )]) ( ( ), ( )) ( ( ))
H

rh
t H Tt H t ii T

i
J x u t u t h x u u t g x u

−

+ Δ− + Δ
=

= +∑
   

 

wheret is the current time; H is the length of the optimization horizon; ΔT is the sample period. If 

i > 0, then ( )t i Tx u+ Δ  denotes the controlled trajectory at time t i T+ Δ from xt under piecewise 

controls 0 1[ ( ),..., ( )] H
iu u t u t U−= ∈ ; h is the running cost; and g is the terminal cost. We assume 

that h is non-negative function and g satisfies ( ) eqg x x xα≥ − for all x, where xeq is some 

desired equilibrium and α>0 is some positive constant. That is, g is an ‘upward’ function whose 

lowest point is at the system equilibrium. This condition on g(x) ensures that the control design 

attempts to reach the system equilibrium. Moreover a weighted cost function is also implemented 

by the MPC controller to incorporate systematic design approach for handling interaction in a 

   (2.3) 
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The plant inputs are the independent variables affecting the plant. As shown in the previous 

figure, there are three types: 

Measured disturbances (MD):  The controller can't adjust them, but uses them for feedforward 

compensation. 

Manipulated variables (MV):  The controller adjusts these in order to achieve its goals. 

Unmeasured disturbances:  These are independent inputs of which the controller has no direct 

knowledge, and for which it must compensate. 

The plant outputs are the dependent variables (outcomes) one wishes to control or monitor. As 

shown in figure 2.8, there are two types: 

Measured outputs:  The controller uses these to estimate unmeasured quantities and as 

feedback on the success of its adjustments. 

Unmeasured outputs:  The controller estimates these based on available measurements and the 

plant model. The controller can also hold unmeasured outputs at setpoints or within constraint 

boundaries. 

The design and performance evaluation of the MPC is conducted based on changing the 

following parameters (Figure 2.9): 

 Model and Horizons 

  Constraint 

  Weight Tuning  

 Estimation 
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2.5             Tuning Procedures of MPC 

 
 Tuning of MPC involves some important criterions without which systems cannot be 

operable and may lead to instability and unwanted oscillations. A systemic tuning approach will 

lead to an  

 

efficient controllability of the system. The tuning procedure for satisfactory performance is 

summarized as follows [41] [46] [51]: 

 

 Control Interval/Sampling time (T): Stability is not affected by T but larger T deteriorates 

system performance under frequent disturbances. 

 Control Horizon (M): If Prediction horizon (P) is equal to control horizon (M) then the 

system becomes vulnerable to oscillations and hence M must be always less than P to get 

a desired response. 

 Optimization horizon/Prediction horizon (P): Increasing P will lead to better responses 

only if the system modeling is very precise and accurate. In most cases it is necessary to 

keep the value of P larger than M but not very large, because the modeling of the plant is 

generally done with a simplistic approach. 

 It is wise to select the parameters such that it doesn’t affect the settling time of the plant. 

 

Finally the parameters of the MPC controller should be adjusted depending on the system 

dynamics and the settling time of the plant. 
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Finally a comparative analysis of the performance of the robotic leg by both MPC and PID 

controller is obtained by undergoing simulations in Matlab. Signal values ranging from 10V to 

4V is chosen and the desired output for such actuating signals should be from 90 to 30 degree 

respectively. The model predictive controller is designed such that the parameters chosen are 

shown in the tabular format as follows: 

                             

 

 

 

 

The response of the system using the PID controller for an input of 10 volts is shown below: 
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Parameters Values 
Control Interval  0.1 

Prediction Horizon 10 

Control Horizon 2 

Table 3.2 Control Parameters of the MPC Controller for the Robotic Leg 
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.This simple nonlinear model was linearized using taylor series method and the state space model 

used by the MPC controller was 		൤ݔଵሶݔሶଶ൨ = ቂ 0 1−11.73 −2.657ቃ ቂݔଵݔଶቃ + ቂ 02.394ቃ   ௔        (3.8)ܧ

ݕ		 =  ଵ             (3.9)ݔ6.363

whereݔଵ=θ. 

 

The corresponding transfer function of the linear model is described as follows: 

ఏ(௦)ாೌ(௦) = ଵହ.ଶସ௦మାଶ.଺ହ଻௦ାଵଵ.଻ଷ        (3.10) 

The eigenvalues of the system matrix were -1.3285 + 3.1568i & -1.3285 - 3.1568i showing that 

the system is stable because the real parts of the eigenvalues are negative. 

