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A Novel Approach for Diagnosis of Breast Cancer using Ultrasound 

Imaging 
 
 
 
 

 

Abstract 

 

Breast cancer continues to be the most occurring cancer in women around 

the globe. With advancements in medical procedures, breast cancers are now 

virtually treatable in their early stage. Early detection, in turn, is vastly improved 

with community-wide organized sustainable programs. However, such schemes 

demand resources, and sizable amount of fund is being wasted for biopsy of benign 

lesions. Ultrasound imaging, because of its low ionization, effectiveness in 

diagnosing lesions of younger women and lesser resource intensiveness makes it a 

viable option for mass population programs. It has been shown to be effective in 

prevention of significant number of unnecessary biopsies. Thus, ultrasound imaging 

modality remains a prominent tool for diagnosis of breast cancer. Rigorous work is 

being done to improve overall imaging modality. In light of breast cancer, 

quantization of acoustic and morphometric features has proven to give good 

Receiver Operating Characteristic (ROC) area performance.  However, ambiguity 

may still be there at concluding a lesion to be benign. The natural trend for such 

scenarios is the follow-up checkups recommended by experts. With thousands of 

follow-up checkups occurring each year, the need for a systematic study is 

imminent. We develop an effective algorithm that systematically processes over-

time-data with the use of thin plate spline smoothing. This is followed by systematic 

categorization of different sets of physiological changes in light of benign and 

malignant lesions. Finally a versatile community wide scheme is outlined. 
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CHAPTER 1 

INTRODUCTION 

1.1  Global Concern of Breast cancer 

Breast cancer is the top cancer in women worldwide and is increasing 

particularly in developing countries where the majority of cases are diagnosed in late 

stages. The incidence of breast cancer is increasing mainly due to increased 

urbanization and adoption of western lifestyles [1]. It is estimated that 519,000 

women died in 2004 due to breast cancer, and although breast cancer is thought to 

be a disease of the developed world, a majority (69%) of all breast cancer deaths 

occurs in developing countries [2]. Breast cancer survival rates vary greatly world-

wide, ranging from 80% or over in North America, Sweden and Japan to around 

60% in middle-income countries and below 40% in low-income countries [3]. 

  Although measures can be taken for prevention, majority of breast cancer 

cannot be eliminated. However, if breast cancer can be detected early, while it is still 

localized and before it can be palpated, the prognosis for cure is excellent [4]. Thus 

early detection is the key to reduce mortality rates.  

With ambiguity in symptoms with other diseases and with lack of medical 

awareness, routine diagnosis is an important early detection strategy. This becomes 

even more important in low-income countries where resources to treat cancer 

patients at late stage are even more limited. There is some evidence that this strategy 

can produce "down staging" (increasing in proportion of breast cancers detected at 

an early stage) of the disease to stages that are more amenable to curative treatment 

[5]. 

1.2 Diagnostic systems 

Mammography is the primary tool for routine diagnosis of breast cancer. 

Any lesion found is then further diagnosed by biopsy/ultrasound imaging or some 

other diagnostic tools. The concerns of prime importance are saving lives and saving 

resources, which is also indirectly correlated to saving lives.  
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Needle-point Biopsy is a lot more resource intensive than ultrasound imaging 

methods. However, current ultrasound imaging methods may yet falsely label a 

malignant lesion to be benign, although that possibility is significantly small. To 

alleviate these problems, experts recommend follow-up checkups and follow-up 

ultrasound imaging.  

1.3  Ultrasound Imaging 

Ultrasound is the second most widely used diagnostic imaging modality after 

x-ray. This imaging technology utilizes ultrasound to map the human organs. 

Medical physicists have discovered how to turn ultrasound imaging into a powerful 

tool for studying body structure and function. For example, medical ultrasound 

imaging is an important imaging method for obstetrics (imaging the fetus in the 

uterus during pregnancy), internal medicine (abdominal imaging, among others), 

cardiology (imaging the heart and circulatory system), and cancer imaging 

(distinguishing tumors from fluid-filled cysts in the breast and abdomen). 

1.3.1 Working Principle of Ultrasound Imaging 

Ultrasound imaging is based on the same principles involved in the sonar 

used by bats, ships and fishermen. When a sound wave strikes an object, it bounces 

back or echoes. Using a piezoelectric transducer a sound wave ranging from 1-10 

MHz is produced. These pressure waves travel through the tissues and bones and 

reflect back from the boundaries, causing echo. The echo is then caught by the 

transducer and processed by the signal processing unit for imaging and display. To 

focus the sound waves towards a particular focal point, a set of transducer elements 

are energized with a set of time-delayed pulses to produce a set of sound waves that 

propagate through the region of interest, which is typically the desired organ and 

surrounding tissue.  

Once the transducers have generated their respective sound waves, they 

become sensors that detect any reflected waves that are created when the transmitted 

sound waves encounter a change in tissue density within the region of interest. By 

properly time delaying the pulses to each active transducer, the resulting time-

delayed sound waves meet at the desired focal point that resides at a pre-computed 
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depth along a known scan line. The amplitude of the reflected sound waves forms 

the basis for the ultrasound image at this focal point location. 

 

Fig. 1.1: Ultrasound working principle 

 

 

1.3.2 Ultrasound Scanning Modes 

There are typically six types of scanning modes available. These are:  

 

1. A-MODE: A-mode (Amplitude) imaging displays the amplitude of a 

sampled signal for a single sound wave as a function of time. This mode is 

considered 1D and used to measure the distance between two objects by dividing the 

speed of sound by half of the measured time between the peaks in the A-mode plot, 

which represents the two objects in question. This mode is no longer used in 

ultrasound systems.  

 

2. B-MODE: B-mode (Brightness) imaging is the same as A-mode, except 

that brightness is used to represent the amplitude of the sampled signal. B mode 

imaging is performed by sweeping the transmitted sound wave over the plane to 

produce a 2D image. Typically, multiple sets of pulses are generated to produce 
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sound waves for each scan line, each sets of pulses are intended for a unique focal 

point along the scan line.  

