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ABSTRACT

This thesis is concerned with depicting the performance of MPC as a controller in nonlinear
systems covering various fields of engineering. The Adaptive PID controller is used as the
generic means of controller comparison. Main Emphasis and theme of this thesis is to visualize
the performance of MPC as a controller for the flight control of the Micro Aviation Vehicle
Ornithopter. The velocity, altitude and angular position are taken as the flight outputs to be
controlled. A two dimensional model of the ornithopter is selected because it accommodates the
inseparability of thrust and lift in its system which is instrumental for describing the flight
operation of the ornithopter. Both the acceleration phase and steady state cruise motion control
of the ornithopter is considered. The entire nonlinear mathematical model describing the
equations of motion of the ornithopter is simulated in the Simulink Environment of the Matlab
Software. The performance of the Model Predictive Controller for the flight control of MAV

ornithopter is evaluated by comparing the responses with that of an Adaptive PID controller.

Although a very improved and significant flight control of the ornithopter is possible with the
Model Predictive Controller, a disturbance prone scenario, changing wind direction and speed is
needed to completely visualize the impact of Model Predictive Controller in the flight control of
an ornithopter. Moreover a better system model comprising a three dimensional mathematical
model is required to successfully proceed with further altitude and velocity control. Other

directional outputs such as the angular velocity, acceleration can also be investigated.

Hence this thesis can be considered as the basis of properly understanding the control mechanism
of the Model Predictive Controller and finally would serve as the platform from which the flight
control of ornithopter can be investigated with Model Predictive Controller under more realistic

and practical instances in which the ornithopter needs to be controlled.

XV



CHAPTER 1

INTRODUCTION

1.1  Background

Almost all systems exhibit nonlinearity because the root of every possible mechanism
existing in the nature is complex and is described by highly complicated mathematical modeling
only derived from empirical and theoretical study of multifarious systems. To accommodate all
the aspects working in harmony for the proper functioning of a nonlinear system is always a
challenge and have haunted researchers over the history. When it involves imitating the
sophisticated control mechanism of a natural being such as the bird or any other living objects,
the difficulty escalates and makes it impossible to materialize the system in reality because of the
limitations of science and its benefactor the engineering tool of “Technical Know How”. Human
beings have responded to the task with a simplistic approach compatible with the available
resources at hand. Most Nonlinear Systems are quite difficult to control and moreover requires
the development of sophisticated controllers having the ability to anticipate and literally think
like a human. Many intelligent controllers have evolved through generations with the expansion
of artificial intelligence and every time human beings were fascinated by the state of the art
performance of these smart controllers. Researchers were intrigued by knowing that human
capability can conquer all horizons and this unquenching thirst of the scientific luminaries of
modern days have been instrumental in the growing development of controllers of unbounding
capabilities of which the ability of predicting the future stands out from all other highly tuned
functions of the controllers of today. Amongst all the innovations of controllers till now, Model

Predictive Controller (MPC) has entered into the era of intelligent controllers with a strong



statement. MPC have a unique controlling capability in that it can mimic the behavioral pattern
of a human brain. It mainly imitates how the brain utilizes its sense of vision to anticipate its next
movement. This has made the Model Predictive Controller (MPC) a very lucrative tool for
controlling systems of diversified fields. On the other hand PID controllers have always been the
platform and a benchmark for investigating the performance of other controllers. In many ways
the PID controllers have been modified and computationally expanded with some innovative
features to make it more adaptive in controlling multifarious systems of almost all field of
engineering [53]. This thesis would investigate the performance of MPC and as a generic means
of analysis would be compared with the benchmark adaptive PID controllers. Moreover the
range of possibilities of MPC controlled systems would be scoured by observing its performance
on a range of systems covering various disciplines of engineering. Initially a rudimentary
analysis is done with a very simplistic nonlinear model comprising of the DC motor controller
Robotic leg. After that the comprehensive features of the MPC is analyzed by launching it as a
controller in some nonlinear plants such as the Stirred water Tank Heater (STH) which is
extensively used in chemical processing plants and Switched Reluctance Motor (SRM) which
quite recently has supplanted the induction motor in its use in various fields demanding variable
speed drives and partly as a result of development of power electronic drives [37]. Finally the
suitability and effectivity of the MPC controller is explored by thoroughly investigating the flight
control of an ornithopter which is associated with a complex nonlinear dynamics and thereby
demands highly sophisticated controllers for its flight control. In every control analysis of the
systems considered in this thesis work, linearization of the nonlinear systems is carried out to
make the process simpler and understand the crude aspects of its controllable features by making

the system feasible for carrying out simulations in the Matlab environment.



Emphasis is hugely given in the implementation of a good performance controller for flight
control of the ornithopter. Ornithopters are aerial systems mainly comprising of Micro Aviation
Vehicles (MAVS) that mimic the flapping wing flight of birds [1]. Although many of the subtle
controlling features of the birds involving the feather dynamics are eliminated in the design of
the ornithopters, the swiftness and agility that the ornithopter promises to provide makes it very
attractive in surveillance arenas of application where an unobtrusive flight is necessary and the
aspect of swift motion is quite apparent [4] [5]. It differs from its contemporary fixed-wing
aircraft from the fact that the dynamics of the ornithopter incorporates both the thrust and the lift
mechanism inseparably thus making it very complicated to control. On the other hand the
aircrafts have its wing’s fixed which means that the lift mechanism and thrust mechanism is
separated and considered as two different entities working together separately to provide the
flight operation. Hence in a fixed- wing aircraft both the lateral and longitudinal motion are
separated by decoupling the lateral and longitudinal equations of motion. However, the nonlinear
equations of motion describing an ornithopter is quite complex because the wings of the
ornithopters are not fixed [7] [11] [12]. Hence the decoupling of the lateral and longitudinal
equations are generally avoided and in most cases of research on ornithopters the entire system
dynamics is considered and this necessitates the use of a very sophisticated controller that has the
ability to modulate all the complex directions and kinematics of motion. Generally a dimensional
approach is taken for describing the dynamics of an ornithopter [4] [6] [7]. A one dimensional
mathematical model is done which due to its simplicity fails to provide a complete description of
the ornithopter. A three dimensional approach is also done, but the complex nature of the
mathematics that involves the description of 3D dynamics of the ornithopter makes it very

difficult [14] [17] to explore the flight control of the ornithopter using the existing controllers of



today. The possible mechanism of controlling the ornithopter model in the three dimensional
approach would involve the innovation of a nonlinear adaptive control system. However the two
dimensional mathematical representation of the ornithopter although not so complicated as the
3D model, it still contains all the necessary information depicting the kinematics of the
ornithopter. Each and every direction of motion although incorporated in the system dynamics of
the 2D model of the ornithopter, every equation of motion is simplistically represented [4]. The
two dimensional approach remains as the ground in which research can be done for a realization
of a sophisticated flight control of the ornithopter. In this thesis the two dimensional model is
considered. Both the cruise motion and the initial acceleration phase of the ornithopter is
elaborately encapsulated in the 2D dynamic model of the ornithopter and thus renders it possible
to observe the flight control of the ornithopter in both of these phase of motion of the ornithopter
using the MPC controller. The performance analysis is also evaluated by comparing the
performance of MPC and PID controller in the two phase of motion of the ornithopter. The 2D
mathematical model of the ornithopter was implemented using Simulink and finally the
linearization of the Simulink model was carried out using the linearization toolbox present in the
Simulink environment of Matlab. Finally simulations were done using Matlab providing a
thorough performance analysis of Model Predictive Controller in the flight control of the

Ornithopter.

1.2 Related Work

Many researchers worked on ornithopter modeling and control. De Laurier et al. [2] have laid
general foundation for the aerodynamic model of the flapping wing flight known as the
ornithopter. Fowler et al. [3] has presented a feasible design of the ornithopter explaining the
flight control of this flapping wing flight model. A study of the unsteady aerodynamics of a

4



flapping wing was done in [4] for a flapping wing MAV in hover. A flapping wing MAV was
studied in [14] in order to understand the modeling of MAV. A wing’s force and flow structures
were studied in [12] for a simplified flapping motion similar to that of an insect. This is
important in that it offers insight into the feasibility of control of the simplified ornithopter.
Several authors [4] [7] have proposed schemes for controlling the velocity and altitude of the
ornithopter. The simplified model of the (MAV) was studied in [12] and the control schemes
involving feedback controllers and feed-forward control operations were investigated. PID
controllers in the feedback loop and frequency limiting and saturated thrust and lift forces in
ornithopters were studied in [6]. Cruise Motion and acceleration motion of the ornithopter was
studied [6] [11] [13] to gain an insight of the desired responses of the ornithopter in such stages

of motion.

Moreover study on the single phase linearized SRM model was done, Ray and Davis et al. [35]
suggested a superior approach which depended on linearizing the inductance that allowed the
voltage to be switched at any point in the cycle and enabled control strategies to be examined
with sufficient accuracy inclusive of component ratings. Hybrid controllers and Genetic
algorithm based controllers was studied from [24] where hybrid controller by Paramasivam et al.
[37] has reduced the steady state error as compared with Pl-type fuzzy logic control (FLC), while

keeping the merits of Pl-type FLC. Reay et al. [38] proposed neural network based SRM drive.

Brief study on the mathematical modeling of STH was done from a case study by Dr. Kevin
Craig from Rennsselaer Polytechnique Institute and the use of MPC for a SISO control of the
STH was studied in [40] where the control of the temperature of STH using single constraint

manipulated variables was carried out.



Modeling Motion Control of Robotic arm was done in [35] which delineated the use of PID
controllers in DC motors and also the simplistic representation of a robotic arm. This gave me
the impetus to delve into the study of a simplistic approach to designing the robotic leg and use

MPC for its control.

1.3  Motivation

As an intelligent and sophisticated control technology, the Model Predictive controller
can give robust adaptive response of a complex aviation system highly intertwined with
nonlinearity, external wind disturbances and random variation in parameters. Moreover its ability
to be tuned with features such as input constraints and output constraints to maintain the stability
of the system under severe control scenarios of a plant can solve the complicated vehicular
motion of complicated systems and fast electronic drives. From the above literature review, we
saw that complex feedforward controllers, adaptive feedback Pl controllers, nonlinear adaptive
controllers have been used in the systems presented in my thesis. Smart GA algorithm based and
fuzzy logic based controllers are also widely used in mitigating the problems involved in the
flight control of the ornithopter [7] [13]. Particle Swarm Optimization technique embedded in
PID controllers for controlled and predictive tuning has been carried out for managing nonlinear
control mechanisms ranging from motion control of ornithopters to electric drive control of
Switched Reluctance Motor. No research work has so far used MPC in the flight control of
ornithopters and the current and speed control of switched reluctance motor. Although MPC has
been widely used in the temperature control of STH, a comprehensive analysis of the STH taking

into account the aspect of controlling it with multivariable inputs and MPC controller for that



purpose has not been carried out. Good result obtained from the simulation of this research can
instigate further experimental work using the 2D model of the ornithopter and MPC as the basis
of control for future research work. Moreover a satisfactory flight control of the 2D model of the
ornithopter can also facilitate and inspire researchers to develop a MPC controller for the flight

control of the 3D model of the ornithopter.