3.1.2 Summary of the Result 

 From the simulation result we see that the MPC not only did improve the performance of 

the rotational control of the Robotic leg but also ensured a fast reponse which makes the system 

a very effective stepping stone for analyzing more complex model of the Robotic leg using MPC. 

3.2 Modeling of a Stirred Tank Heater  

 Stirred tank heater is used in many chemical processes. Often tank is heated, either by a 

coil or a jacket surrounding the tank. The temperature in the tank is maintained by the flow rate 
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The PID controller with the input variable as the (Jacket inlet flow rate ሶܸ௝) was adaptively tuned 

to: 

Table 3.4 Control Parameters of the PID controller for STH 

Parameters Values 

Proportional Constant (Kp) 0.07 

Integral Constant (Ki) 0.012 

Derivative Constant (Kd) -0.054 

Filter Coefficient (N) 0.78 

 

While undergoing the control of temperature of the tank it was necessary to maintain the inputs 

to non-negative value because under no circumstances would the fluid through the jacket be 

drawn out of the system and the temperature of the fluid in the Jacket cannot be decreased to a 

temperature below 0 0F because it would require a complicated actuator to undergo a negative 

change. The temperature of the tank was required to be maintained at 150 0F which is the 

optimum temperature for wet process chemical plants such as Warewashing and food processing 

operations. 

 

3.2.1 Linearization of the STH system 

The linearization was carried out using the Matlab command linmod and the linearization block 

present in the Simulink environment. The state space model obtained is shown below 
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൤ݔሶଵݔሶଶ൨ = 		 ቂ−3.296 30.3 −0.4ቃ ቂݔଵݔଶቃ + ቂ−0.598 0.29620 0 ቃ ቂݑଵݑଶቃ 
            

	1ݕ      = 	ൣ	0			1൧ ቂݔଵݔଶቃ  
where u1 and u2 represents ௝ܶ and ሶܸ௝ respectively and the output y2 represents ௧ܶwhich is the 

temperature of the tank 

   

The corresponding transfer function representation of the state space model was obtained and is 

shown below: 

 																									 ௧ܶ(ݏ)௝ܶ(ݏ) = 0.1794	sଶ	 + 	3.696	s	 + 	0.4185	 
 																									 ௧ܶ(ݏ)ሶܸ௝	(ݏ) = 0.08886	sଶ	 + 	3.696	s	 + 	0.4185	 
 

 

.The system was stable because the real part eigenvalues of the system matrix was -3.5793 and -

0.1169 respectively which are negative and hence all trajectories in the neighborhood of the 

fixed point will be directed towards the fixed point.  

3.2.2 Tabulation of the Simulated Results 

The simulated results obtained can be tabulated to delineate the comparison of the 
performance using both MPC and PID controllers. 
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Table 3.5 Tabulated summary of the simulated results of the STH System. 

Controllers Input Variables Settling 
Time 

Overshoot  
% 

Manipulated 
variable 

( ሶ்ܸ) ( ሶܸ௝) ( ௝ܶ௜) ( ௧ܶ௜) Min Max 

PID 

1 Manipulated 200 50 36 26 -0.97 5.4 
1 Manipulated 200 60 33 29 -1.1 5.2 
1 Manipulated 220 50 31 29 5.15 -1.0 
1 Manipulated 220 60 29 30 -1.2 5.1 

1.3 Manipulated 200 50 40 29.5 -1.03 5.24 
1 2 Manipulated 50 20 38 -128 300 
1 2 Manipulated 60 22 38 -124 300 

MPC 
 

Input Variables Settling 
Time 

Overshoot 
% 

Manipulated 
variable (1/2) 

( ሶ்ܸ) ( ሶܸ௝) ( ௝ܶ௜) ( ௧ܶ௜) Min Max 

1 Manipulated 
(1) 

200 50 9 0 0 (1) 3 (1) 

1 Manipulated 
(1) 

200 60 7 0 0 (1) 4 (1) 

1 Manipulated 
(1) 

220 50 8 0 0 (1) 4 (1) 

1 Manipulated 
(1) 

220 60 5 0 0 (1) 2.9(1) 

1.3 Manipulated 200 50 13 0 0 (1) 10 (1) 
1 2 Manipulated 

(2) 
50 17 0 0 (1) 319 (2) 