 

3. M-MODE: An M-mode display refers to scanning a single line in the 

object and then displaying the resulting amplitudes successively. This shows the 

movement of a structure such as a heart. Because of its high pulse frequency (up to 

1000 pulses per second), this is useful in assessing rates and motion and is still used 

extensively in cardiac and fetal cardiac imaging.  

 

4. DOPPLER MODE: This mode makes use of the Doppler effect in 

measuring and visualizing blood flow.  

 

•Color Doppler: Velocity information is presented as a color coded overlay 

on top of a B-mode image.  

•Continuous Doppler: Doppler information is sampled along a line through 

the body, and all velocities detected at each time point is presented (on a time line)  

•Pulsed wave (PW) Doppler: Doppler information is sampled from only a 

small sample volume (defined in 2D image), and presented on a timeline  

•Duplex: a common name for the simultaneous presentation of 2D and 

(usually) PW Doppler information. (Using modern ultrasound machines color 

Doppler is almost always also used, hence the alternative name Triplex). 

 

5. PULSE INVERSION MODE: In this mode two successive pulses with 

opposite sign are emitted and then subtracted from each other. This implies that any 

linearly responding constituent will disappear while gases with non-linear 

compressibility stand out.  

 

6. HARMONIC MODE: In this mode a deep penetrating fundamental 

frequency is emitted into the body and a harmonic overtone is detected. In this way 

depth penetration can be gained with improved lateral resolution. 
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1.4  Biomedical Applications of Ultrasound 

Ultrasound imaging is used in many types of examinations and procedures. 

Some examples include:  

•Ultrasounds are useful in the detection of pelvic abnormalities and can 

involve techniques known as abdominal (transabdominal) ultrasound, vaginal 

(transvaginal or endovaginal) ultrasound in women, and also rectal (transrectal) 

ultrasound in men.  

•Doppler ultrasound (to visualize blood flow through a blood vessel).  

•Bone sonography (to diagnose osteoporosis).  

•Ultrasound can also be used for elastography. This can be useful in medical 

diagnoses, as elasticity can discern healthy from unhealthy tissue for specific 

organs/growths.  

•Echocardiogram (to view the heart).  

•Fetal ultrasound (to view the fetus in pregnancy).  

•Ultrasound-guided biopsies.  

•Doppler fetal heart rate monitors (to listen to the fetal heart beat).  

 

1.5  Advantages and Limitations of Ultrasound Imaging 

 As with all imaging modalities, ultrasound has its list of positive and 

negative attributes, which are listed below:  

1.5.1 Advantages 

• It is non-ionizing radiation, so it does not have the same risks as x-rays or 

other types of ionizing radiation.  

 

• It images muscle, soft tissue, and bone surfaces very well and is particularly 



 

6 

 

useful for delineating the interfaces between solid and fluid-filled spaces.  

 

• It renders "live" images, where the operator can dynamically select the most 

useful section for diagnosing and documenting changes, often enabling rapid 

diagnoses. Live images also allow for ultrasound-guided biopsies or injections, 

which can be cumbersome with other imaging modalities.  

 

• It shows the structure of organs.  

 

• It has no known long-term side effects and rarely causes any discomfort to 

the patient.  

 

• Equipment is widely available and comparatively flexible.  

 

• Small, easily carried scanners are available; examinations can be performed 

at the bedside.  

 

• Relatively inexpensive compared to other modes of investigation, such as 

computed X-ray tomography, DEXA or magnetic resonance imaging.  

 

• Spatial resolution is better in high frequency ultrasound transducers than it is 

in most other imaging modalities.  

 

Through the use of an Ultrasound research interface, an ultrasound device 

can offer a relatively inexpensive, real-time, and flexible method for capturing data 

required for special research purposes for tissue characterization and development of 

new image processing techniques. 
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1.5.2 Limitations 

•Ultrasound imaging devices have trouble penetrating bone. For example, 

imaging of the adult brain is very limited though improvements are being made in 

transcranial ultrasonography.  

 

•Ultrasound imaging performs very poorly when there is a gas between the 

transducer and the organ of interest, due to the extreme differences in acoustic 

impedance. For example, overlying gas in the gastrointestinal tract often makes 

ultrasound scanning of the pancreas difficult, and lung imaging is not possible (apart 

from demarcating pleural effusions).  

 

•Even in the absence of bone or air, the depth penetration of ultrasound may 

be limited depending on the frequency of imaging. Consequently, there might be 

difficulties imaging structures deep in the body, especially in obese patients.  

 

•Body habitus has a large influence on image quality, image quality and 

accuracy of diagnosis is limited with obese patients, overlying subcutaneous fat 

attenuates the sound beam and a lower frequency transducer is required (with lower 

resolution)  

 

•The method is operator-dependent. A high level of skill and experience is 

needed to acquire good-quality images and make accurate diagnoses.  

 

•There is no scout image as there is with CT and MRI. Once an image has 

been acquired there is no exact way to tell which part of the body was imaged. 

 

1.6 Background and Present State of the Problem  

 

Breast cancer is the most common cancer among women other than non-

melanoma skin cancer. Although survival rates for advanced-stage breast cancers 

have improved significantly, early-stage breast cancers are now virtually curable [6]. 

Thus increased awareness, early detection and cheaper diagnosis are the most 
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important factors in fighting against this disease. Ultrasound imaging, with 

comparatively lower cost equipments, non-invasive diagnosis and near accurate 

separation of benign lesions has a big potential for economic, comfortable and fast 

diagnosis of breast lesions. 