1.4  Research Objectives

The objectives of the work can be listed as follows:

v MATLAB Simulink Modeling of a 2D Ornithopter, A Multiple Input Single
Output (MISO) model of a Stirred Tank Heater, a small signal single phase
Switched Reluctance Motor (SRM) and a DC motor operated Robotic Leg.

v Linearization of the systems making sure that the systems don’t lose its integrity
after linearization for its proper operation using MPC controllers.

v Evaluate the performance of the systems with conventional PID controller.

v Evaluate the performance of the systems with the proposed MPC controller.

v Compare the performance between the conventional PID and MPC controllers.

v Drawing the conclusion based on the comparison of the results

15 Outline of the Thesis

Chapter 1 represents the background of the present work, motivation and objectives and related

work with this project.

Chapter 2 describes briefly about MPC, its control strategies and its impact on nonlinear

applications.



Chapter 3 discusses the modeling of nonlinear models comprising of systems involving various
field of engineering such as a switched reluctance motor, a stirred tank heater and DC motor
operated Robotic Leg. Simulation results to evaluate the performance analysis of the systems

using both PID and MPC controllers are also manifested.

Chapter 4 elaborately discusses the concept of an ornithopter and the detailed dynamics and
modeling of an ornithopter for its flight control. The linearization technique for the analysis of
the nonlinear system is discussed. Representation of the models using Simulink block diagrams
is also described in this chapter.

Chapter 5 presents the simulation results of the flight control of the ornithopter under different

operating scenarios using both PID and MPC controllers.

Chapter 6 summarizes the research work presented in this thesis and discusses the scopes of

future works possible.



Chapter 2

Model Predictive Controller (MPC) and its use in

Nonlinear Applications

2.1 Introduction about MPC
2.1.1 Basic Working Principle:

Model predictive control (MPC) refers to a class of computer control algorithms that
utilize an explicit process model to predict the future response of a plant [46] [51]. At each
control interval an MPC algorithm attempts to optimize future plant behavior by computing a
sequence of future manipulated variable adjustments. The first input in the optimal sequence is
then sent into the plant, and the entire calculation is repeated at subsequent control intervals.
Originally developed to meet the specialized control needs of power plants and petroleum
refineries, MPC technology can now be found in a wide variety of application areas including
chemicals, food processing, automotive, autonomous robots and aerospace applications,[41]

[43].

The working process of MPC can be well described by the game of chess. A player, when plays
chess, tries to predict the future moves of the opponent. So, to win the match, he predicts about
some future moves depending upon his past experiences and memories. A good player has

always got some plans about his next moves or actions.



Figure 2.1 shows the basic structure of MPC in block diagrams. Depending upon the past inputs
and outputs, model predicts the future output. It is compared with reference value and the
subtracted result or future error is sent to the optimizer. With the help of quadratic cost function
and suitable constraints, it creates the future inputs of the optimizer which finally becomes the
past memory of the model for the next event. Thus an iterative method is subsequently followed

until it reaches close to the desired reference value [34].

Reference trajectory
+ Past inputs and outputs
Predicted output —
Model
- <€
Future errors Future inputs
»|  Optimizer
Cost function Costraints

Figure 2.1: Basic structure of MPC

A model is used to predict the future plant outputs based on past and current values and the
proposed optimal future control actions. These actions are calculated by the optimizer taking into
account the cost function (where the future tracking error is considered) as well as the constraints
[42].

10



2.1.2 Optimization Process and Cost Function

The set of future control signals is calculated by optimizing a determined criterion in
order to keep the process as close as possible to the reference trajectory. This criterion usually
takes the form of a quadratic function of the errors between the predicted output signal and the
predicted reference trajectory. The control effort is included in the objective function in most

casces.

Setpoint r \

1 -
e i -

4
0.8 92 n

e
1 N Output y
06

0.4 -
0.2 .
0,__ — -

0.2 1 1 1 1 1
-1 [+] 1 3 4 5

2
time (sec)
Figure 2.2 Process of MPC to trace reference trajectory

<

Input u

L L L
-1 o 1 3 4 5

2
time (sec)

Figure 2.3 Process of Constraint Input of MPC
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Figure 2.2 and Figure 2.3 shows that the Model Predictive controller utilizes the errors between
the output and the reference trajectory and the difference in the input from one sampling interval

to the next and incorporates it in a cost function [29].
— VvVp 5 2 Np 2
J =20 —1)° + Xy rAu (2.1)

The main principle of optimization resides on solving J for a minimum cost function which is

basically

9~

P (2.2)

By solving this we get the future optimal control value. It is a complex computation problem but

it can be shown illustratively as follows:

é

uopt

Figure 2.4 Cost function minimization Curve

where Ugp is the desired optimal future control move of the MPC controller.
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2.1.3 A Brief History of Industrial MPC:

Rawlings[44] provides an excellent introductory tutorial aimed at control practitioners.Allgower,
Badgwell, Qin, Rawlings, and Wright [47] present a more comprehensive overview of nonlinear
MPC and moving horizon estimation, including a summary of recent theoretical developments
and numerical solution techniques. Mayne, Rawlings, Rao, and Scokaert[48] provide a
comprehensive review of theoretical results on the closed-loop behavior of MPC algorithms. The
authors presented a survey of industrial MPC technology based on linear models at the 1996
Chemical Process Control V Conference (Qin & Badgwell [49]), summarizing applications
through 1995. Young, Bartusiak, and Fontaine [50], Downs [51], and Hillestad and Andersen
[52] report development of MPC technology within operating companies. A survey of MPC
technology in Japan provides a wealth ofinformation on application issues from the point of view
of MPC users (Ohshima, Ohno, & Hashimoto [53]). The first description of MPC control
applications was presented by Richalet et al. in 1976 Conference (Richalet et al. [54]) and later
summarized at 1978 inAutomaticapaper (Richalet et al. [55]). They described their approach as

model predictive heuristic control (MPHC).

2.2: The “Receding Horizon” ldea:

Set-point
past| future trajectory
y ™ o e o -— s o o

[ )
Y Predicted Output

(=] Manipulated u(k)
(=4 INnputs

b | I I [ [

] [ ] L ] [ J
k+Hc

x
x
+-
[

INnput horizon

Output horizon

Figure 2.5: The receding horizon concept showing Optimization Problem
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At a current instant k, the MPC solves an optimization problem over a finite prediction horizon

[K,k +H,]with respect to a predetermined objective function such that the predicted state
variable Xor output y can optimally stay close to a reference trajectory. The control is
computed over a control horizon[K,K+H_], which is smaller than the prediction horizon(
H. <Hp) [44]. If there were no disturbances, no model-plant mismatch and the prediction

horizon is infinite, one could apply the control strategy found at current time k for all times.
However, due to the disturbances, model-plant mismatch and finite prediction horizon, the true
system behavior is different from the predicted behavior. In order to incorporate the feedback
information about the true system state, the computed optimal control is implemented only until

the next measurement instant (k,k +1), at which point the entire computation is repeated [46].

MPC approach can be expressed considering the following finite horizon cost function [56]
) Hol o _
37 (% [Ug (0, Uy (1) = D7 DO r (W), U (D)) + G (XesraT (U)) (2.3)
i=1

wheret is the current time; H is the length of the optimization horizon; AT is the sample period. If
1> 0, then ZH . (U) denotes the controlled trajectory at time t+IiAT from x; under piecewise

controlsu =[u,(t),...,u_ (t)JeU" ; h is the running cost; and g is the terminal cost. We assume

that h is non-negative function and g satisfies g(x) Za‘x—xeq

for all x, where x¢q 1S some

desired equilibrium and o>0 is some positive constant. That is, g is an ‘upward’ function whose
lowest point is at the system equilibrium. This condition on g(x) ensures that the control design
attempts to reach the system equilibrium. Moreover a weighted cost function is also implemented

by the MPC controller to incorporate systematic design approach for handling interaction in a
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multivariable system. This feature of MPC enables handling the input constraints and output
constraints imposed on the multivariable system. The priorities of the input constraint and output
constraint can be adjusted by tuning the weighted factor in the modified cost function equation.
Moreover the process of solving this complex quadratic cost function equation ensures an

unbiased offset free tracking which is a key objective for proper control.

The modified J equation [49] is as follows:

”-‘I .’I;;—I
J=Y |Wy(repi -y 344 Y [WalAugy)|3 (2.4)

=Ny =0

where Wy and W, are positive definite weight factors which can vary even with the change in the

horizon 1.
2.3 Use of Model Predictive Controller in Nonlinear Applications

Model Predictive Controller has been widely used in nonlinear applications because of its unique
and sophisticated ability to handle multivariable constraint problem based plant operations.
Generally the nonlinear industrial processes are MIMO systems and are very sensitive to input
changes. An unexpected input change can totally render the whole industrial plant totallyout of
stability and would require very precise monitoring of the plant output. The integrated ability of
MPC to predict future outcomes [24] taking into account of the input constraints makes it very

suitable for such challenging nonlinear applications.

Its feasibility and a wide range of tuning ability has made it perform significantly better than

many other existing intelligent controllers such as fuzzy logic, neural network and adaptive
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controllers [54]. Its performance outweighs that of a PID controller and will be manifested in the
next chapter where MPC will be utilized in many benchmark and highly demanding nonlinear
models. An important aspect is the necessity to linearize the mathematical modeling of the
nonlinear systems before using Model Predictive controllers. This not only reduces the

computation burden but also ensures fast tracking and response of the systems [42].

Moreover on-line and off-line control becomes easier and hence in general Model Predictive
Controller mainly capitalizes on the linear modeling of the nonlinear systems for an efficient

control of the systems [34][42][43].

Its successful operation on nonlinear applications ranging from chemical processes, electrical
drives, aerodynamics, autonomous robotic systems; has made it an attractive tool to solve future

optimization control problems [29][47].

The emerging nonlinear applications of MPC involve:

» Vehicle path planning and control:

Figure 2.6 Use of MPC in Vehicle Path Planning and Control

» Hybrid plant control and nonlinear state estimation of complex network control systems
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» Spacecraft rendezvous with space stations.

10,

-10

Out-of-Plane

10”

10"

il -70 2
In-Track -80 Radial

Figure 2.7 Use of MPC in Spacecraft applications

2.4 Control of MPC

The MPC design problem is handled by the MPC toolbox available in ‘Matlab’. A Model
Predictive Control Toolbox design requires a plant model, which defines the mathematical
relationship between the plant inputs and outputs as shown in Figure 2.8. The controller uses it to

predict plant behavior. The toolbox software requires the model to be linear, time invariant

(LTI).

Measured disturbance Measured outputs

Manipulated variables

Unmeasured disturbance Unmeasured outputs

Figure 2.8:Plant with Input and Output Signals
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The plant inputs are the independent variables affecting the plant. As shown in the previous

figure, there are three types:

Measured disturbances (MD): The controller can't adjust them, but uses them for feedforward

compensation.

Manipulated variables (MV): The controller adjusts these in order to achieve its goals.

Unmeasured disturbances: These are independent inputs of which the controller has no direct

knowledge, and for which it must compensate.

The plant outputs are the dependent variables (outcomes) one wishes to control or monitor. As

shown in figure 2.8, there are two types:

Measured outputs: The controller uses these to estimate unmeasured quantities and as

feedback on the success of its adjustments.