1 2 Manipulated 
(2) 

60 34 0 0 (1) 311 (2) 

1 Manipulated 
(1) 

Manipulated 
(2) 

50 3 0 0 (1) 
150 (2)    

3.3 (1) 
250 (2) 

1 Manipulated 
(1) 

Manipulated 
(2) 

60 3.1 0 0 (1) 
150 (2) 

3.5 (1) 
250 (2) 

 

3.2.2 Summary of the Simulated Results for the STH system 

From the tabulated data showing all the data’s obtained from the simulation results, it is 

quite apparent that the performance of MPC completely overhauls the performance of the 

adaptive PID controller. In the case of controlling the Stirred Tank Heater with a single input, it 

was observed that the input values had gone negative at certain time intervals while using PID 

controller. This is derogatory for maintaining STH temperature of the tank because it will lead to 
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From the tabulated results we can clearly say that the performance of the responses of the speed 

control loop and current control loop of the Switched Reluctance Motor has been significantly 

improved using MPC as the controller. Moreover the tracking of the ramp reference current 

signal has also been very satisfactory which thereby clearly shows the superlative performance 

of MPC over the PID controller.  

3.3.5 Stability analysis of the SRM system. 

The state space model of the current control loop of SRM  with all the parameters taken from 

table 3.8 is shown below: 

൤ݔଵሶݔሶଶ൨ = ቂ−14.97 0−1330 −2793ቃ ቂݔଵݔଶቃ + ቂ0.007280.6539 ቃ   (3.35)     ∗ܫ

ݕ		 =  ଶ          (3.36)ݔ1863

where ݕ = I 

The corresponding transfer function of the current control loop is shown below: 

ூ(௦)ூ∗(௦) = ଵଶଵ଼௦ାଶ଴ଷ௦మାଶ଼଴଼௦ାସଵ଼ଶ଴        (3.37) 

The eigenvalues of the system matrix are -2793.3 and -0.0150 respectively and since the values 

are negative the current loop of the Switched Reluctance motor is stable. 
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The state space model of the speed control loop of the Switched Reluctance Motor is shown 

below: 

൥ݔଵሶݔሶଶݔሶଷ൩ = ൥−0.1667 0.000455 00 −2.5 0390 0 −10൩ ቂݔଵݔଶቃ + ൥010൩߱∗    (3.38) 

 

ݕ =  ଷ          (3.39)ݔ0.383

where ݕ = ߱ 

The corresponding transfer function is shown below: 

ఠ(௦)ఠ∗(௦) = ଴.଴଺଻ଽ଺௦యାଵଶ.଺଻௦మାଶ଻.଴଼௦ାସ.ଵ଺଻       (3.40) 

The eigenvalues of the system matrix are -10, -0.1667 and -2.5 respectively. Since the values are 

negative the speed control loop of the Switched Reluctance Motor is stable. 
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 Chapter 4 

Ornithopter, its Dynamics and Flight Control Model 

 

4.1        Introduction to Ornithopter 
 

 Natural fliers like birds have mesmerized and captured the inquisitive minds of inventors 

through ages. The ease and grace with which they fly in the air is really amazing and it quite 

remarkably and significantly surpasses the complicated dynamics and control mechanism of the 

aircrafts of today. Several attempts at imitating the natural agility and nonchalant ease of flight of 

the birds have been carried out. Amongst many truly groundbreaking works a flapping wing 

vehicle commonly known as an ornithopter has been brought to the illuminating canvas of recent 

research works. The aircraft mechanism involves separating the flight mechanism into two 

different forces of action [26]. The lift mechanism which involves the wing surfaces of the 

aircraft are totally separated from the mechanism of thrust [26]. But in the control mechanism of 

the ornithopter both the lift and thrust mechanism are integrated together [2] [7]. This intricate 

nature of control of the birds is only possible to be materialized by human beings if the 

complicated dynamics of the birds of wings can be unraveled with complete mathematical 

modeling. The mechanical, aerodynamics and structural aspects of the flapping wing motion 

control is the key to developing an adequate and comprehensive model of the ornithopter [1][11]  