 

Currently, in the field of medical diagnosis, ultrasound is responsible for 

about one in five of all diagnostic images [7]. Ultrasound elastography is emerging 

with enormous potential as a medical imaging tool for effective discrimination of 

pathological changes in soft tissue. It maps the tissue elasticity or strain due to a 

mechanical de-formation applied to it. Elastography by now is well recognized as an 

effective means for discriminating biological tissue pathology change in medical 

diagnosis. Because of high correlation of tissue stiffness with its pathology change, 

this new noninvasive imaging modality is showing a great promise in the detection 

and/or characterization of breast and prostate tumors [8]. Calibrated spectrum 

analysis procedures show the potential of providing key tissue descriptors that can 

complement high-quality B-mode images. Analysis has been done that provides a 

theoretical basis for interpreting spectral parameters in terms of physical attributes 

of tissue morphology [9]. 

 

To improve the accuracy of breast ultrasound diagnosis, American College 

of Radiology (ACR) developed the Breast Imaging Reporting and Data System (BI-

RADS) lexicon of features describing the ultrasound appearance of breast lesions 

[10, 11 and 12]. Research is being done to develop methods to make breast-lesion 

evaluation quantitative, reproducible and relatively operator independent [10]. 

Several groups have studied automated methods of breast-cancer identification. For 

example, artificial neural-network-based classifier that uses several shape features 

such as branch patterns and number of lobulations and reported a Receiver 

Operating Characteristic (ROC)-curve area of 95% [13]. Multi-feature analysis 

based on BI-RADS criterion shows promise with its high ROC-curve area  along 

with flexibility of adjusting ‘number of biopsy-falsely diagnosed benign lesion’ 

tradeoff by means of different thresholding [10]. 
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However, all methods currently available still may falsely conclude a 

malignant lesion to be benign, although that probability is very low. Thus experts 

often recommend follow-up checkups before concluding a lesion to be benign. 

 

 

1.7  Motivation 

 

Independent of diagnostic procedures available, the most important key to 

the success of early detection are careful planning and a sustainable and well 

organized coordination across the whole community [1]. A cheaper procedure which 

is less resource and manpower intensive, as in non-invasive diagnosis, is actually the 

answer for community-wide sustainable programs.  

 

However, all methods currently available may still falsely conclude a 

malignant lesion to be benign, although that probability is very low. We propose 

quantification of follow-up checkups, already in use among doctors, to alleviate that 

problem. This procedure, if implemented, should drastically improve robustness of 

isolating significant ratio of benign lesions, and the robustness is statistically 

expected to improve with increasing database. Furthermore, this procedure has the 

potential to isolate different types of physiology and lesion behavior. This, in 

particular may provide insight into disease mechanisms and help formulate new 

medicines for treatment/prevention. This algorithm that we have developed may also 

be applied to numerous other applications for relating different statistical 

phenomenon.  

 

Finally this method is another step forward to automated breast cancer 

diagnosis, with a potential to save costs incurred from thousands of medical fee paid 

to interpret results from expert pathologists for every follow-up checkup. 
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1.8 Outline of the Dissertation 

 

 Chapter – 1 gives a brief idea about Breast Cancer and application of 

Ultrasound Medical Imaging Modality for early isolation of benign lesions.  

 Chapter – 2 discusses acoustic and morphometric features of benign against 

malignant breast cancer.  

 Chapter – 3 illustrates the method of quantification of acoustic and 

morphometric features. 

 Chapter – 4 outlines a novel method for more robust isolation of benign from 

malignant and shows simulation results. 

 Chapter – 5 demonstrates the simulation and findings of the thesis. 

 Chapter – 6 discusses scope and future work. 
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CHAPTER 2 

BENIGN AGAINST MALIGNANT LESION 

2.1  Overview 

 A benign tumor is a well-defined growth with smooth boundaries. This type 

of tumor simply grows in diameter.  A malignant tumor usually has irregular 

boundaries and invades the surrounding tissue. An illustration is show in figure 2.1. 

 

 

 

Fig. 2.1: Benign tumor versus Malignant Tumor [14] 
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2.2 Illustration of the Lexicon 

The Breast Imaging Reporting and Data System: Ultrasound was developed 

by the Breast Ultrasound Lexicon Subcommittee of an Expert Working Group, with 

support from the Office of Women’s Health, National Institutes of Health and the 

Commission on Ultrasound of the American College of Radiology. Techniques 

adapted from those used in the development of BI-RADS™ were used to develop 

the Breast Imaging Reporting and Data System: Ultrasound [15]. This lexicon is 

intended to assist users in applying standardized descriptors to characterize and 

report sonographic features of breast masses. The following articles talk about the 

different characterization of breast lesions alongside illustrations of figures 2.2-2.15 

[15]. 

2.2.1 Mass shape 

Mass shape is characterized in terms of round, oval, or none of these. Benign 

lesions, for example simple cysts, are typical of spherical shaped lesions. For 

malignant lesions and fibroadenomas, the shape of the masses cannot be classified as 

either round or oval. Unlike typical lumps from breast cancer, fibroadenomas are 

easy to move, with clearly defined edges. 

 

 

Fig. 2.2 Large and small simple cysts, each with a typical spherical shape 
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Fig. 2.3 (A) Invasive carcinoma (B) fibroadenoma. 

 

2.2.2 Mass Orientation 

Mass orientation is classified in terms of parallel characterization of longer 

axis of lesion to the surface. 

 

Fig. 2.4: Fibroadenoma. The long axis of the mass is parallel to the surface 
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Fig. 2.5: Fibroadenoma. The long axis is not parallel. 

 

2.2.3 Mass Margins 

The margin is the boundary between the lesion and its surroundings. 

Malignant lesions are generally characterized by indistinct or ill-defined margins. 

 

1. Distinct (Circumscribed) 

 

Fig. 2.6: Fibroadenoma with distinct circumference. 
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B. Indistinct 

 

Fig. 2.7: Suspicious lesion with indistinct circumference. 

In figure 2.7(A) the interface of the mass with the surrounding tissue is ill 

defined. In figure 2.7(B) portions of the margin of the mass are defined and other 

portions are indistinct. Since ill-defined margins carry a higher degree of suspicion 

for malignancy than well-circumscribed margins, this mass should be classified in 

accord with its most suspicious feature - indistinct margins. 

