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ABSTRACT 

 

In this study four burnishing parameters were selected for optimizing the burnishing process 

using Taguchi method. The examined burnishing parameters include: (1) Burnishing speed, (2) 

Force and (3) Feed rate and (4) Ball diameter. Other parameters such as number of burnishing 

passes, and penetration depth are considered constant in this study. For each parameter, 5(five) 

levels were considered. According to Taguchi method with 4 (four) independent parameters, 25 

experiments are conducted. 5 (five) coded levels were used for each parameter and MINITAB 

software has used for data analysis. The purpose of this work is to study the relationships 

between surface finish and the ball burnishing process parameters. The paper deals with the 

effect of burnishing process on Mild Steel using Lathe. Surface roughness generated after the 

turning operation was used to ball burnishing. For better response parameter a ball burnishing 

tool is developed with magnetic ball holding device which reduces the friction between ball and 

bearing. Moreover, the tool is designed for using of different ball diameter.  Experimental work 

was carried out on a Conventional lathe and surface roughness is determined. From all 

experimental data a mathematical model is established by Dimensional Analysis. The optimal 

burnishing parameters were found for the surface roughness by using of Taguchi technique with 

Lower is better S/N ratio and validation of the process by Response Surface Methodology (RSM) 

(systematic method for using the influential factors in a process for improvement and 

optimization). It was found that the optimal burnishing parameters for the best surface finish was 

at burnishing speed of  155 rpm, burnishing feed of 0.1 mm/rev, force 78 N  and ball diameter 11 

mm. The effects of burnishing parameters (i.e., burnishing speed, force, feed rate and ball 

diameter) on the surface roughness was investigated by analysis of variance (ANOVA). It was 

found that the burnishing feed and ball diameter has the most influential effect on the surface 

roughness, followed by the burnishing force, and least influence by the speed.   
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CHAPTER-1 

 

INTRODUCTION 

1.1 Background 

Surface quality is of immense significance in the performance of mechanical 

components. Despite the manufacturing process used, the the surface roughness of 

diverse asperities usually exists in almost all surfaces of mechanical parts such that 

obtained in machined casting dies or hot-rolled plates. As a result, more 

concentration is paid in the finishing process for the period of manufacturing. 

Methods that are commonly used to get the the better surface finish and produce low 

values of roughness include grinding, lapping, honing, and polishing. However, the 

more widely used method of surface finishing is burnishing. In this method, a large 

contact pressure is applied on the surface of the workpiece by a smooth roller (roller 

burnishing) or a ball (ball burnishing) to reason plastic deformation of surface 

irregularities. The high burnishing pressure, exceeding the yield strength, causes 

roughness crests to flow toward the valleys and thus coats all the texture of the rough 

surface, resulting in smoother surfaces. This method of cold-working surface 

treatment is different from other surface treatments, such as shot peening and sand 

blasting in such a way it creates a good surface finish, boost up dimensional and 

shape accuracy, enhances surface hardness, and also induces residual compressive 

stresses at the metallic surface layers. Several works have examined the result of 

burnishing on improving mechanical properties, and shown that proper design of 

burnishing process can lead to increased hardness [1], to enhance quality of surface 

finish, to increase utmost residual stress in compression, to prevent corrosion and 

stress corrosion cracking, and to enhance the wear resistance and fatigue life of the 

workpiece [2]. In general, burnishing leads to changes in the microstructure of the 

burnished surface. However, excessive burnishing can lead to subsurface cracks 

which cause spall, i.e., a phenomenon where the upper layer of a surface flakes off of 
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the bulk material. There are several controlling parameters that can have an effect on 

the workpiece surface properties. These parameters include: burnishing speed, feed 

rate, force (or pressure), the number of burnishing passes, workpiece material, ball 

material, ball size, and lubricant. In general, the two most commonly cited 

parameters affecting surface finish are the burnishing force and the feed rate. Despite 

a  large number of works on burnishing of round workpieces such as crankshafts and 

bearing races, the treatment of cylindrical surfaces by either roller or ball burnishing 

is yet to be entirely investigated [3]. Considering the above, this work examines the 

use of a newly developed ball burnishing tool to give enhanced surface properties for 

Mild steel. The tool was specifically designed to treat cylindrical surfaces in a 

rational experimental time. In order to explore the optimum combination of 

burnishing parameters, several experiments were designed and performed on a 

machining center based on the Taguchi method of optimization with the Taguchi 

L25 Matrix and validation of the process by Response Surface Methodology (RSM) 

(systematic method for using the influential factors in a process for improvement and 

optimization). The effects of burnishing parameters (i.e., burnishing speed, force, 

feed rate and ball diameter) on the surface roughness were investigated by analysis 

of variance (ANOVA), as presented by the mean surface roughness (Ra). 