[5] [6] which can be launched in real life, thus expanding the horizon of human imagination and 

make human beings that closer to accomplish a victory over the nature itself. Attempts to 

incorporate all the complex motions of a bird for developing a flying vehicle has never stopped 
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The motion is such that the center panel moves. in a direction which is opposite to the flapping 

of the outer panels. This three-panel design serves to balance he time-varying lift seen by the 

fuselage and evens out the power required from the engine during the flapping cycle. With the 

two-panel design, the power required for the downstroke [5] is greater than for the upstroke. The 

flapping is asimple harmonic motion driven by a lightweight transmission which reduces the 

high rotational speed of the engine down to the low flapping frequencies which are required. A 

linear twist is experienced by the wing and is 90 degrees out of phase with the flapping. No 

ailerons are present, thus turning is accomplished by yaw &roll coupling produced by the rudder 

deflection in conjunction with the wing's average dihedral angle. The dihedral angle is 

accomplished by making he upstroke flapping angle larger than the downstroke angle. 

 

4.2        Recent Applications of Ornithopter  

 Research is now continuing into constructing a full-scale motorized ornithopter capable 

of carrying a human being. This enormous task can be divided into several different sub-areas 

some of which include: wing design, landing and take-off simulations, drive mechanism design, 

and flight dynamic analysis [4] [6]. 

Recently the earnest interest for ornithopters has grown in the area of Micro Aerial Vehicles 

(MAV). These miniature flying objects of such agility will indeed be the ultimate platform for a 

diversified area of tasks including systems monitoring and surveillance where a swarm of tiny 

agents would be unobtrusive and have better access to confined areas than large flying vehicles. 

The most recent realizable (MAV) based ornithopter of such kind is the Kestrel ornithopter [5].  
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horizontal body axis. 

δE the angle of the tail (or elevator). 

m the mass of the ornithopter. 

g Earth’s gravity: g ≈ 9.81m/s2. 

v the velocity of the ornithopter: ݒ = ඥݒ௫ଶ + ௬ଶݒ = ඥݔሶ ଶ + ሶݕ ଶ 

T the thrust produced by the wings, which is assumed to be parallel to the body axis. 

L the lift generated by oncoming air flow. 

 

The equations of motion for this case can be summarized as [4] [5]: 

ሷݔ݉ + ܾ௫ݔሶ = ܶ cos ߠ − ܮ sin  (4.1)        ߠ

ሷݕ݉ + ܾ௬ݕሶ = ܶ sin ߠ + ܮ cos ߠ −݉݃  (4.2) 

ܫሷߠ + ܾఏߠሷ =  ா          (4.3)ߜ௧ܭ−

whereܾ௫, ܾ௬, and ܾఏ are horizontal, vertical, and rotational damping of the ornithopter,I is the 

moment of inertia of the ornithopter, and ܭ௧ is a torque constant relating thetotal torque, of which 

the ornithopter is subject, to the angle of the tail. From the free-body diagram, we can also 

conclude that 

ሶݔ = ݒ cos(ߠ −  (4.4)          (ߙ

& 

ሶݕ = ݒ sin(ߠ −  (4.5)          .(ߙ
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An approximation of the moment of inertia is made using the following equation for the moment  

of inertia for a solid cuboid [4]: 

	ܫ  = ଵଶ݉(ℎଶ + ݈ଶ)          (4.6) 	
where h = height and l = length. For h ≈4 ݅݊. = 0.1016 m, l ≈ 6 in. = 0.1524 m,and m = 0.096 

kg, we find that I ≈2.6839E − 4 kg ·݉ଶ. An estimate of the rotational damping and torque 

constant can be made by considering two cases for the equation ߠሷܫ + ܾఏߠሷ =  ா.  In the firstߜ௧ܭ−

case, the ornithopter is at rest and a maximum step in angular acceleration, ߠሷ௠௔௫, is applied to 

the system. At this point ߠሶ  = 0 and ߜா ாߜ =  ,max.From observation, _ߜா ,max 	≈ ±45° and ߠሶ௠௔௫ ≈ ଶݏ/±540° ≈ ௧ܭ ଶ.1 We can then solve forݏ/݀ܽݎ	±9.43 ≈0.0032. In the second case, 

the ornithopter is in steady rotation. Hereߠሶ = ሶ௠௔௫ߠ = ሷߠandݏ/180° = 0.We can then solve for ܾఏ ≈8.0516E − 4 N · s/m. 