Unmeasured outputs: The controller estimates these based on available measurements and the
plant model. The controller can also hold unmeasured outputs at setpoints or within constraint

boundaries.

The design and performance evaluation of the MPC is conducted based on changing the

following parameters (Figure 2.9):

» Model and Horizons
> Constraint
» Weight Tuning

> Estimation
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Model and Horizons | Constraints | Weight Tuning | Estimation (Advanced)|

Plant model: sys_STAT1 -
Horizons
Control interval (time units): 0.1
Prediction horizon (intenvals): 10
Control horizon (intervals): 2
Blocking
Blocking

allocation within prediction horizon: | Beginning

Figure 2.9: MPC controllers

From Fig.2.9 we can see that the model and horizons tab has parameters:

» Control interval (time units),
» Prediction horizon (intervals)

» Control horizon (intervals).

Prediction horizon (Hp) is the number of steps for which the controller will estimate the output

of the system say (5,10,20,30,40,50 intervals, etc) also known as output horizon.Control

horizon (Hc) is the number of steps (2, 4, 6, 8, etc) for which the controller will create future

control action to fulfill all the requirements.Control interval (sampling period in sec) is the

interval (0.1, 0.3, 0.7, 1, etc) separating successive sampling instants.



It is better to set the constraints for all manipulated variables, but it's unwise to enter constraints
on outputs unless they are an essential aspect of the application. The “Max down rate” should be
nonpositive (or blank). It limits the amount a manipulated variable can decrease in a single
control interval. Similarly, the “Max up rate” should be nonnegative. It limits the increasing rate.
Leave both unconstrained (i.e., blank). The weights specify trade-offs in the controller design.
First consider the Output weights. The controller will try to minimize the deviation of each
output from its setpoint or reference value. For each sampling instant in the prediction horizon,
the controller multiplies predicted deviations for each output by the output's weight, squares the
result, and sums over all sampling instants and all outputs. One of the controller's objectives is to
minimize this sum, i.e., to provide good setpoint tracking. The Estimation tab allows to adjust

the controller's response to unmeasured disturbances.

A summary of the control mechanism of Model Predictive Controller can be explained via a flow
chart as follows:

Acquire new data
(CV, MV and DV wvalues)

I

Update model predictions
(output feedback)

¥

Determine control structure

¥

Check for ill-conditioning

¥

" Calculate set points/targets
(steady-state optimization)

¥

"Perform control calculations
(dynamic optimization)

¥

Send MVs to the process

Figure 2.10: Flow Chart for MPC Control
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2.5 Tuning Procedures of MPC

Tuning of MPC involves some important criterions without which systems cannot be
operable and may lead to instability and unwanted oscillations. A systemic tuning approach will

lead to an

efficient controllability of the system. The tuning procedure for satisfactory performance is

summarized as follows [41] [46] [51]:

» Control Interval/Sampling time (T): Stability is not affected by T but larger T deteriorates
system performance under frequent disturbances.

» Control Horizon (M): If Prediction horizon (P) is equal to control horizon (M) then the
system becomes vulnerable to oscillations and hence M must be always less than P to get
a desired response.

» Optimization horizon/Prediction horizon (P): Increasing P will lead to better responses
only if the system modeling is very precise and accurate. In most cases it is necessary to
keep the value of P larger than M but not very large, because the modeling of the plant is
generally done with a simplistic approach.

» It is wise to select the parameters such that it doesn’t affect the settling time of the plant.

Finally the parameters of the MPC controller should be adjusted depending on the system

dynamics and the settling time of the plant.
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Chapter 3

Dynamic Modeling of Nonlinear Systems and

Performance analysis using MPC and PID

3.1 Dynamic Modeling of the Robotic leg.

A robotic leg can be modeled taking into account a simplistic model of a human leg that
relates the output angular rotation about the hip joint to the input torque generated by the leg
muscle. A simplified model for the robotic leg assumes an applied torque Ty, supplied by the DC
motor, viscous damping, D, at the hip joint, and inertia J, around the hip joint. Finally the
component of the weight of the leg, Mg, where M is the mass of the leg and g is the acceleration
due to gravity creates a nonlinear torque. Assuming the robotic leg to be of uniform density, the
weight can be applied at L/2, where L is the length of the leg [56]. A pictorial representation of

the cylindrical model of a robotic human leg is shown below.

Hip joint

Figure 3.1 Cylindrical model of a Robotic Human leg
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Summing the torques, the dynamic model of the robotic human leg can be obtained which is as

follows:

dazo de L .
]E+DE+MgEsm0—Tm(t) (3.1)

3.1.1 Modeling of the DC motor used to generate the Torque.

The torque will be supplied by a DC motor and hence an appropriate DC motor capable of

rotating the leg from 0 degree to 90 degree is the next step for controlling this robotic leg.

A DC motor with armature control and a fixed field is considered. The electrical model of such
aa DC motor is illustrated in Figure 3.2. The armature voltage, e,(t) is the voltage provided by an
amplifier to control the motor. The motor has a resistance Ra, inductance La and back
electromotive force constant, Kb. The back emf voltage, Vb(t) is induced by the rotation of the
armature windings in the fixed magnetic field. The counter emf is proportional to the speed of

the motor with field strength fixed. The governing equations are as follows:-

a0
Vp(t) = Kp— (3.2)

E_ (s) a,,,(s)

— =] G(s) ———-

®b)

Figure 3.2 DC motor (a) Circuit diagram (b) Block diagram
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Taking the Laplace transform of equation 3.2 gives

Vb(S) = SKb9 (33)

The circuit equation for the electrical section of the motor can be written as

Eo(s) = Raly(s) + Lgsly(s) + Vp(s) (34

The equation can also be written as:

Ia (S) — Eq(s)—KpsO(s)

3.5
Las+Rg (3-5)

The torque developed by the motor is proportional to the armature current and the equation is as

follows
Tn(s) = Kilo(s) (3.6)

Using the torque equation and the current equation a Simulink model of the DC motor operated
robotic arm can be obtained.

\~ <
In1 M
Gain3 r'
1

thetadbidot
La.s*Ra

Trander Fcn

thetadot

Inte grator

Mg L0.5

Gain1

Figure 3.3 DC Motor and the Nonlinear Robotic Human Leg Combined
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To control the robotic leg such that the DC motor can rotate it from 0 degrees to 90 degrees, a
PID controller is first of all installed so that it can give the accurate actuating signal for the
desired response of the DC motor operated robotic leg model. The PID controller used for this
purpose is an adaptive PID controller which also includes a filter block to obtain the most
efficient response. The PID block uses the compensator formula which is:

Kp +%+Kd% 3.7)

whereK,, is the proportional constant, K; is the integral constant, Kq is the derivative constant and

N is known as the filter coefficient.

The Simulink model of the PID controller is as follows:

v

Proportional Gain

o

Integral Gain

Integrator

 —

Derivative Gain Filter Coefficient

w

Filter

Figure 3.4 Simulink Representation of the PID Controller
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The optimized values used for the PID controller is tabulated as follows:

The Simulink model incorporating the PID controller is shown below:

Table 3.1 Control Parameters of the PID controller for Robotic leg

Parameters Values
Proportional constant (K;,) | 6.9
Integral constant (K;) 8.0
Derivative constant (Kq) 1.4
Filter coefficient (N) 46.7

PID Controdler

\J

Gaing

1

Laghs
TrangérFon

B inputtfy
ToWotgace!

Figure 3.5 Simulink model incorporating the PID controller

Gaint
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The system input is a voltage signal with a range from 0 to 10 V. This signal is used to provide
the control voltage and current to the DC motor. The goal is to design a controller so that a
voltage ranging from 0 to 10 volts corresponds linearly to an angular rotation of a robotic arm
from 0 to 90 degree respectively. Since we want to move the robotic human leg to a proper
angular position corresponding to the input, a positional servomechanism will be needed to
convert the angular position information into corresponding voltage and negatively feedback the
signal back into the system so that it can be compared with the input voltage signal and fed to the
input of the controller. The feedback signal in voltage is E= 0y xK,where Kp is the proportional
constant and is equal to the ratio of the input to the desired position output. In our case 10V
should correspond to 90 degree [36]. Hence Kp which also known as the Load angle Velocity

feedback will be equal to 10/90 =0.1111.

The same procedure is carried out using the MPC controller and the Simulink model is shown as

follows
Sain
mo [« -1 voltage Angle degrees
N MPC
e DC MOTOR & ROBOTIC HUMAN LEG
ref

MPC Controller

Step

Figure 3.6 Simulink Model of the MPC Controller for the DC MOTOR OPERATED ROBOTIC
LEG
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Finally a comparative analysis of the performance of the robotic leg by both MPC and PID
controller is obtained by undergoing simulations in Matlab. Signal values ranging from 10V to
4V is chosen and the desired output for such actuating signals should be from 90 to 30 degree
respectively. The model predictive controller is designed such that the parameters chosen are

shown in the tabular format as follows:

Table 3.2 Control Parameters of the MPC Controller for the Robotic Leg

Parameters Values
Control Interval 0.1
Prediction Horizon 10
Control Horizon 2

The response of the system using the PID controller for an input of 10 volts is shown below:

% \ \ \ \ \ \ \ \ \
0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0.45 0.5

Time(Seconds)
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Figure 3.7 Angular Response using Reference Voltage of 10 V corresponding to an angle of 90 °

using PID Controller

The settling time for the system is 0.04 seconds but the overshoot is around 8%.

The response of the system using the MPC controller for an input of 10 volts is shown below:

Angle (degrees)

en L1 1 1 L 1 1

Time (seconds)

Figure 3.8 Angular Response Using MPC Controller

Settling time was reduced to 0.037s and overshoot was eliminated using the MPC controller
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Angle (degrees)

0 01 02 03 04 05 06 07 08 09 1

Time: {naennds

Figure 3.9 Angular response for an input voltage of 4 V using PID controller
The output was way beyond the desired angle of 30 degrees. A steady state error of 5% was

obtained. The response was very poor.

Carrying out the same operation using MPC controller we got a far better response as shown
below:

Angle (feqrees)

I Il 1 L i 1

Time (s'e;:onds}
Figure 3.10 Angular response for a input voltage of 4 V using MPC controller

In this case we obtained a settling time of 0.025 seconds and no overshoot at all.

30



.This simple nonlinear model was linearized using taylor series method and the state space model

used by the MPC controller was

[2] - [—1(1).73 —2.1657] [;c;] + [2,3?94] Ea (3.8)
y = 6.363x; (3.9)
wherex;=0.

The corresponding transfer function of the linear model is described as follows:

0(s) 15.24
E;(s) s2+2.657s+11.73

(3.10)

The eigenvalues of the system matrix were -1.3285 + 3.15681 & -1.3285 - 3.15681 showing that

the system is stable because the real parts of the eigenvalues are negative.

3.1.2 Summary of the Result

From the simulation result we see that the MPC not only did improve the performance of
the rotational control of the Robotic leg but also ensured a fast reponse which makes the system

a very effective stepping stone for analyzing more complex model of the Robotic leg using MPC.