2.2.4 Mass Echogenicity / Echotexture 

A. Homogeneous 

 

Fig. 2.8: Simple cyst 
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B. Heterogeneous 

 

Fig. 2.9: Invasive cancer.  

Although predominately hypoechoic, scattered areas if increased 

echogenicity are present in the mass. 

 

C. Complex (Predominately cystic) 

 

Fig. 2.10: Intracystic cancer. 

 

Predominately cystic mass with additional feature of mural nodule is 

representing the cancer in here. Additional features of complex masses may be 

described if applicable include septations and mural nodules. 
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2.2.5 Shadowing/Enhancement 

A. None 

 

Fig. 2.11: (A) Small cyst and (B) fibroadenoma showing no evidence of significant attenuation or 

enhancement. 

B. Enhancement 

 

Fig. 2.12: (A) Large cyst (B)The fibroadenoma showing enhancement 

C. Shadowing 
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Fig. 2.13: Carcinoma with prominent central shadowing. 

D. Combined Pattern (both shadowing and enhancement) 

 

Fig. 2.14: Carcinoma showing a mixture of shadowing, no effect, and minimal enhancement. 
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2.2.6 Effect on Surrounding Tissue 

 

Fig. 2.15: Effect on surrounding tissue. 

Invasive carcinoma in figure 2.15(A) distorts normal breast architecture 

byangulation, retraction, and thickening of Cooper ligaments. In figure 2.15(B) a 

subtle mass (solid arrows) produces abrupt interruption (broken arrow) of a Cooper 

ligament. 

 

2.3 Summary and Implementation of multi-feature analysis 

Summary of the acoustic and morphometric features in contrast between 

benign and malignant lesions are outlined in table 2.1. This features, if studied and 

efforts taken to quantize, can lead to robust isolation of significant amount of benign 

lesions. The following chapter illustrates exactly how a multi-feature analysis is 

applied in regard of this problem. 
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Table 2.1 Features of conventional B-Mode images that are typically associated with malignant and 

benign lesions (BI-RADS criteria) [10]. 

Malignant lesions 
 

Benign lesions 

Morphometric 

features 

Acoustic features 
 

Morphometric 

features 

Acoustic features 

Irregular 

shape/spiculation 

Central shadowing  Spherical/ovoid 

shape 

Edge shadowing or 

enhancement 

Poorly defined 

margin 

Hypoechogenicity  Linear well-

defined margin 

Hyperechogenicity 

Tall aspect ratio Heterogeneous 

texture 

 Thin capsule Homogeneous 

texture 

Microlobulation Calcifications  Gentle bi- or 

trilobulations 

 

Architectural 

Distortion 

  Orientation 

parallel to tissue 

plane 
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CHAPTER 3 

MULTI-FEATURE ANALYSIS OF SOLID BREAST LESION 

3.1  Method 

Quantitative descriptors have been developed to provide a primary objective 

means of identification of cancerous breast lesions. These descriptors include 

quantitative acoustic features and morphometric features. Acoustic features include 

echogenicity, heterogeneity and shadowing. These are computed by generating 

spectral-parameter images of the lesion and surrounding tissue. Morphometric 

features are quantized by geometric and fractal analysis of traced lesion boundaries 

[10].  

 

Fig. 3.1: (A) Malignant lesion, (B) Benign lesion (fibroadenoma). 

In figure 3.1(A), the lesion has an irregular multilobular shape with a ‘tall’ 

aspect ratio (i.e., has a higher ratio of height to width), heterogeneous internal 

texture, and a prominent shadow. In figure 3.1(B), the lesion has the classical near-

spherical shape, a smooth boundary, homogeneous internal texture and a posterior 

enhancement or ‘anti-shadow’. Figure 3.2 shows the segmentation and traces for 

further analysis. Tissue characterization will be next based on acoustic and 

morphometric features, defining tissue shape and behavior to high frequency sound, 

i.e. ultrasound.  
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Fig. 3.2: B-scan images of figure 1 with analysis-region traces superimposed. (a) Malignant lesion. 

(b) Benign lesion. 

 

3.2 Acoustic features 

Acoustic features have been quantified in terms of calibrated spectrum-

analysis. This involves several steps. Hamming window to rf data, followed by 

Fourier transform and finally expressing resultant power spectrum in dB. A linear 

regression line, best fit to the power spectrum, is then found. Mid-band power 

spectrum value, M, mid-band frequency, f0, and spectral intercept I is then 

computed, as illustrated in figure 3.3. These parameters are used in algorithms to 

produce different acoustic features.  

Echogenicity, or ability to bounce an echo, is quantified by the mean spectral 

intercept, i.e. mean of I. This relates to the fact that higher fraction of echo from a 

tissue point at a particular window relates to an overall higher average of mean 

spectral intercept of power spectrum. Heterogeneity of texture in a lesion has been 

quantified by use of the values of M, mid-band power spectrum, from all the 

windows taken inside a lesion. Next four-neighborhood pixel algorithm (FNPA) is 

chosen instead of histogram algorithm (HA) since FNPA can reflect all textural 

differences [16]. For each window FNPA makes use of values from the four 
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adjacent windows to its edges to yield FP1/µ, where FP1 is average of differences 

between M values and µ is the mean of FP1 across the entire lesion.  

 

Fig. 3.3: Illustration of spectrum analysis procedure. (a) B-Scan (breast) image of a patient. (b) Power 

spectrum 

3.3 Morphometric feature 

All morphometric features have been computed using lesion boundaries 

traced on B-mode images. Aspect ratio has been defined as the maximum vertical 

lesion dimension divided by maximum horizontal lesion dimension (depth divided 

by width). Fuzziness of borders is quantized by margin definition which is defined 

as the sum of the magnitude of the gradient of M on a lesion contour normalized by 

the sum of magnitude of M on the lesion contour. 