The system parameters were approximately estimated for an ornithopter in steady state 

motion/rotation with its velocity increasing from the moment of flight to the point it starts to 

hover at the cruise altitude. The complex differential equations describing the equation of motion 

of an ornithopter was simulated in Simulink.  
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4.5         Linearized Model of the Ornithopter 

 The linearization of the complex nonlinear model of the ornithopter was carried out by 

the Matlab command linmod with initial operating points set at the necessary values. The entire 

process was carried out by simulations involving linearization in Matlab. 

The Linearization Results yielded from Matlab resulted in the State Space Model of the Entire 

Two Dimensional Ornithopter System as shown below: 
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ଵݕ  =    ଵݔ
ଶݕ  =  ଷݔ
ଷݕ  =  ହݔ
 

where ݕଵ ଶݕ ,  and ݕଷ  represents the outputs of Velocity, Altitude and Angular Position 

respectively. The variables ݑଵ, ݑଶ and ݑଷ represent the input of tail command angleߜா , Thrust 

and Lift respectively. 

The eigenvalues of the system matrix are -10.42, 0, -10.42, 0, 0 respectively and since they are 

negative the system is stable. 
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Settling time for the altitude = 0.9 seconds 

Settling time for the Angular Position = 0.98 seconds 

Overshoot for the velocity = 0 % 

Overshoot for the altitude = 8 % 

Overshoot for the angular position = 0 % 

From the result we observe that the performance has declined to some extent from the MISO 

MPC controller but nevertheless the main objective of incorporating the thrust and lift as one 

basic component for the control of ornithopter in terms of its output as the velocity, altitude and 

angular position was possible to be implemented in this design. The performance is not only 

satisfactory but also provided a somewhat complete picture of the control mechanism of the 

ornithopter using MPC controller. 

5.5 Tuning Parameters for the MPC Controller  

The parameters were tuned following the general principle of selecting the key parameters. All 

the simulations were carried out using the same control parameters of the MPC Controller. The 

parameter values are tabulated as shown below: 

Table 5.1 Control parameters of the MPC for the Ornithopter system 

Parameters Values 

Control Interval     0.05 seconds 

Prediction Horizon 20 

Control Horizon 5 
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The control interval was selected such that it was always less than the settling time of the system 

which if not selected properly would give erroneous results. The Prediction Horizon was selected 

on the basis of the complexity of the system. If the system dynamics is a third order transfer 

function, it is recommended to increase the prediction horizon. According to the general 

principle, it is also necessary not to make the prediction horizon very large. And the control 

horizon was selected such that it was less than the prediction horizon and not very large so that it 

does not hard track the reference signal. This otherwise would lead to a steady state error which 

is highly undesirable. 

5.6 Tuning method employed for the PID controller 

In case of the PID controller, the tuning block of the Simulink model was used. It was tuned such 

that the system doesn’t lose stability in the process and more importantly manages to obtain an 

optimum tracing of the reference signal with optimum settling time. The overshoot tuning 

parameter was also stipulated to stop the presence of overshoot. It was hard constraint. 

5.7 Simulation Results for the initial acceleration stage of the ornithopter using the ramp 

actuating signal 

 The initial stage involves rising from ground to the holding position with acceleration. 

This involves continuous change (increase) of velocity with time. This aspect was analyzed using 

a reference velocity ramp signal of slope 1 while taking the reference angular position be a step 

signal of angle 1 p.u. The angular position was allowed to stay at its rated 1 p.u for providing the 

tail spin necessary for an improved velocity response. 
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Table 5.2 Simulated Results of the Ornithopter Tabulated 

Controll            Input Variables Settling Time for different
              Outputs (seconds)

Overshoot for different 
           Outputs (%) 