3.2 Modeling of a Stirred Tank Heater

Stirred tank heater is used in many chemical processes. Often tank is heated, either by a

coil or a jacket surrounding the tank. The temperature in the tank is maintained by the flow rate
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of a fluid through the jacket and can also be controlled by the temperature of the fluid in the
jacket. The model obtained involves four state variables in which only two variables mainly the
temperature of the fluid through the jacket and the flow rate of the fluid through the jacket are
taken as the two manipulated variables and the other variables are considered as unmeasured
disturbances. The objective is to maintain the temperature of the tank for optimum yield of the
chemical process taking place in the tank at multifarious operating conditions. Moreover the
parameters for the model are taken as standardized values of a certain chemical process where
the temperature of the tank needs to be maintained at a certain optimum temperatures.
The assumptions taken to develop the mathematical dynamic model of the stirred tank heater are
as follows [35]:

1. A constant volume with constant liquid density and heat capacity

2. Perfect Mixing in both Tank and Jacket

3. Inflow and outflow of the fluid in the Jacket and Tank is assumed to be constant.

A pictorial representation of a typical Stirred Tank heater is illustrated as follows

Tank Inlet
Th
Jacket Inlet
| T_"

fi: Tank i \

I Jacket &
Tank Outlet

Jacket Outlet T

to

Figure 3.11 Stirred Tank Heater
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The governing mathematical equation can be represented as follows:
1. Conservation of Mass around the Tank and Jacket gives:

d . . .
i (PeVe) = peVii — peVio (3.11)

d . .
PV =pVi—pVe (3.12)

Since constant volume is assumed hence both the equations will yield zero.

2. Conservation of Energy around the Tank and Jacket gives [35][48]:

dT;

14
ac VZ(TU Tto) + ptVtht (3.13)
ar _Vier. 7. ) 4 9
dt v (Tji — Tjo) + oV (3.14)
Q = hA(T; ~ T) (3.15)

From the above equations a dynamic model of a stirred tank heater can be obtained. The

Simulink model of the stirred water tank heater is shown below.

":af:, = S aaniene ;__35':.}: 4 F——
[_":'h_"_ _________________ ‘—<‘:<:J-‘——'_i:; J

= L __ _‘ N o e s ——
Bes e R iU

—L—“—m

T % &=

Figure 3.12 Total Simulink Representation of the Stirred Tank Heater
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The input-output Simulink model of the stirred water tank heater is shown below.

1) PV _dot j s
-
( 2) PV dot t s T

@ T tis

T tis h—p(2)
@ T J s T t

Subsystem

Figure 3.13 Input - Output Simulink Model of the Stirred Water Tank Heater

Since it is convenient and necessary for the model predictive controller to be able to process a
linear model, the linearized model is obtained via the linmod command in Matlab.The obtained

LTI State Space equation for the nonlinear Stirred Water Tank Heater model is as follows:

A
[j;:]z[_ol.}f —8.4] [Z]JF[SOO _3_5 0(_)11(')5 71{; (3.16)
T
A
;];]:[(1) (1)][2]*'[8 8 8 %]l;% (3.17)
Tji

where x; is the temperature of the tank T'; to be controlled.
Now our objective is to keep the temperature of the tank at 150 °F under different operating

conditions. Initially only the flow rate of the fluid through the jacket was used as the manipulated
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variable while the other variables were kept constant and considered as unmeasured
disturbances. Taking the values of the disturbances as:
e Tank inlet flow rate (Vt) = 1ft’/min

e Tank inlet temperature (Ty;)=50 °F

e Jacket inlet temperature (7;;)=200 OF

we finally simulate the model with all the specifications using first of all using the PID

controller. The Simulink model for this purpose is shown below:

Group 1 i
é Signal 1 PQ L)pm{s}—J X =Ax+Bu
. : =CxtDu
Signal Builder PID Controller y

n : State-Space b toank

ks 4 To Workspace

Congant1
200
Congant?

Figure 3.14 PID Control of the STH with V; as the manipulated variable
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Jacketinlettemperature I

To Workspace1

Scope
*_ PID(Gs) o 2 » I
x' = Ax+Bu
Step PID Controller Canstant2 > | y = Cx+Du

- M
State-Space »]  Taank

Constant To Woerspace

Constant1

Figure 3.15 PID control of the STH with Tj; as the manipulated variable

During simulation with the PID controller the input disturbance values were initially set to 1
ft*3/min (Tank inlet flow rate Vt), 50 °F (Tank inlet temperatureTy;) and 200 OF (Jacket inlet
temperature Tj;) and then altered. In this case Jacket inlet flow rate (Vj) is the manipulated

variable. The same process was carried out but the manipulated variable was considered to be the

Jacket inlet temperature(T};). Under such a scenario the input disturbances were initially set to
50 °F (Tank inlet temperatureTy;), 1 ft"3/min (Tank inlet flow rate Vt) and 2 ft"3/min (Jacket

inlet flow rate V]) The results obtained from the simulations are shown below:
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Simulation Results for the PID Controller in STH

Output

» & = u # & § &
T e e e e

50 °F (Ty;), 200 °F (T;) &1

Sibspidlind

(ERRRRRR

Jyseedilii

O
T T T T

Input

50 °F (Ty:), 200 °F (T;;) &1 £t*3/min(V;)

-» ; » ; ; - ; - - -

§- 60 °F (Ty;) ]
s

i - 220°F (1)

i . 60 °F (T,;) & 220 °F

i

§ y 1.3 ft*3/min (V;) i
i .
_% ot 50 °F (Ty;), 2 ft\3/min (V;) &1 ft\3/min(V,.) ]
x - ]
= _
E
3 =0

Figure 3.16 Simulation results using the PID controller for STH
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The Model Predictive Controller Block used to carry out the simulations under different

operating conditions with V] as the manipulated variable is shown below:

Constant

50

Constant1

200

Constant2

X' = Ax+Bu
y = Cx+Du
State-Space

mv MPC ref

Scope

MPC Controller

Step

Figure 3.17 MPC Simulink block for controlling STH with V; as the manipulated variable

The Model Predictive Controller Block Diagram used to carry out the simulations under different

operating conditions with the Jacket Inlet temperature T] as the manipulated variable is shown

below:

Constant2

1

Constant

50

Constant1

x' =Ax+Bu

y = Cx+Du

State-Space

MPC ref [«

md K

MPC Controller

Scope

Step

Figure 3.18 MPC of the Stirred Water Tank Heater with T; as the manipulated variable
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The same simulation is carried out with MPC and the results obtained are shown below:

Simulation Results for the SISO MPC Controller in STH

Output
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Figure 3.19 Simulation Results for the SISO MPC control of STH
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Finally two manipulated variables which are the Jacket inlet flow rate V] and Jacket inlet
temperature (Tj) are considered for maintaining the temperature of the tank at 150 °F while

keeping the other variables constant at 1 {ft"3/min (Tank inlet flow rate Vt) and 50 °F (Tank inlet

temperatureT;) respectively (Case 15). MPC controller is designed to carry out this operation

while the PID controller is rendered quite unworthy because it is generally applicable for Single-

Input Single-Output (SISO) systems but not for a Multiple-input Single-Output (MISO) systems.

The block diagram of the system utilizing the MPC controller is shown below:

)

x'=Ax+Bu
y = Cx+Du

1 State-Space

Condgant
50 . ]

Congtant1 Scope

mo (<

mv MPC ref [« |

Step

md K

MPC Controlier

Figure 3.20 MISO MPC Representation of the Stirred Water Tank Heater
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The simulation results obtained for this MISO system are shown below.

Simulation Results for the MISO MPC Controller in STH
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Figure 3.21 Simulation results using the MISO MPC control of STH.

All the simulations done with the MPC controller was carried out with the parameters of the

MPC controller fixed to:

Table 3.3 Control Parameters of the MPC controller for STH

Parameters Values
Control Interval 0.05
Prediction Horizon 20
Control Horizon 5
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The PID controller with the input variable as the (Jacket inlet flow rate Vj) was adaptively tuned

to:

Table 3.4 Control Parameters of the PID controller for STH

Parameters Values
Proportional Constant (K,) 0.07
Integral Constant (K;) 0.012

Derivative Constant (Kg) -0.054
Filter Coefficient (N) 0.78

While undergoing the control of temperature of the tank it was necessary to maintain the inputs
to non-negative value because under no circumstances would the fluid through the jacket be
drawn out of the system and the temperature of the fluid in the Jacket cannot be decreased to a
temperature below 0 °F because it would require a complicated actuator to undergo a negative
change. The temperature of the tank was required to be maintained at 150 °F which is the
optimum temperature for wet process chemical plants such as Warewashing and food processing

operations.

3.2.1 Linearization of the STH system

The linearization was carried out using the Matlab command linmod and the linearization block

present in the Simulink environment. The state space model obtained is shown below
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] = [7320 3, 1[)+ (0008 0267 )

=10 [

where ul and u2 represents T] and V] respectively and the output y2 represents Ty which is the

temperature of the tank

The corresponding transfer function representation of the state space model was obtained and is

shown below:

Te(s) 0.1794
Ti(s) s? + 3.696s + 0.4185

Te(s) 0.08886
Vi(s) s? + 3.696s + 0.4185

.The system was stable because the real part eigenvalues of the system matrix was -3.5793 and -
0.1169 respectively which are negative and hence all trajectories in the neighborhood of the
fixed point will be directed towards the fixed point.

3.2.2 Tabulation of the Simulated Results

The simulated results obtained can be tabulated to delineate the comparison of the
performance using both MPC and PID controllers.
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Table 3.5 Tabulated summary of the simulated results of the STH System.

Controllers Input Variables Settling | Overshoot Manipulated
Time % variable
V) V) un, (Tt:) Min Max
1 | Manipulated 200 50 36 26 -0.97 54
1 | Manipulated 200 60 33 29 -1.1 5.2
1 | Manipulated 220 50 31 29 5.15 -1.0
PID 1| Manipulated 220 60 29 30 12 5.1
1.3 | Manipulated 200 50 40 29.5 -1.03 5.24
1 2 Manipulated 50 20 38 -128 300
1 2 Manipulated 60 22 38 -124 300
Input Variables Settling | Overshoot Manipulated
Time % variable (1/2)
Vr) V) (Tj:) (Te:) Min Max
1 | Manipulated 200 50 9 0 0(1) 3(1)
@)
1 | Manipulated 200 60 7 0 0(1) 4 (1)
@)
MP C 1 | Manipulated 220 50 8 0 0(1) 4 (1)
)
1 | Manipulated 220 60 5 0 0(1) 2.9(1)
d)
1.3 | Manipulated 200 50 13 0 0(1) 10 (1)
1 2 Manipulated 50 17 0 0(1) 319 (2)
2)
1 2 Manipulated 60 34 0 0(1) 311 (2)
2)
1 | Manipulated | Manipulated 50 3 0 0(1) 3.3(1)
(1) (2) 150 (2) ]250(2)
1 | Manipulated | Manipulated 60 3.1 0 0 (1) 3.5(1)
(1) (2) 150 (2) | 250 (2)

3.2.2 Summary of the Simulated Results for the STH system

From the tabulated data showing all the data’s obtained from the simulation results, it is

quite apparent that the performance of MPC completely overhauls the performance of the

adaptive PID controller. In the case of controlling the Stirred Tank Heater with a single input, it

was observed that the input values had gone negative at certain time intervals while using PID

controller. This is derogatory for maintaining STH temperature of the tank because it will lead to
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a complicated and a costly actuator for controlling the temperature of the tank. It is also
necessary to eliminate any presence of overshoot responses while controlling STH. This was not
possible with the PID controller. All of these negative impacts while using the PID controller
were totally eliminated when MPC was used. It was also possible to control the temperature of
STH by manipulating both the Jacket Inlet flow rate and Jacket Inlet Temperature with the MPC
controller. Moreover the input controlling signals were also constrained for optimum
performance of STH. Hence the temperature control of STH has been quite remarkably improved

by using the Model Predictive Controller.