Morphometric features related to the shape or border of the lesion [17] 

demonstrated good performance (97.2% sensitivity and 94.1% negative predictive 

value) using quantitative lesion-shape features describing irregular boundaries, 

quantified here using fractal dimension ratio. Fractal dimension ratio, which 

represents the amount of complexity in a pattern, can be used as a measure of border 

irregularity, since irregular border means more complexity. This fractal dimension 

ratio is calculated using Hurst Coefficient since HD =2 – H, where H is the Hurst 

exponent coefficient [18] and HD is the Fractal (Hausdorf) Dimension. The 

irregularity of borders is illustrated against Fractal (Hausdorf) Dimension, HD, and 
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convexity or ratio of border points with internal angles less than 180
o
, C, in figure 

3.4.  

 

Fig. 3.4: Illustration of border irregularity and fractal (Hausdorf) dimension and convexity. 

3.4 Case study of 130 biopsy-proven patients 

As discussed in earlier section, rf echo-signal from ultrasonography is 

processed to quantify different acoustic and morphometric features. For each feature 

a null hypothesis is tested that the feature value does not differ for benign and 

malignant cases in the population. If the significance level is low then the null 

hypothesis can be rejected. The significance levels are low for FNPA, margin 

definition, aspect ratio and fractal (Hausdorf) dimension. Thus, we can use these 

features to isolate a significant ratio of benign cases by using a straight line divider 

achieving a ROC-curve area of 0.947+0.045 [10]. Figure 3.5 illustrates these feature 

values processed for 130 biopsy proven patients.  

 

Fig. 3.5 Shows feature values of margin definition, aspect ratio, fractal dimension and FNPA of 130 

biopsy-proven patients. Benign-proven patients are represented as empty-squares and malignant-

proven patients are represented as blacked-triangles [10].  
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Several other groups have studied automated methods of breast-cancer 

identification. Shankar et al describes an approach based on the Nakagami 

Distribution [20] and non-Raleigh statistics of the envelope [21]. (An ROC area of 

0.8701 ± 0.0345 is reported for the latter study.) Drukker et al [22] describes a 

computerized analysis of shadowing to classify breast lesions and reported a 

detection sensitivity of 80%. Joo et al [23] described an artificial, neural-network-

based classifier that uses several shape features such as spiculation, branch patterns 

and number of lobulations and reported an ROC-curve area of 95%. 
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CHAPTER 4 

A SYSTEMATIC STUDY OF FOLLOW-UP CHECKUPS 

4.1  Methodology 

In previous chapter, a straight line could be drawn that separates benign 

lesions only. However, doubts may arise when the scatter point of the new patient is 

in certain regions. Medical experts tend to recommend a follow-up checkup. This 

section of our work is to find a systematic study of that follow-up checkup and 

quantification of the results. We use interpolation techniques and linear correlation 

to our cause. The following articles and figure 4.1-4.3 illustrates the different 

interpolation techniques [24]. 

 

4.2 Interpolation techniques 

For diagnosed data of a new patient, it is required to interpolate (i.e. 

estimate) the value of that function for an intermediate value of the independent 

variable. This is achieved by curve fitting or regression analysis [24]. 

 

4.2.1 Linear interpolation 

 

 

Fig. 4.1: Plot of the data with linear interpolation applied 
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Linear interpolation, as in figure 4.1, takes two data points, say (xa,ya) and 

(xb,yb), and the interpolant at the point (x,y)  is given by: 

 

Linear interpolation is quick and easy, but it is not very precise. Another 

disadvantage is that the interpolant is not differentiable at the point xk (i.e., sampling 

points).  

 

4.2.2 Polynomial interpolation 

 

 

Fig. 4.2: Plot of the data with polynomial interpolation applied 

Let us consider again the problem with data set in figure 4.2. For polynomial 

interpolation, the interpolation error is proportional to the distance between the data 

points to the power n. Furthermore, the interpolant is a polynomial and thus 

infinitely differentiable. So, we see that polynomial interpolation overcomes most of 

the problems of linear interpolation. 

However, polynomial interpolation may exhibit oscillatory artifacts, 

especially at the end points (Runge’s phenomenon). These disadvantages can be 

reduced by using spline interpolation or restricting attention to Chebyshev 

polynomials. 

 

http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Chebyshev_polynomials
http://en.wikipedia.org/wiki/Chebyshev_polynomials
http://en.wikipedia.org/wiki/Chebyshev_polynomials
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4.2.3 Spline interpolation 

 

 

Figure 4.3: Plot of the data with spline interpolation applied 

Spline interpolation is in theory a hybridization of linear interpolation and 

polynomial interpolation. As in linear interpolation which uses a linear function for 

each of intervals [xk,xk+1], Spline interpolation uses low-degree polynomials in each 

of the intervals, and chooses the polynomial pieces such that they fit smoothly 

together. The resulting function is called a Spline. 

The natural cubic spline interpolating the points for the same example considering 

the first four points only [24]: 

 

 

Like polynomial interpolation, spline interpolation exhibits a smaller error 

than linear interpolation and the interpolant is smoother and it also does not suffer 

from Runge's phenomenon. For our multivariable case, among the different types of 

spline techniques available, we opted for thin plate spine particularly because the 

model does not need manual tuning of parameters. This makes it appropriate for an 

automated quantification of follow-up checkups.  

 

http://en.wikipedia.org/wiki/Runge%27s_phenomenon
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Thin plate spline (TPS) fits a mapping function f(x) between corresponding 

point-sets {yi} and {xi} by minimizing the following energy function [25]: 

 

And for a smoothing TPS, it is: 

 

Then smoothing TPS is defined as: ftps = arg { min ( Etps )}  

The name thin plate spline refers to a physical analogy involving the bending 

of a thin sheet of metal. In the physical setting, the deflection is in the z direction, 

orthogonal to the plane. In order to apply this idea to the problem of coordinate 

transformation, one interprets the lifting of the plate as a displacement of the x or y 

coordinates within the plane. This is related to this thesis by using the z direction to 

be considered to be time axis, and the lifting of the plate to be related to the different 

feature value displacements in successive follow-ups. 