   Thrust Lift Velocity Altitude Angu
Posit

Velocity Altitude Angu
Posit

PID 

4 Manipula
Variable 

  0 Very Poor
Oscillatio
around th
reference 
velocity 

N/A N/A Very Poor N/A N/A

4 50 Manipula
Variable

N/A 9 N/A N/A Very Poor N/A

Manipula
Variable 

50    0 N/A N/A 13 N/A N/A 12 

MPC 

4 Manipula
Variable 

  0 0.5 N/A N/A 6 N/A  N/A 

4 50 Manipula
Variable

N/A  0.9 N/A N/A  Negligible N/A 

Manipula
Variable 

50    0 N/A N/A 0.8 N/A N/A 0 

Manipula
Variable 

Manipula
Variable 

Manipula
Variable

0.15 N/A N/A 0 N/A N/A

Manipula
Variable 

Manipula
Variable 

Manipula
Variable

N/A 0.52 N/A N/A 0 N/A

Manipula
Variable 

Manipula
Variable 

Manipula
Variable

N/A N/A 0.8 N/A N/A 0 

Manipula
Variable 

Manipula
Variable 

Manipula
Variable

0.7 0.9 0.98 0 8 0 

Manipula
Variable 
(Ramp 
Reference

Manipula
Variable 

Manipula
Variable

Good  
Tracking

Expected
Parabolic
Response

0.9       No 
overshoot 
but presence 
some steady 
state error 
 

N/A 0 
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Finally the overall responses with the MISO MPC controller proved to improve the flight control 
of the ornithopter quite remarkably. On the other hand the MIMO MPC controller provided a 
great breakthrough because of the the fact that both thrust and lift along with tail command angle 

 was incorporated as whole in the system dynamics and proved to function with a very 
satisfactory performance. Moreover the initial acceleration phase from ground to the hold 
position where the ornithopter moves with a steady velocity (cruise), was also possible to be 
controlled by the MIMO MPC making the whole control operation very compact with all phases 
considered and made controllable. The response time of the system was also significantly less 
thus proving MPC to be very successful in the flight control of the ornithopter. 
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Chapter 6 

Conclusions and Future Work 

 

6.1  Summary 

 The purpose of this thesis was to investigate the performance of MPC in controlling 

systems encompassing various fields ranging from electrical to chemical and finally in the field 

of aerodynamics. The first phase of this thesis dealt with simple nonlinear models which 

included the temperature control of the STH invariably used in chemical process plants and the 

current & speed control of a SRM which in recent years have supplanted the induction motor in 

its use in electric motor drive applications. A very simple nonlinear model of a robotic leg was 

taken as the base to observe the ability of MPC to control simple systems as well. 

 

Although many nonlinear systems were analyzed but the main emphasis of this thesis was the 

flight control of an ornithopter. To thorough analyze the superior performance of MPC a 

complex nonlinear system involving the ornithopter was considered. A 2D model of the 

ornithopter was investigated which is described by three second order differential equation. After 

linearization a 5 × 5 system matrix was generated and the system also incorporated all the 

manipulating variables together. The thrust and the lift input was inseparably included into the 

dynamics of the system which thereby provided a comprehensive model of the ornithopter. 

(MAV) ornithopter was the basis of research and a MISO, SISO and finally a MIMO 

representation of the ornithopter was modeled using Matlab Simulink as the environment for 

simulation. Moreover not only was the control of the steady state motion of the ornithopter 

(cruise motion in which the ornithopter moves at a constant velocity) investigated but also the 

control of the initial accelerating phase from the ground to the point of hovering of the 

ornithopter was analyzed using the MPC. To evaluate the performance of the MPC the adaptive 

PID controller was used to control the nonlinear systems. Finally a comparison of the 

performance of the PID controller and the MPC controller was undertaken. 
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The simulation results showed remarkable and significant improvement of the control responses 

of the nonlinear systems considered in this thesis. Mainly in the flight control of the ornithopter 

where the adaptive PID controller performance was very poor, the MPC showed convincing and 

distinguished performance compared to the adaptive PID controller. The performance was very 

good and thus can prompt researchers to think of MPC as the future means of controlling a more 

complex 3D model of an ornithopter. 

 

The research in itself was very comprehensive in depicting the control feature of MPC because it 

also showed how a plant which in this thesis was the STH bounded by input constraints can be 

quite effectively controlled by Model Predictive Controller where the adaptive PID controller 

was found incompatible. 

 

Eigen values are also found to check the stability of the systems considered in this thesis which 

in other words are bound to give positive values because otherwise MPC by no means could be 

used to control the system. 

 

6.2      Contribution 
 

A significant improvement in the response and controlled operation of the nonlinear systems 

considered in this thesis was observed compared to the results obtained from the PID controller. 