3.3 Modeling of a single phase Speed Controller and a Current Controller
for a Linearized Small Signal model of a Switched Reluctance Motor

(SRM)

The design of the speed controller is an integral part of any drive system development.
Due to the nonlinear nature of the SRM, the development of a block diagram is not as
straightforward as in the case of the dc motor. Realizing that the SRM is very much similar to the
series-excited dc machine (as seen from the torque and equivalent circuit development earlier in
our text), it is feasible to proceed with linearization of the system equations to obtain a small
signal model and a block diagram from which the transfer functions are developed. The

linearized mechanical equation can also be written as

| .2 (/L( o, f-) _ ("c‘)m
5" T de Te=J—7 +Bo, (3.18)

Where B is the rotor friction constant and ®,is the mechanical speed. The linearized voltage

equation is written as:

45



= Ri+L(6. )%+ 4O D

. dIL(O, D)i] !
dr do " (3.19)

: : dt

5

The states of the SRM plant are the rotor speed, ®.,, and the phase current, i. By examining the

SRM voltage and torque equations, there are terms where states are multiplied together resulting
in a nonlinear system. It is desirable to derive a linearized model to utilize a vast amount of
knowledge on linear systems to synthesize the current and speed controllers. This section
contains the derivation of a linearized model of the SRM. The inductance is assumed to be
constant for the sake of simplification. The inductance is chosen as the mean value between the
aligned inductance and the unaligned inductance at the rated current. The derivative of
inductance with respect to rotor position is also assumed to be a constant and calculated between
the conduction angles at the rated current value. This derivative has only a small change over the

operating range of the motor.

Perturbing the system around a steady-state operating point with small signals, the new system

states and inputs are-

i=1i,+ OI (3.20)
w,, = M,,, + oW, (3.21)
v =1V, + OV (3.22)
7, =T,, + o7, (3.23)

where the extra subscript 0 indicates steady-state values of the states and inputs, and the small

signals are indicated by & preceding the variables. Substituting the perturbed variables in the
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system equations, it is seen that the steady-state terms cancel and the residual of these equations

gives:

doi _ (— &'—ld—Lw )('Si—ld—L i,0 +6—V

dr L. Lde Lde L (3.24)
S5 oF

(7!( DO _ ( 1aL f,.)Si — = omw,, - or.
dr J dO J (3.25)

Hereafter, the following substitutions are used:

/L
R, — R.-}-(—(U,”,,
(t‘( 5 (!18 (3.26)

dI .

Ko = Zo' (3.27)
/L .

Se = “=i Sa

Oc¢ 70 1,0,, (3.28)

where Reqis the equivalent resistance, Kyis the emf constant, and 6e is the induced emf. By using
the small signal voltage and torque equations, the following block diagram is derived for the
linearized SRM plant model. Note that this model is similar to the separately excited dc machine
model. The block diagram of the linearized SRM is shown in Figure 4.1. The load is assumed to
be frictional; that way, the load torque is treated as an integral component of the system but not
as a disturbance. For the sake of simplicity, only one current feedback loop is shown in Figure

4.1, even though for a q-phase SRM there will be q current feedback loops.
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OV(s) ] o) | 30 py(s)
— - - -
+ ch sl B +sl
oe
Ky [«
Fig. 3.22 Block diagram of the linearized SRM.
dV(s) dl(s) . dw ()
¢ | +sT, o Ki/B, g
(l +ST|)(1 +ST3) l +5Tm

Figure 3.23 Reduced block diagram of the SRM.

These current loops are identical but shifted in phase, so there is no need to consider more than
one phase for control modeling, analysis, and design. The back emf and current feedback loops
cross each other, resulting in cross coupling of these loops. Further, it makes the task of
designing a current controller and later the speed controller very difficult. For this reason, the
SRM block diagram is cast in a different form by removing the back emf feedback loop but
absorbing it in a form which leads to a two-stage transfer function as shown in Figure 3.52, very

much similar to dc machines, where

B, = B + B, (3.29)
Ky = B
K,+ R.,B, (3.30)

48



J
" B, (3.31)

(3.32)

The design of the current controllers is an integral part of any drive system development. Due
to the nonlinear nature of the SRM, the development of a blockdiagram is not as straightforward
as in the case of the dc motor. Realizing that theSRM is very much similar to the series-excited
dc machine (as seen from the torqueand equivalent circuit development earlier in our text), it is
feasible to proceed with the linearized small signal model of the Switched Reluctance Motor
(SRM)

A speed-controlled SRM drive system is shown in Figure 5.1. Rotor speed is converted to a

voltage signal through a tachogenerator which then is filtered to providew, , which is then

compared with its reference. The speed error signal is amplifiedand conditioned with the speed
controller. The output of this speed controller is a voltage signal proportional tocurrent command
signal I". A current feedback signal in volts is compared with thiscommand signal to generate a
current error. The current error is processed through a current controller to produce a command

signal for the power converter. The power converter is

') VE) v 16)
(1].[8) — — ] - ]\r__ | 1+N|m - K" B‘ — [\)
' 2 [ I+sT, (1+sT)(1+5T,) 1 +5T, ™
A
. Speed Current Converter
o,() Controller Controller
H, =
H,, . Current Feedback
1 +5T,

Speed Feedback Filter
Figure. 3.24 Block diagram of the SRM drive.
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Modeled as a gain with a first-order lag, and both of these constants maybe measured or

evaluated in the design stage. The power converter gain is

V ., (nominal)
K = dc

’ Vem (3.33)

whereVyis the maximum control voltage.

The time constant of the converter, T, assuming PWM control of the converter with a carrier
frequency of f, is given by:

T 1
T, = —< = —
2 T 2f. (3.34)

To validate the design technique using the linearized model, a 5-hp SRM is considered for

the current and speed controller designs [38].
3.3.2 Single Phase Current Control of the Linearized Small Signal SRM

Based on the linearized Small Signal Model of the Switched Reluctance Motor (SRM), it is
possible to use a PID controller to control the current signal of SRM. The PID controller used in

this case is an adaptive PID controller and the block diagram of the controller is shown below:

i

Proportional Gain

@ —fi

Integral Gain

Filter Coefficient

.

Filter

Figure 3.25 Simulink Model of the PID Controller
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Incorporating the PID controller in the form of a subsystem in the current controller loop of the

SRM drive, the Block diagram [31][37] of the current loop is shown below:

I'(s)

- PID(s)

I

g!—

—- K

I+ 5Ty,

I(s)

(1

} ST] Nl

tsTH)

Figure 3.26 Block Diagram of the Current Control Loop

The representation of the Block diagram as a simulink model for carrying out simulation is

shown below:

—{(——»i o

PI1D Controller

Converer Gain

He

%

Gain

v

Tm.s+1 1
Ll
T1.s# T2.5+1
Trander Fen Trander Feni

Scope

Step1

Current transducer gain

Figure 3.27 Simulink Model of the Current Control Loop using PID

umentrespon

To Workspace
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The simulation result obtained for the step response of 1.5 p.u of the current control loop using

the PID controller is shown below:

Current (p.u)

o

_0 ? A A A A A A A A A
o 0.05 01 0.15 0.2 0.25 03 0.35 04 045 (o]
Time (s)

Figure 3.28 Step Response for a reference current of 1.5 p.u

The settling time is 0.32 seconds and the overshoot percentage is zero.

Using Model Predictive Controller as the current controller in the current loop and representing

the current controlled loop in the form of a Simulink model for carrying out simulations is shown

below:
Scope
I*(s)
P mo
MPC - Tm.s+ 1 lentresponse
v
E T1s+ T2.s+1 To Workspace
P ref
Iref Gain? TransferFen1 Trander Fen2
S MPC Controller Converter Gain

Step2

4
.

<]
O

Current transducer gain

Figure 3.29 Simulink Model of the Current Control Loop using MPC.
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The simulation result obtained for the step response of 1.5 p.u using the MPC controller is shown
below:

| Current (p.u)

L i i i L i

Y Time (s)
Figure 3.30 Step Response for a reference current of 1.5 p.u
The settling time is 0.1 seconds and the overshoot percentage is zero.

The simulation result carried out with a ramp response of a slope of 1.5 on the PID controlled
current loop is shown below:

1.6

14

1.2

1

0.8

Current (p.u)

0.6

04

0.2

»

i 1 'l i

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
Time (s)

0.2 i L i L
0

Figure 3.31 Ramp response for a reference ramp current of slope 1.5using PID
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The output has just been able to track the reference ramp current signal showing a decline in the

performance with the PID controller.

The simulation results obtained for the same ramp signal using the MPC controller in the SRM

current loop is shown below:

Current (p.u)

| Timc. (s)
Figure 3.32 Ramp response for a reference ramp current of slope 1.5 using MPC

The output has been able to settle at 0.85seconds with no steady state error or overshoot.

3.3.3 Single Phase Speed Control of the Linearized Small Signal SRM

To simplify the design of the speed control loop, it is assumed that the delay of the
current loop is negligible due to the fact that usually the speed of response of the current loop is
at least ten times faster than the response of the speed loop. To further simplify the design
equations, the current loop gain is approximated as unity and its time delay is neglected as it is
very, very small compared to all other time constants. Normally, the delay due to the speed

feedback may be neglected, which would reduce the system to a second-order system, but when
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the speed feedback delay is comparable to the delay of the other subsystems it must be

considered in the design process [39][42]. The block diagram of the approximatedSpeed Control

loop is shown below.

o (s) —>O—> PIDIY U R S
+ | 45T, (I+sT )
- PID Controller
Hm. -
(45T )

Figure 3.33 Approximated speed loop block diagram.

> 0y(8)

The representation of the speed control loop with a Simulink model using PID as the speed

controller is shown below:

Figure 3.34 Simulink model of the Speed Control Loop using PID

k1 . kb/Bt
Tss+1 Tm.s+1
PID Cantroller Trander Fen1 Trander Fcn
Hw =
&1
Tws+1
Trander Fcn2

.‘3) eedoutput

To Workspace
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The simulation result obtained for the step response of 1 p.u speed using the PID controller is

shown below:

1.4 T T T T T T T T

0.6 H -]

Speed (p.u)

0 L 1 L 1 I L I L
0 5 10 15 20 25 30 35 40 45

Time (s)

Figure 3.35 Step Response for a reference speed of 1.pu using PID

The settling point is 14 seconds and the overshoot percentage is 10.2%.