 

 

4.2.4 Splines in Matlab 

In the simplest situation, one is given points and is looking for a piecewise-

polynomial function that satisfies all, more or less. An approximate fit might involve 

least-square approximations or the smoothing spline. For our cause we use a 

multivariate function, the stform, which uses arbitrary or scattered translates Ψ(x-cj) 

of one fixed function Ψ, in addition to some polynomial terms [26].  

 

Explicitly, such a form describes a function in terms of the basis function Ψ, a 

sequence (cj)  of sites called centers and a corresponding sequence of coefficients 
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(aj) of n coefficients, with the final coefficients, ajn-k+1,…an involved in the 

polynomial part, p.The most important property of stform is the function f depends 

linearly on its coefficients. 

 

 

Here Ψj is either translates of the basis function Ψ or else is some polynomial. 

We use ‘tpaps’ stform which enables us to create thin-plate spline approximations, f, 

that satisfy, approximately or exactly, the equation z=f(x,y) for given data values, z, 

at given scattered data sites (x,y) in the plane.  

 

4.3  Correlation 

  

To relate between the different best-fitted data, a Pearson's correlation 

coefficient is actually a simple yet elegantly effective tool. The reason behind its 

effectiveness is the linear dependence of the best-fit stform with its coefficients.  

 

In our procedure, we isolate cases that are strongly correlated with each 

other. This will result in different sets of malignant lesion with different 

physiological characteristic changes. A similar procedure is applied to benign 

lesions having strong correlation. 
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CHAPTER 5 

SIMULATION AND INTERPRETATION OF THE FINDINGS 

5.1  Studying some actual cases 

We analyze two likely images shown in figure 5.1 that exhibit characteristic 

changes from a doubtful lesion to a benign looking lesion.  

 

 

Fig. 5.1: One plausible case of a doubtful lesion over time (which later turns out to be benign) 

 

 

Image A 

Image B 
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Table 5.1: Corresponding quantification of images of figure 5.1 

Quantified feature Image A Image B Change from 

Image A 

Aspect ratio 0.95 0.75 Decrease by 0.2 

Margin definition 0.145 0.215 Increase by 0.07 

FNPA(dB) -0.06 -0.07 Decrease by 0.01 

Fractal dimension 1.28 1.25 Decrease by 0.03 

 

The second image exhibits lower aspect ratio, better defined border (lower 

value of margin definition), less heterogeneous texture inside outlined area (lower 

value of FNPA), and less irregular border (lower value of Fractal Dimension). If the 

second image was taken from same patient after an interval of time, it is obvious that 

the lesion is exhibiting characteristics of benign lesion. Although, this decision can 

be made by any expert pathologist, considering thousands of follow-up checkups 

every year, a quantification and subsequent automation of decision making can save 

resource and time. Even more importantly, changes may be a lot more subtle and 

making any concluding remark of tissue characterization can be difficult.  

 

5.2 Need of perceptive simulation 

Unlike cases illustrated in previous article, over-time images may not always 

exhibit such conclusive changes. This creates ambiguity over the decision for next 

step of diagnosis/treatment. Thus we aim for a robust modeling method for each 

patient and simultaneous correlation to different sets of benign/malignant cases. 

However, real data over time for individual patients has not yet been collected. Thus 

we build a fail-safe algorithm that becomes smarter with improved database. 
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5.3 Creating phantom data 

The region of our interest is where there remains too much ambiguity for 

conclusive decision and does not seem to follow any regular pattern for either 

malignant or benign lesions as shown in figure 5.3. We, therefore, accept this 

limitation and create our phantom data in random manner. 60 biopsy-proven 

patients, either malignant-proven or benign-proven, exhibiting 3 types of over-time 

characteristic changes are simulated.  Three new patients exhibiting similar changes 

over-time is then simulated and an automated classification applied by use of 

previous data of 60 biopsy-proven patients. Simulated feature values for the first 

ultrasonography diagnosis, i.e. first check-up, of all patients is shown in figure 5.3, 

and feature values for all the over-time follow up scans of one patient is shown in 

figure 5.4. 

 

 

       
 

 
Fig. 5.2: Some of the ambiguous regions of scatter diagrams. 
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Fig. 5.3: Sixty-three phantom data generated (o-new patient, + is benign type A, * is benign type B, x 

is malignant type A) 
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Fig. 5.4: Phantom time-spaced data generated for particular patient exhibiting non-linear change 
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5.4 Best-fit Modeling 

The next step is to approximate the physiological changes of the patient 

illustrated in figure 5.4 into a best-fit. 

 

 

Fig. 5.5: Best-fit stform or modeled pattern for the patient of figure 5.4 
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Fig. 5.6: Best-fit for all the 60 biopsy-proven patients, either malignant-proven or benign-proven, 

exhibiting 3 types of simulated over-time characteristic. These best-fits are linearly described by 

corresponding coefficients which are used for matching against new patients’ feature changes during 

their follow-up checkups. 
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5.5 Relating different trends of physiological changes 

From figure 5.5 it is obvious the amount of complexity that will add with 

thousands of more patients’ data in trying to categorize the different trends of 

feature changes. This is similar to an expert’s doubts in concluding upon one 

random patient’s follow-up checkup based on his past experience of diagnosis of 

thousands of patients. Thus the need to sort trends of physiological changes becomes 

prominent. This work uses the fact that the best-fits illustrated in figure 5.6 are 

linearly described by corresponding displacement coefficients which can be used for 

matching against new patients’ feature changes during their follow-up checkups. We 

avail this by computing correlation of a new patient’s thin-plate spline (TPS) best-fit 

coefficients with all the past biopsy-proven patients’ thin-plate spline (TPS) best-fit 

coefficients to quantify the trend of the new patient to different categories of 

previous biopsy-proven patients.  