The results show that in almost all cases of various operating conditions, the MPC controller not 

only provided a faster response but also is able to eliminate the presence of overshoot that is 

quite evident in the responses while using the adaptive PID controller. Adaptive PID controllers 

are generally implemented in the control of single input single output (SISO) systems, but Model 

Predictive Controller has the versatility of controlling both MISO and MIMO systems. The 

performance analysis of the control of Model Predictive Controller of such systems is thoroughly 

analyzed under different operating conditions. The results obtained from the use of Model 

Predictive Controller for the flight control of the (MAVs) ornithopter shows comprehensively 

that MPC can be used as the future means for the control of these sophisticated and very 

complex ornithopters. This is because almost all possible scenarios involved in the flight control 

of the ornithopter were simulated using the Model Predictive Controller and showed remarkable 



96 
 

performance in the responses of the ornithopter. Moreover the accelerating phase is also 

considered and MPC was able to provide a very satisfactory result, which in the case of the PID 

Controller had little effect in controlling the flight modes of the ornithopter. 

  

 

6.3      Conclusion  

 
 Model predictive controller (MPC) was implemented as the controller in various systems. 

Performance of MPC was significantly better than the adaptive PID controller. The versatile and 

the smart feature of  MPC to work with MIMO plants was observed in this thesis which in case 

of adaptive PID controller is very difficult to implement and also provides unsatisfactory results 

unless updated to a rather complex controller by incorporating intelligent algorithms such as 

Particle Swarm Optimization, Genetic Algorithm and Neural Network in the PID controller. The 

complexity of avoided in this thesis work. However Model Predictive Controller works very well 

without any combination of other controllers for operation. This feature of MPC was very 

vividly manifested in its superlative performance of the flight control of the ornithopter in its 

different flight modes including both the cruise and accelerating phase of motion of the 

ornithopter. Hence the ability of MPC to handle multiple manipulated input variables for the 

control of multiple outputs and also the superlative performance observed in the flight control of 

the Ornithopter has made it an effective choice for using it as the future controller for a more 

complex and comprehensive 3D model of an ornithopter. 

 

6.4      Recommendations for Future Work 

 
In the following, some recommendations are given for future scopes of research in the area or 

research present in this thesis. 

 Further research can be done in implementing Model Predictive Controller as the means 

for the flight control of a more complex 3D modeling of the ornithopter. 
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 Future research work can be done for the flight control that involves angular velocity, 

angular acceleration control of the ornithopter 

 A more rigorous comparative study can be analyzed by implementing genetic algorithm 

and neural network based adaptive PID controller as a means for evaluating the 

performance of the responses of the systems with MPC controllers. 

 Future Research work can be done by adding disturbances ranging from wind speed 

change and non-stationary air flow environments to better analyze the flight control of 

the ornithopter using MPC controller. 

 Future Research can be done by assimilating the lift force as a function of the angle of 

attack and hence can more closely imitate the control mechanism of birds. 
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Appendices 

Appendix A   

The system parameters used for simulation of the robotic leg  are	ܬ = 0.4177݇݃	݉ଶ ⁄ଶݏ , D = 0.11N-

ms/rad, Kb = 1V-s/rad, Kt= 1N-m/rad, La = 2H, M = 0.5kg, g=9.8m/ݏଶ and Ra = 1Ω respectively [36] 

Appendix B 
The parameters used for modeling and simulation of the STH is tabulated and shown below: 

Table 6.1 System Parameters of the STH system 

Parameters Values ௝ܸ 1݂ݐଷ௧ܸ 10 ݂ݐଷ ߩ௝ܿ௣௝ 61.3 
஻௧௨℉ି௙௧య ߩ௧ܿ௣௧ 61.3 
஻௧௨℉ି௙௧య ℎ183.9 ܣ 
஻௧௨℉ି௠௜௡ 
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Appendix C 

        The specifications for the 5-hp SRM drive are listed below [43]: 

Table 6.2 Motor and system parameters 

Motor and system parameters 

Command signal levels +-10 

Dc link voltage 400 V 

Max. current 15 A 

PWM chopping frequency 8 kHz 

Phase resistance 0.931 Ω 

Power 5 hp 

Rated current 10 A (1 p.u.) 

Rated speed 2500 rpm 

Rotor friction constant 0.001 N · m/rad/sec 

Rotor inertia 0.006 kg/m2

Speed feedback gain 0.0383 V/rad/sec 

Speed feedback time constant 0.1 sec 

Appendix D 
  

The parameters used for modeling and simulation of the ornithopter system is tabulated and 
shown below: 

Table 6.3 System Parameters of the ornithopter system 

Parameters Values ܾ௫ 1ܾ௬ 1 ܾఏ 8 × 10ିସܭ௧ 0.0032 3 ܫ × 10ିସ݉ 0.096 ݈ 0.1524 
g  9.8 ℎ 0.1016 
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