Using Model Predictive Controller as the speed controller in the speed loop and representing the

speed controlled loop in the form of a Simulink model for carrying out simulations is shown

below:
W'm »{mo Kb/gt
| MPC o X |l Tm.s+1
Step L Tse+1 Trander Fen
ref Trander Fcn1
MPC Controller
Pee doutputm)
To Workspace
Hw -
Twe1
Trander Fen2

Figure 3.36 Simulink Model for the Speed Control Loop using MPC
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The simulation result obtained for the step response of 1 p.u speed using the MPC controller is

shown below:

Speed (p.u)

Ti.r;':e (s)

Figure 3.37 Step Response for a reference speed of 1.pu using MPC

The settling time is 9.2 seconds and the overshoot percentage is zero.

3.3.4 Tabulated results obtained from simulations:

Table 3.6 Result Comparison Using the Simulated results tabulated for the SRM system

System Overshoot (%) Settling time (sec)
Only MPC Only
MPC adaptive PID Controller adaptive PID
controller controller
Controller
Speed 0 10 9.2 14
control loop
Current 0 0 0.1 0.32
control loop
Current 0 Damping was 0.85 and the tracking Very bad
Control Loop with present ability was very tracking ability
ramp signal satisfactory

57




From the tabulated results we can clearly say that the performance of the responses of the speed
control loop and current control loop of the Switched Reluctance Motor has been significantly
improved using MPC as the controller. Moreover the tracking of the ramp reference current
signal has also been very satisfactory which thereby clearly shows the superlative performance

of MPC over the PID controller.
3.3.5 Stability analysis of the SRM system.

The state space model of the current control loop of SRM with all the parameters taken from

table 3.8 is shown below:

[X1] N :11?5? g —2(;9 3] [ ] [00060573298] r 032
y = 1863x, (3.36)
where y =1

The corresponding transfer function of the current control loop is shown below:

1(s) . 1218s+203 (3.37)

I*(s)  s2+2808s+41820

The eigenvalues of the system matrix are -2793.3 and -0.0150 respectively and since the values

are negative the current loop of the Switched Reluctance motor is stable.
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The state space model of the speed control loop of the Switched Reluctance Motor is shown

below:

X1 —0.1667 0.000455 0 % 0
Ll=] o 25 0 [x2]+ 1| (3.38)
X3 390 0 —10 0
y = 0.383x; (3.39)

where y = w

The corresponding transfer function is shown below:

w(s) 0.06796
w*(s)  $3+12.6752+27.085+4.167

(3.40)

The eigenvalues of the system matrix are -10, -0.1667 and -2.5 respectively. Since the values are

negative the speed control loop of the Switched Reluctance Motor is stable.
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Chapter 4

Ornithopter, its Dynamics and Flight Control Model

4.1 Introduction to Ornithopter

Natural fliers like birds have mesmerized and captured the inquisitive minds of inventors
through ages. The ease and grace with which they fly in the air is really amazing and it quite
remarkably and significantly surpasses the complicated dynamics and control mechanism of the
aircrafts of today. Several attempts at imitating the natural agility and nonchalant ease of flight of
the birds have been carried out. Amongst many truly groundbreaking works a flapping wing
vehicle commonly known as an ornithopter has been brought to the illuminating canvas of recent
research works. The aircraft mechanism involves separating the flight mechanism into two
different forces of action [26]. The lift mechanism which involves the wing surfaces of the
aircraft are totally separated from the mechanism of thrust [26]. But in the control mechanism of
the ornithopter both the lift and thrust mechanism are integrated together [2] [7]. This intricate
nature of control of the birds is only possible to be materialized by human beings if the
complicated dynamics of the birds of wings can be unraveled with complete mathematical
modeling. The mechanical, aerodynamics and structural aspects of the flapping wing motion
control is the key to developing an adequate and comprehensive model of the ornithopter [1][11]
[5] [6] which can be launched in real life, thus expanding the horizon of human imagination and
make human beings that closer to accomplish a victory over the nature itself. Attempts to

incorporate all the complex motions of a bird for developing a flying vehicle has never stopped
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short of research ever since the aspect of flying with the grace of a bird had caught the human
imagination. Reality has interestingly deceived the human’s attempts for achieving this
tremendous fit. The best groundbreaking attempts so far has been significantly done in the
relentless research on the dynamics of the ornithopter which is different from the birds in that it
does not have the complex motions such as feather spreading, fore-and-aft swinging, semispan

variations quite vividly present in the bird’s motion.

Although rubber-powered and human-powered ornithopters have existed, successful examples of
motorized flapping-wing aircraft are few with the notable exception of the 18 ft span robot
pterosaur built by AeroVironment Inc. of Monrovia California [1]. However, this model was not
able to sustain flight. The first successful flight of a motorized radio-controlled flapping-wing
aircraft, known as 'Mr.Bill", was made on September 4,1991 by Dr. James De Laurier and Mr.
Jeremy Harris at the University of Toronto. This model aircraft was able to sustain flight for
about 3 minutes and was landed successfully. This omithopters wing design is different from that
for birds in that it doe snot have the complex motions [7] such as feather spreading, fore-and-aft

swinging, semispan variation, etc.

mamese

--------

g . O

\\-:-."',‘i,:;{ 23 \ N s
Q\ \\\\\\\ﬂ}\\\\
W

Figure 4.1 Mr. Bill Ornithopter 61



The motion is such that the center panel moves. in a direction which is opposite to the flapping
of the outer panels. This three-panel design serves to balance he time-varying lift seen by the
fuselage and evens out the power required from the engine during the flapping cycle. With the
two-panel design, the power required for the downstroke [5] is greater than for the upstroke. The
flapping is asimple harmonic motion driven by a lightweight transmission which reduces the
high rotational speed of the engine down to the low flapping frequencies which are required. A
linear twist is experienced by the wing and is 90 degrees out of phase with the flapping. No
ailerons are present, thus turning is accomplished by yaw &roll coupling produced by the rudder
deflection in conjunction with the wing's average dihedral angle. The dihedral angle is

accomplished by making he upstroke flapping angle larger than the downstroke angle.

4.2 Recent Applications of Ornithopter

Research is now continuing into constructing a full-scale motorized ornithopter capable
of carrying a human being. This enormous task can be divided into several different sub-areas
some of which include: wing design, landing and take-off simulations, drive mechanism design,

and flight dynamic analysis [4] [6].

Recently the earnest interest for ornithopters has grown in the area of Micro Aerial Vehicles
(MAYV). These miniature flying objects of such agility will indeed be the ultimate platform for a
diversified area of tasks including systems monitoring and surveillance where a swarm of tiny

agents would be unobtrusive and have better access to confined areas than large flying vehicles.

The most recent realizable (MAV) based ornithopter of such kind is the Kestrel ornithopter [5].
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Figure 4.2 Kestrel Ornithopter

This thesis will mainly focus on the flight dynamics of such an ornithopter in a small scale

amongst other concerning subjects’ necessary for a realizable ornithopter.

4.3 Flight Dynamics and modeling of the Ornithopter

The flight dynamics of the ornithopter are basically organized into three different
dimensions each being more complex than the other. The simplest amongst them is the one
dimensional flight dynamics. The 3D dynamics and modeling is far more complex [1] [4] [16]
[18] and thus requires lengthy procedures and eventually loses the simplistic approach for

obtaining an accurate mathematical model [4] [10] [15].

In this thesis only the two dimensional modeling of the dynamics will be taken into consideration
which works as a model not too sophisticated and not too simple as well. This model thus
represents a rather less complicated model which doesn’t lose all the details necessary for

forming a realistic dynamic system [1] [4] [18].
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4.3.1A General Two Dimensional Model of the Ornithopter

A general free body diagram of the ornithopter in flight is shown in Figure 4.3. The

following notation applies to Figure 4.3.

x the horizontal axis.
y the vertical axis.

Xthe horizontal body axis.

Figure 4.3 Two Dimensional Model of the Ornithopter

ythe vertical body axis.
0 the angular position of the ornithopter.

a the angle of attack of the ornithopter and angle between the velocity vector and
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horizontal body axis.
O the angle of the tail (or elevator).
m the mass of the ornithopter.

g Earth’s gravity: g = 9.81m/s2.

v the velocity of the ornithopter: v = \/vZ + vZ = JxZ + y2
T the thrust produced by the wings, which is assumed to be parallel to the body axis.

L the lift generated by oncoming air flow.

The equations of motion for this case can be summarized as [4] [5]:

mxX + b,x =T cos@ — Lsin6 (4.1)
my + b,y =Tsinf + Lcos6 —mg 4.2)
61 + by = —K, 5% 4.3)

whereb,, b,,, and bg are horizontal, vertical, and rotational damping of the ornithopter,I is the

moment of inertia of the ornithopter, and K; is a torque constant relating thetotal torque, of which
the ornithopter is subject, to the angle of the tail. From the free-body diagram, we can also

conclude that

x =vcos(f —a) 4.4)
&
y = vsin(6 — a). 4.5)
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An approximation of the moment of inertia is made using the following equation for the moment

of inertia for a solid cuboid [4]:
I = %m(hz +12) (4.6)

where h = height and | = length. For h =4 in.=0.1016 m, 1 = 6 in. = 0.1524 m,and m = 0.096
kg, we find that 1 ~2.6839E — 4 kg -m?. An estimate of the rotational damping and torque
constant can be made by considering two cases for the equation 81 + by = —K,85. In the first
case, the ornithopter is at rest and a maximum step in angular acceleration, 8,4, is applied to
the system. At this point & = 0 and §; = 8 ,max.From observation, &z ,max ~ +45 and
Opmax ~ £540°/s? ~ +9.43 rad/s?.1 We can then solve for K, ~0.0032. In the second case,

the ornithopter is in steady rotation. Heref = 6,,,, = 180°/sandf = 0.We can then solve for

by =~8.0516E —4 N - s/m.

The system parameters were approximately estimated for an ornithopter in steady state
motion/rotation with its velocity increasing from the moment of flight to the point it starts to
hover at the cruise altitude. The complex differential equations describing the equation of motion

of an ornithopter was simulated in Simulink.
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The Simulink model of the ornithopter representing the two dimensional flight control is shown

below.

Al
@ Add1

lift

Gaind

xdoldot

qu'._n.

Product2 >
Gain2
vertical veloaity
Gain4
@
thrust
— ¢
Add
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Product jg —
n Prodoet
delta
Gain
:llnmll
thetadotdot 1 thetadot m theta Trigungmltic
3 4 Functiont

Integratord IntegratorS ) ‘ "

Trigonometric
Function

D)
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Figure 4.4 Total Nonlinear Simulink Representation of the Ornithopter

Now the major problem is the designing of such ornithopter model in the two dimensional model
because it also incorporates lift, thrust and taii command. In most cases only the thrust and tail

command angle are considered to be the manipulated variable. This general approach follows a
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similar method employed in aircraft dynamic modeling where the lift is separately considered

and the mechanism is totally detached from the thrust mechanism.