Table 5.2: Summary of different physiological changes simulated, taking in consideration of 

malignant tissues to exhibit poorer aspect ratio and margin definition, and higher value of FNPA and 

Fractal Dimension 

Type Characteristic Change 

Benign Type A Aspect Ratio ↑, Margin Definition ↑ 

Benign Type B 

(Non-Linear change) 

Aspect Ratio almost same, Margin Definition 

↓but later ↑ with time 

Malignant Type C Aspect Ratio ↓, Margin Definition ↓ 

Benign Type D FNPA ↓, Fractal Dimension ↓ 

Benign Type E  

(Non-Linear Change) 

FNPA almost same, Fractal Dimension ↑ but 

later ↓with time 

Malignant Type F FNPA ↑, Fractal Dimension ↑ 
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5.6 Results 

The three new patients’ were simulated to have 5 sets of feature values, 

assuming a decision is made after fifth follow-up checkup. Quantification of 

matching of these data to simulated biopsy-proven data of sixty patients having 10 

sets of feature values, assuming all were subject to 10 follow-up checkups, were 

evaluated in terms of strength of correlation. The following table shows strengths of 

correlation of the three new patients’ over-time feature values against the 60 biopsy-

proven patients. 

Table 5.3: Result with changes related to Aspect ratio and Margin Definition. 

  Previous patient’s Data 

  Benign Type A Benign Type B Malignant Type C 

New 

Patient’s 

Data 

(Simulated) 

Simulated 

Type A 

0.9493 0.2637 -0.9202 

Simulated 

Type B 

0.3554 0.9123 -0.3215 

Simulated 

Type C 

-0.8863 -.4229 0.8718 

 

Table 5.4: Result with changes related to FNPA (dB) and Fractal Dimension. 

  Previous patient’s Data 

  Benign Type D Benign Type E Malignant Type F 

New 

Patient’s 

Data 

(Simulated) 

Simulated 

Type D 

0.9060 0.4302 -0.8781 

Simulated 

Type E 

0.1392 0.8669 -0.3594 

Simulated 

Type F 

-0.8451 -0.3019 0.8094 
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5.7 Interpretation and robustness of the result 

From the results observed, it is safe to say that this algorithm identifies 

patterns effectively. This is effectively similar to an expert looking into follow-up 

checkup images of a specific patient, and based on her knowledge about different 

patterns of changes she has seen, she makes a qualitative categorization of what type 

of change is being exhibited. Only in this case, the categorization is based on more 

tangible deductions and yielding a comparative correlation coefficient value to make 

better conclusions. 

The phantom data were subjected to uniform and Gaussian distribution of 

changes. The changes were subject to variation of 100% to 300% of change, as 

depicted in the following single line instruction used in our simulation.  

x(npat/3+1:npat*2/3,1)=0.4+.8*rand(npat/3,1) 

 

Thus, it is safe to say that this algorithm is quite robust to non-linearity such 

as non-linear patient physiological changes, non-linear image readings from varying 

instruments, etc. 
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CHAPTER 6 

DISCUSSIONS 

6.1  Outlining Scope and Future Work 

We have conclusively shown that our algorithm is far effective than normal 

hunch based decisions. This automation opens door to an effective community-wide 

program, in terms of its automation, more cost-effectiveness, lesser resource 

intensiveness and increased robustness. However, problems arise when real patient 

data is used instead of simulation, since the number of follow-up scans and time of 

scan can be widely varying. Thus, it may not be possible to categorize all types of 

over-time changes. Future works include collection of real-patients data and 

upgrading algorithm to yield conclusive findings of benign characteristics, with 

ideal zero percent of falsely concluding a malignant tissue to be benign. 

 

6.2  Outlining a viable community-wide flow-chart for breast cancer 

diagnosis and treatment 

 

Fig. 6.1: Flow-chart outlining community-wide aspect. 
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 The flow-chart in figure 6.1 illustrates how this automated follow-up 

checkup categorization comes in an overall scheme that can be implemented in 

fighting against breast cancer. This scheme is proposed to achieve a sustainable and 

well organized coordination across the whole community, which is the most crucial 

step in reducing mortality rates [1]. The use of computing devices and medical-

telemetry added to our work will provide a well coordinated baseline that can 

eliminate a significant number of biopsies with minimal human intervention. This 

will make the whole process cheap and thereby sustainable. To add to it, 

improvement of database will naturally yield a better hypothesis in concluding a 

tissue characterization to be benign or malignant.   

 

6.3  Problems faced 

• The local diagnostic labs do not have organized ultrasound imaging data. 

Records of previously diagnosed data does not include later condition of that patient, 

i.e., whether she had conclusively benign or malignant lesion or other status. 

 

• Although we have organized data for one particular exposures, we still lack 

data collected over time for specific patients. Thus we had to use an algorithm which 

is not yet limited to specific patterns. 

 

6.4  Conclusion 

A novel systematic quantization of follow-up checkups was demonstrated. 

We started with basic introduction of breast cancer and how ultrasound imaging 

modality is important in its diagnosis. BI-RADS criteria were then outlined and a 

quantization of acoustic and morphometric features of lesions was developed. 

Inconclusive quantization leads to follow-up checkups or biopsy depending on 

imminent risk factor of lesions. For follow-up checkups, rather than relying on 

educated guess of medical officers, we developed a systematic modeling and 

quantization technique using thin plate smoothing spline.  
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We have shown our technique to work effectively on four different sets of 

perturbations, each simulating specific sets of phantom physiological changes. 

Finally we have integrated our whole work into a scheme that aims at sustainable 

community-wide implementation for diagnosis of breast cancer. We showed how 

this integration will serve to reduce biopsy-costs incurred with simultaneous 

improvement of database and robustness of the algorithm. 