A typical subsystem that incorporates both the thrust and lift mechanism of the ornithopter was

simulated in Simulink as shown below:

>l delta v elocity p

>l thrust altitude p

21 lift angular position p
Subsystem

Figure 4.5 Ornithopter Simulink Model

4.4 Flight Control of the Ornithopter

The 2D model is designed with parameters representing steady motion of the ornithopter.
Thus the system lacks the acceleration motion after the point of cruise holding altitude but yet
again the most essential mechanism of control is the steady state motion because in most period
of operation the ornithopter will have to stay in steady motion [7][8][10]. Moreover this model
also truncates the aspects of rotational acceleration and rotational velocity because such

directions of motion are best described in 3D dynamic modeling of the ornithopter [6] [18].
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4.4.1  Flight Control of the Ornithopter using the PID Controller

The three output variables are taken to be the key exponents of control in this thesis. The
PID controller is utilized in a step by step SISO modeling of the nonlinear 2D dynamic model of
the ornithopter. Linearization of this complex system was carried out using the Matlab command
linmod. Initially only the thrust was taken as the manipulated variable for controlling only the

vertical velocity of the ornithopter.

The PID controller used for this purpose is an adaptive PID controller which also includes a filter
block to obtain the most efficient response. The PID block uses the compensator formula which

is:

Ki g N
Kp+2+ Ky ul @.7)

where K, is the proportional constant, K; is the integral constant, K4 is the derivative constant

and N is known as the filter coefficient. The Simulink model of the PID controller is as follows:

_..|p

Proportional Gain

O

Integral Gain . ¥

Y

AN
C“)

5

Integrator

>

Derivative Gain Filter Coefficient

s

Filter

Figure 4.6 The internal Simulink Representation of the PID Controller 69



The Simulink model for such representation is shown below:

L4 —‘—D?—b PID(Y
S PIO Contotler L

Brust atitude p P velocity

To Wodspate

it angular postion p

v

un
Constant1

Subsystem

Figure 4.7 PID controller using thrust as the only Manipulated Variable and Velocity as Output

The same approach was carried out with the thrust as the manipulated variable for controlling the
angular position and finally the altitude.

dellaE P dota velocity p
Constant

L & PID(S)

Step 4 L

P1D Conirolier theust alidude b Pangpoation
To Workspace
un P e angulae post
Congtant1
Subsystem

Figure 4.8 Continuation of the Previous Figure with Angular Position as the output
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Figure 4.9 Continuation of the previous Figure with altitude as the output

However the thrust is the controlling variable possible for only controlling the vertical velocity

[5][16].Thus the results completely obeyed this theoretical aspect of ornithopter.

In the same way tail angle command §;was taken as the manipulated variable for controlling the
outputs using PID controller. However the outputs obtained were really unsatisfactory and
evidently approves the theoretical concept of controlling the ornithopter since &g is only
considered for controlling the angular position. Again when lift was taken to be the commanding

variable, it followed the theoretical aspect [10] once again and only the altitude was able to be

controlled.
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The corresponding Simulink model of such control scheme is shown below:

PO P |

PID Controller

Constant2

h 4

el

thryst

it

¥ ?r’:':-f)'

altude

angular osibon

Sudystem

P atitude

To Worlspace

Figure 4.10 PID controller with Lift as the Manipulated Variable and the output as the altitude.

4.4.2 SISO, MISO Model Predictive Controller in the Flight Control of the

Ornithopter

The whole process was carried out using MPC Model Predictive Controller taking only

one manipulated variable at a time to control the output variables.

The Simulink Models representing such Single Input Single Output (SISO) control schemes and

also with the theoretical aspect taken into consideration are shown below:
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Figure 4.11 MPC Controller scheme for controlling the velocity with the manipulated variable as
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Figure 4.12. MPC controller with Manipulated Variable as the Lift
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Figure 4.13 MPC controller with Manipulated Variable as the Tail Command angle

Finally a Multiple Input Single Output (MISO) Simulink Model was simulated using the MPC
controller. PID controllers are generally quite difficult to control such MISO systems and require
Neural Networks or Fuzzy Logic intelligent control adapted to the PID controllers
[7][14][18].for carrying out such operations. Hence only MPC controllers were utilized for

controlling the output variables.
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Figure 4.14 MPC Controller with three Manipulated Variables and Angular Position as Output

The Simulink models used for carrying out this process is shown below:

> celta Y
- veal
thru altude b
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Subsystem
mo [«
—q mwv MPC rof J Step
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Figure 4.15 MPC Controller with three Manipulated Variables and Velocity as Output
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Figure 4.16 MPC Controller with three Manipulated Variables and altitude as Output

4.4.2 MIMO Model Predictive Controller in the Flight Control of the

Ornithopter

Finally a complete model was developed with Simulink which involved controlling all
the outputs which are the velocity, altitude and angular position respectively. The Simulink

model for such a scheme using MPC controller is shown below:
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Figure 4.17 MPC Controller with three Manipulated Variables and Velocity, Altitude and

Angular Position as the Output

The control of the initial acceleration of the ornithopter to the point of cruise operation at steady

velocity was manifested with the MIMO model of the Model Predictive Controller.

The Representation of the Simulink Model that features the initial acceleration mode of the

Ornithopter is shown below:
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Figure 4.18 Model Predictive Controller featuring the Initial Acceleration Mode of Operation.

The control was carried out be using a ramp reference velocity signal of slope 1 and the
reference angular position as 1 p.u. The expected altitude response is supposed to be a parabolic
curve if at all it were to accelerate. So the main observation is really depends immly on the

altitude response of the ornithopter.
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4.5

Linearized Model of the Ornithopter

The linearization of the complex nonlinear model of the ornithopter was carried out by

the Matlab command linmod with initial operating points set at the necessary values. The entire

process was carried out by simulations involving linearization in Matlab.

The Linearization Results yielded from Matlab resulted in the State Space Model of the Entire

Two Dimensional Ornithopter System as shown below:

; [ -1042 0 0 0 -4828 ] 0 1042 1.65%10°° |
1 1
[,-Cz] 0 —1042 0 0 3.89x10°° [Xz] 0 1.65%10°°  10.42 U,
%3 | = 0 1 0 0 0 x3|+| 0 0 0 [uz]
Xy 0 0 00 0 Xal 122909 0 0 Us
XS x5

0 0 0 1 0 0 0 0 |
Y1 = X1
Y2 = X3
Y3 = X5

where Y1, Y2 and Y3 represents the outputs of Velocity, Altitude and Angular Position

respectively. The variables u;, u, and u; represent the input of tail command angledg, Thrust

and Lift respectively.

The eigenvalues of the system matrix are -10.42, 0, -10.42, 0, 0 respectively and since they are

negative the system is stable.
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CHAPTER S
PERFORMANCE ANALYSIS OF MPC AND PID CONTROLLER

ON THE FLIGHT CONTROL OF THE ORNITHOPTER

The performance analysis and comparative study of the flight control of the ornithopter
was thoroughly undertaken by observing the simulation results obtained by running the various

Simulink models designed.

5.1 Simulation results using the Adaptive PID Controller

Step Response of the Velocity of the Ornithopter using Thrust as the Manipulated Variable

10

Velocity (p.u)
[\ o
. =

0 1 2 3 4 5 6 7 8 9 10
Time (sec)
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From the result, we see that the control has been very poor with a high frequency oscillation

taking place about the reference velocity of 1 p.u

Step Response of the Altitude of the Ornithopter using Lift as the Manipulated Variable

2 l T T I T I T I

2 4

Altitude(p.u)
e
—
I
|

&
=
T

1

A00
0

TimelSeconds)

Settling time = 9 sec

Overshoot and damping response was severely affected.

From the result, we see that the adaptive PID controller was not very efficient for controlling the

altitude of the ornithopter.
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Step Response of the Angular Position of the Ornithopter using Tail command & as the

Manipulated Variable

Ang

Settling time = 13 sec
Overshoot = 12%

From the result, we see that the response is slow and the overshoot percentage has not improved

very well.
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5.2  Simulation Results using the SISO (Single Input Single Output) MPC Controller.

Step Response of the Velocity of the Ornithopter using Thrust as the Manipulated Variable

Velocity (p.u)

1 1 1 1 1 1 1 1 1

Settling time = 0.5 seconds
Overshoot Percentage = 6%.

From the result we can inevitably say that the performance has been dramatically improved by

using the MPC controller.
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Step Response of the Altitude of the Ornithopter using Lift as the Manipulated Variable

Altitude(p. u)

o

(3% ]

Time (sec)

Figure 5.5 Step response for a reference altitude of 1 p.u

Settling time = 0.9 seconds.
Overshoot = negligible.

From the result we see that a remarkable improvement have taken place by using the MPC

controller.
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Step Response of the Angular Position of the Ornithopter using Tail command angle 85 as the

Manipulated Variable

Angular Position (p.u)

w |-

5 = =
0 1 2 4 £ A

Lo

Time(seconds)

Figure 5.6 Step response for a reference angular position of 1. P.u

Settling time = 0.8 seconds

Overshoot = 0%.

From the result we see a improved performance using the MPC controller.
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5.3  Simulation Results using the MISO (Multiple Input Single Output) MPC Controller.

Step Response of the Velocity of the Ornithopter using all the inputs (Thrust, Lift and Tail

command angle 6z) as the Manipulated Variables

Velocity (p.u)

Time (sec)

Figure 5.7 Step response for a reference velocity of 1 p.u

Settling time = 0.12 seconds.

Overshoot = 0%

From the result we see that there is a further improved using the MISO MPC controller. The

settling time has reduced significantly and the overshoot has been totally eliminated.
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Step Response of the Altitude of the Ornithopter using all the inputs (Thrust, Lift and Tail

command angle 6z) as the Manipulated Variables

Allitude(p. u)
[«
«

| | 1 | 1 1 1 1 |

Time (sec)

Figure 5.8 Step Response for a reference altitude of 1 p.u.

Settling time = 0.52 seconds
Overshoot almost totally eliminated

From the result we can see a further improvement in the response with a decrease in the settling

time and a better overshoot performance.

87



Step Response of the Anqular Position of the Ornithopter using all the inputs (Thrust, Lift and

Tail command angle &) as the Manipulated Variables

o

Angular Position {p.u)

Time(seconds)

Figure 5.9 Step Response for a reference angular position of 1 p.u

Settling time = 0.8 seconds
Overshoot = 0 %

From the result we see a further improvement in the performance using the MISO MPC

controller.
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54 Simulation Results using the MIMO (Multipe Input Multiple Output) MPC Controller.

Step Response of all the outputs (Velocity, Altitude and Angular Position) of the Ornithopter

using all the inputs (Thrust, Lift and Tail command angle §:) as the Manipulated Variables

Atito

Time (seconds)

Figure 5.10 Step response for a reference velocity, altitude and angular position of 1 p.u

Settling time for the velocity = 0.7 seconds
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Settling time for the altitude = 0.9 seconds

Settling time for the Angular Position = 0.98 seconds

Overshoot for the velocity = 0 %

Overshoot for the altitude =8 %

Overshoot for the angular position =0 %

From the result we observe that the performance has declined to some extent from the MISO
MPC controller but nevertheless the main objective of incorporating the thrust and lift as one
basic component for the control of ornithopter in terms of its output as the velocity, altitude and
angular position was possible to be implemented in this design. The performance is not only
satisfactory but also provided a somewhat complete picture of the control mechanism of the

ornithopter using MPC controller.