 

 

6.5  Future Perspective 

A copy of the results of this thesis is planned to be sent to Bangladesh 

Government, WHO and local NGO’s. Once implemented, further studies on 

physiological changes and disease behavior may provide us conclusive insight. On a 

near-future note, we are working on getting data from a study on neoadjuvant 

therapy (or chemo-before-surgery). Results from this study should help us identify 

the physiological changes of lesions characteristic of neoadjuvant therapy.
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APPENDIX A 

SIMULATION SOFTWARE AND PROGRAMMING 

LANGUAGE 

A.1  Sample coding provided for phantom data generation 

 

%Generating scatter points 

clear all 

close all 

 

npat=60;                     %Number of old patients 

nxy=11;                     %Number of samples from each patient 

npat_new = 3;                    %Number of new patients 

 

x(1:npat/3,1)=0.4+.8*rand(npat/3,1);         %Starting points for benign type A 

y(1:npat/3,1)=.05+.1*rand(npat/3,1); 

z=zeros(npat,1); 

figure (1) 

scatter(x,y,'+') 

hold on 

 

x(npat/3+1:npat*2/3,1)=0.4+.8*rand(npat/3,1);         %Starting points for some 

%sample malignant 

y(npat/3+1:npat*2/3,1)=.05+.1*rand(npat/3,1); 

scatter (x(npat/3+1:npat*2/3,1),y(npat/3+1:npat*2/3,1),'x') 

hold on 

 

x(npat*2/3+1:npat,1)=0.4+.8*rand(npat/3,1);         %Starting points for benign type 

B 

y(npat*2/3+1:npat,1)=.05+.1*rand(npat/3,1); 

scatter (x(npat*2/3+1:npat,1),y(npat*2/3+1:npat,1),'*') 

hold on 
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xlabel('Aspect ratio') 

ylabel('Margin definition') 

 

x_new(1:npat_new,1)=0.4+.8*rand(npat_new,1);         %Starting points for new 

patient 

y_new(1:npat_new,1)=.05+.1*rand(npat_new,1); 

z_new=zeros(npat_new,1); 

scatter (x_new,y_new,'o') 

 

%Next nxy-1 samples 

 

for i=1:nxy-1 

         

    x(1:npat/3, i+1) = x(1:npat/3, i)-0.2*rand(npat/3,1);         %Next nxy-1 points, 

nxy=number of samples per patient 

    y(1:npat/3, i+1) = y(1:npat/3,i)+.25*rand(npat/3,1);                %AR dec, marg def 

inc [benign A] 

    z(1:npat/3, i+1) = z(1:npat/3,i)+0.4+0.05*randn(npat/3,1); 

     

    x_new(:, i+1) = x_new(1, i)-0.2*rand(3,1);          

    y_new(:, i+1) = y_new(1,i)+.25*rand(3,1);                 

    z_new(:, i+1) = z_new(1,i)+0.4+0.05*randn(3,1); 

 

     

    x(npat/3+1:npat*2/3, i+1) = x(npat/3+1:npat*2/3, i)+.2*rand(npat/3,1); 

    y(npat/3+1:npat*2/3, i+1) = y(npat/3+1:npat*2/3, i)-.25*rand(npat/3,1);             

%AR inc, marg def dec  [malignant samples] 

    z(npat/3+1:npat*2/3, i+1) = z(npat/3+1:npat*2/3, i)+0.4+0.05*randn(npat/3,1); 

 

%     x_new(2, i+1) = x_new(2, i)+0.2*rand(1,1);          

%     y_new(2, i+1) = y_new(2,i)-.25*rand(1,1);                 
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%     z_new(2, i+1) = z_new(2,i)+0.4+0.05*randn(1,1); 

     

    if i<nxy/2 

        x(npat*2/3+1:npat, i+1) = x(npat*2/3+1:npat, i)+.02*rand(npat/3,1); 

        y(npat*2/3+1:npat, i+1) = y(npat*2/3+1:npat, i)+.25*rand(npat/3,1);                

%AR almost same, marg def inc     [benign B] 

        z(npat*2/3+1:npat, i+1) = z(npat*2/3+1:npat, i)+0.4+0.05*randn(npat/3,1); 

         

 

%        x_new(:, i+1) = x_new(:, i)+.02*rand(3,1); 

%         y_new(:, i+1) = y_new(:, i)+.25*rand(3,1);                   

%         z_new(:, i+1) = z_new(:, i)+0.4+0.05*randn(3,1); 

         

    else  

         

       x(npat*2/3+1:npat, i+1) = x(npat*2/3+1:npat, i)-.2*rand(npat/3,1); 

        y(npat*2/3+1:npat, i+1) = y(npat*2/3+1:npat, i)+.25*rand(npat/3,1);                

%AR dec, marg def inc     [benign B continued] 

       z(npat*2/3+1:npat, i+1) = z(npat*2/3+1:npat, i)+0.4+0.05*randn(npat/3,1);   

         

%        x_new(:, i+1) = x_new(:, i)-.02*rand(3,1); 

%        y_new(:, i+1) = y_new(:, i)+.25*rand(3,1);                  %New patient x1, y1, 

z1 Remember !!! 

%        z_new(:, i+1) = z_new(:, i)+0.4+0.05*randn(3,1); 

    end  

         

end 
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A.2  Simulation software used: MATLAB 2010 TM 

MathWorks is the world's leading developer of technical computing software for 

engineers and scientists in industry, government, and education.  

 

MATLAB (matrix laboratory) is a numerical computing environment and 

fourth-generation programming language. Developed by MathWorks, MATLAB 

allows matrix manipulations, plotting of functions and data, implementation of 

algorithms, creation of user interfaces, and interfacing with programs written in 

other languages, including C, C++, Java, and Fortran. 

 

Although MATLAB is intended primarily for numerical computing, an 

optional toolbox uses the MuPAD symbolic engine, allowing access to symbolic 

computing capabilities. An additional package, Simulink, adds graphical multi-

domain simulation and Model-Based Design for dynamic and embedded systems. 

 

In regard of this thesis, the importance of MATLAB comes in generating and 

processing stochastic data. Most crucial of all, is the availability of powerful curve-

fitting and 3-D curve generation techniques. An example of a 3-D curve-genearation 

is shown in figure A.1 [26]. 

 

    

 

Fig. A.1: A wireframe 3D and surface 3D plot of the two-dimensional un-

normalized sinc function 

 

 