5.5  Tuning Parameters for the MPC Controller

The parameters were tuned following the general principle of selecting the key parameters. All
the simulations were carried out using the same control parameters of the MPC Controller. The

parameter values are tabulated as shown below:

Table 5.1 Control parameters of the MPC for the Ornithopter system

Parameters Values
Control Interval 0.05 seconds
Prediction Horizon 20
Control Horizon 5
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The control interval was selected such that it was always less than the settling time of the system
which if not selected properly would give erroneous results. The Prediction Horizon was selected
on the basis of the complexity of the system. If the system dynamics is a third order transfer
function, it is recommended to increase the prediction horizon. According to the general
principle, it is also necessary not to make the prediction horizon very large. And the control
horizon was selected such that it was less than the prediction horizon and not very large so that it
does not hard track the reference signal. This otherwise would lead to a steady state error which

is highly undesirable.

5.6  Tuning method employed for the PID controller

In case of the PID controller, the tuning block of the Simulink model was used. It was tuned such
that the system doesn’t lose stability in the process and more importantly manages to obtain an
optimum tracing of the reference signal with optimum settling time. The overshoot tuning

parameter was also stipulated to stop the presence of overshoot. It was hard constraint.

5.7  Simulation Results for the initial acceleration stage of the ornithopter using the ramp

actuating signal

The initial stage involves rising from ground to the holding position with acceleration.
This involves continuous change (increase) of velocity with time. This aspect was analyzed using
a reference velocity ramp signal of slope 1 while taking the reference angular position be a step
signal of angle 1 p.u. The angular position was allowed to stay at its rated 1 p.u for providing the

tail spin necessary for an improved velocity response.
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Ramp Response of the outputs (Velocity ) and zero angular position of the Ornithopter using all

the inputs (Thrust, Lift and Tail command angle 6z) as the Manipulated Variables

Time (seconds)

Figure 5.11 Ramp response for a reference ramp velocity of slope 1 and Step response
reference angular position of 1 p.u.

The corresponding altitude response of the MIMO system is shown below.
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Figure 5.12 Altitude response for the reference ramp velocity of slope 1 and reference
angular position of 1 p.u

From the result we see that the velocity was able to track the reference ramp velocity of slope 1
with a steady state error of 2 % which is quite within the tolerance level. Moreover the settling
time of the angular position was only 0.9 seconds which is satisfactory. The altitude response
displayed a parabolic pathway which completely agrees with the fact that the ornithopter was in

acceleration mode.

5.8 Simulation Results shown in a tabulated format

The results are comparatively analyzed using the table as shown below:
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Table 5.2 Simulated Results of the Ornithopter Tabulated

Control Input Variables Settling Time for different] Overshoot for different
Outputs (seconds) Outputs (%)
6 | Thrust Lift | Velocity | Altitude | Angy Velocity Altitude | Angu
Posit] Posit]
4 Manipula 0 Very Poo| N/A N/A | Very Poor | N/A N/A
Variable Oscillatio
around th
reference
PID velocity
4 50 Manipula N/A 9 N/A | N/A Very Poor| N/A
Variable
Manipula 50 0 N/A N/A 13 | N/A N/A 12
Variable
4 Manipula 0 0.5 N/A N/A | 6 N/A N/A
Variable
4 50 Manipula N/A 0.9 N/A | N/A Negligible | N/A
Variable
Manipula 50 0 N/A N/A 0.8 | N/A N/A 0
Variable
Manipula Manipula Manipula 0.15 N/A N/A|O N/A N/A
Variable | Variable | Variable
Manipula Manipula Manipula] N/A 0.52 N/A | N/A 0 N/A
MPC : . :
Variable | Variable | Variable
Manipula Manipula Manipulal N/A N/A 0.8 | N/A N/A 0
Variable | Variable | Variable
Manipula Manipula Manipula 0.7 0.9 0980 8 0
Variable | Variable | Variable
Manipula Manipula Manipula] Good Expected| 0.9 No N/A 0
Variable | Variable | Variable | Tracking| Parabolic overshoot
(Ramp Response but presence
Reference some steady
state error
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Finally the overall responses with the MISO MPC controller proved to improve the flight control
of the ornithopter quite remarkably. On the other hand the MIMO MPC controller provided a
great breakthrough because of the the fact that both thrust and lift along with tail command angle
6 was incorporated as whole in the system dynamics and proved to function with a very
satisfactory performance. Moreover the initial acceleration phase from ground to the hold
position where the ornithopter moves with a steady velocity (cruise), was also possible to be
controlled by the MIMO MPC making the whole control operation very compact with all phases
considered and made controllable. The response time of the system was also significantly less
thus proving MPC to be very successful in the flight control of the ornithopter.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The purpose of this thesis was to investigate the performance of MPC in controlling
systems encompassing various fields ranging from electrical to chemical and finally in the field
of aerodynamics. The first phase of this thesis dealt with simple nonlinear models which
included the temperature control of the STH invariably used in chemical process plants and the
current & speed control of a SRM which in recent years have supplanted the induction motor in
its use in electric motor drive applications. A very simple nonlinear model of a robotic leg was

taken as the base to observe the ability of MPC to control simple systems as well.

Although many nonlinear systems were analyzed but the main emphasis of this thesis was the
flight control of an ornithopter. To thorough analyze the superior performance of MPC a
complex nonlinear system involving the ornithopter was considered. A 2D model of the
ornithopter was investigated which is described by three second order differential equation. After
linearization a 5 X 5 system matrix was generated and the system also incorporated all the
manipulating variables together. The thrust and the lift input was inseparably included into the
dynamics of the system which thereby provided a comprehensive model of the ornithopter.
(MAV) ornithopter was the basis of research and a MISO, SISO and finally a MIMO
representation of the ornithopter was modeled using Matlab Simulink as the environment for
simulation. Moreover not only was the control of the steady state motion of the ornithopter
(cruise motion in which the ornithopter moves at a constant velocity) investigated but also the
control of the initial accelerating phase from the ground to the point of hovering of the
ornithopter was analyzed using the MPC. To evaluate the performance of the MPC the adaptive
PID controller was used to control the nonlinear systems. Finally a comparison of the

performance of the PID controller and the MPC controller was undertaken.

94



The simulation results showed remarkable and significant improvement of the control responses
of the nonlinear systems considered in this thesis. Mainly in the flight control of the ornithopter
where the adaptive PID controller performance was very poor, the MPC showed convincing and
distinguished performance compared to the adaptive PID controller. The performance was very
good and thus can prompt researchers to think of MPC as the future means of controlling a more

complex 3D model of an ornithopter.

The research in itself was very comprehensive in depicting the control feature of MPC because it
also showed how a plant which in this thesis was the STH bounded by input constraints can be
quite effectively controlled by Model Predictive Controller where the adaptive PID controller

was found incompatible.

Eigen values are also found to check the stability of the systems considered in this thesis which
in other words are bound to give positive values because otherwise MPC by no means could be

used to control the system.

6.2 Contribution

A significant improvement in the response and controlled operation of the nonlinear systems
considered in this thesis was observed compared to the results obtained from the PID controller.
The results show that in almost all cases of various operating conditions, the MPC controller not
only provided a faster response but also is able to eliminate the presence of overshoot that is
quite evident in the responses while using the adaptive PID controller. Adaptive PID controllers
are generally implemented in the control of single input single output (SISO) systems, but Model
Predictive Controller has the versatility of controlling both MISO and MIMO systems. The
performance analysis of the control of Model Predictive Controller of such systems is thoroughly
analyzed under different operating conditions. The results obtained from the use of Model
Predictive Controller for the flight control of the (MAVs) ornithopter shows comprehensively
that MPC can be used as the future means for the control of these sophisticated and very
complex ornithopters. This is because almost all possible scenarios involved in the flight control

of the ornithopter were simulated using the Model Predictive Controller and showed remarkable
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performance in the responses of the ornithopter. Moreover the accelerating phase is also
considered and MPC was able to provide a very satisfactory result, which in the case of the PID

Controller had little effect in controlling the flight modes of the ornithopter.

6.3 Conclusion

Model predictive controller (MPC) was implemented as the controller in various systems.
Performance of MPC was significantly better than the adaptive PID controller. The versatile and
the smart feature of MPC to work with MIMO plants was observed in this thesis which in case
of adaptive PID controller is very difficult to implement and also provides unsatisfactory results
unless updated to a rather complex controller by incorporating intelligent algorithms such as
Particle Swarm Optimization, Genetic Algorithm and Neural Network in the PID controller. The
complexity of avoided in this thesis work. However Model Predictive Controller works very well
without any combination of other controllers for operation. This feature of MPC was very
vividly manifested in its superlative performance of the flight control of the ornithopter in its
different flight modes including both the cruise and accelerating phase of motion of the
ornithopter. Hence the ability of MPC to handle multiple manipulated input variables for the
control of multiple outputs and also the superlative performance observed in the flight control of
the Ornithopter has made it an effective choice for using it as the future controller for a more

complex and comprehensive 3D model of an ornithopter.

6.4 Recommendations for Future Work

In the following, some recommendations are given for future scopes of research in the area or

research present in this thesis.

» Further research can be done in implementing Model Predictive Controller as the means

for the flight control of a more complex 3D modeling of the ornithopter.
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Future research work can be done for the flight control that involves angular velocity,
angular acceleration control of the ornithopter

A more rigorous comparative study can be analyzed by implementing genetic algorithm
and neural network based adaptive PID controller as a means for evaluating the
performance of the responses of the systems with MPC controllers.

Future Research work can be done by adding disturbances ranging from wind speed
change and non-stationary air flow environments to better analyze the flight control of
the ornithopter using MPC controller.

Future Research can be done by assimilating the lift force as a function of the angle of

attack and hence can more closely imitate the control mechanism of birds.
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Appendices

Appendix A

The system parameters used for simulation of the robotic leg are ] = 0.4177 kg m?/s?, D =0.11N-

ms/rad, Kb = 1V-s/rad, Kt= IN-m/rad, La = 2H, M = 0.5kg, g=9.8m/s? and R, = 1Q respectively [36]

Appendix B

The parameters used for modeling and simulation of the STH is tabulated and shown below:

Table 6.1 System Parameters of the STH system

Parameters Values
V; 1ft3
V, 10 ft3
Btu
PjCpj 61.3
~ °F—ft3
Btu
PtCpt 613
" °F—ft3
Btu
hA 183.9 - -
F—min
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Appendix C

The specifications for the 5-hp SRM drive are listed below [43]:

Table 6.2 Motor and system parameters

Motor and system parameters

Command signal levels +-10

Dc link voltage 400 V
Max. current I5A
PWM chopping frequency 8 kHz
Phase resistance 0931 Q
Power 5hp
Rated current 10A (1p.uw)
Rated speed 2500 rpm

Rotor friction constant

0.001 N - m/rad/sec

Rotor inertia

0.006 kg/m*

Speed feedback gain

0.0383 V/rad/sec

Speed feedback time constant

0.1 sec

Appendix D

The parameters used for modeling and simulation of the ornithopter system is tabulated and
shown below:

Table 6.3 System Parameters of the ornithopter system

Parameters | Values
b, 1
b,, 1
bg 8x 107
K; 0.0032
I 3x107*
m 0.096
l 0.1524
g 9.8
h 0.1016
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