 

1.2 Objectives with specific aims 

 

a) To design a flexible ball burnishing tool with a possibility of use different ball 

diameter 

b) To explore the optimum combination of  burnishing parameter with Taguchi L25 

matrix for surface roughness of Mild steel specimen  

c) To find out the effect of  burnishing speed, force, feed and ball diameter on 

surface roughness of mild steel for the designed tool   

d) To develop an analytical method for optimization of  burnishing parameter for 

surface roughness 
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1.3 Expected outcomes 

 

a) An effective surface finishing tool for Mild steel and other materials. 

b) The empirical formula for determination of surface roughness for given 

burnishing conditions. 

c) Mathematical model giving relationship between output parameter and input 

parameter of burnishing process. 

d) Analytical model to determine optimum condition of burnishing parameter.  

 

1.4 Burnishing 

 

Burnishing is the plastic deformation of a surface due to sliding contact with another 

entity. Visually, burnishing marks the texture of a rough surface and makes it shinier. 

Burnishing may arise on any sliding surface if the contact stress locally exceeds the 

yield strength of the material. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Deformation of the surface in ball burnishing 
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Classification of burnishing process: 

A) Based on motion of the tool on the surface. 

i. Normal or ordinary burnishing 

ii. Vibratory burnishing 

B) Based on the shape of deforming element              

i. Ball burnishing 

ii. Roller burnishing 

C) Based on the application of deforming element 

i. Rigid 

ii. Flexible 

 

1.5 Comparison between Ball and Roller Burnishing  

 

SL Ball Burnishing Roller Burnishing 

1 The deforming element is a hard 

steel ball. 

The deforming element is a hard 

steel roller. 

2 Point contact and rolling 

friction between ball and 

workpiece. 
 

Line contact and sliding friction 

between roller and workpiece. 

 

3 Deformation is localized in a 

zone adjacent to the ball. 

 

More chances of deformation of 

the entire blank compared to the 

ball burnishing. 

4 For the same radial force, gives 

high specific pressure, better 

surface finish, more fatigue 

strength, microhardness and 

depth of work hardened layer. 

It gives less specific pressure, poor 

surface, lower fatigue strength, 

microhardness and depth of work 

hardened layer. 

 

5 Low production rate High production rate 
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1.6 Mechanics of Burnishing 

 

To know about burnishing, let us first look at the simple case of a hardened ball on a 

workpiece. If the ball is pressed directly into the surface of that workpiece, stresses 

develop in both objects around the area where they contact. As this normal force 

increases, both the ball and the surface of the workpiece are deformed. The 

deformation caused by the hardened ball is different depending on the level of the 

force pressing against it. If the force on it is small, when the force is released both 

the ball and the surface of the workpiece will return to their original, unreformed 

shape. In this case, the stresses in the plate are always less than the yield strength of 

the material, so the deformation is purely elastic. Since it was given that the 

workpiece is softer than the ball, the plate's surface will always deform more. (This 

is not necessarily true. For instance: if both items are steel, hardened steel has the 

same Young's Modulus as soft steel.) If a larger force is used, there will also be 

plastic deformation and the workpiece surface will be permanently altered. (In this 

situation, hardness does play a role, as increasing hardness will delay plastic 

deformation.) A bowl-shaped indentation will be left behind, surrounded by a ring of 

raised material that was displaced by the ball. The stresses between the ball and 

workpiece are described in more detail by Hertzian stress theory. 

Now consider what happens if the external force on the ball drags it across the 

workpiece. In this case, the force on the ball can be decomposed into two component 

forces: one normal to the workpiece surface, pressing it in, and the other tangential, 

dragging it along. As the tangential component is increased, the ball will start to slide 

along the workpiece. At the same time, the normal force will deform both objects, 

just as with the static situation. If the normal force is low, the ball will rub against the 

workpiece but not permanently alter its surface. The rubbing action will create 

friction and heat, but it will not leave a mark on the plate. However, as the normal 

force increases, eventually, the stresses in the workpiece surface will exceed its yield 

strength. When this happens the ball will plow through the surface and create a 

https://en.wikipedia.org/wiki/Hertzian_contact_stress
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trough behind it. The plowing action of the ball is burnishing. Burnishing also occurs 

when the ball can rotate, as would happen in the above scenario if another workpiece 

was brought down from above to induce downwards loading, and at the same time to 

cause rotation and translation of the ball, or in the case of a ball bearing. 

Burnishing also occurs on surfaces that conform to each other, such as between two 

flat plates, but it happens on a microscopic scale. Even the smoothest of surfaces will 

have imperfections if viewed at a high enough magnification. The imperfections that 

extend above the general form of a surface are called asperities, and they can plow 

material on another surface just like the ball dragging along the plate. The combined 

effect of many of these asperities produces the smeared texture that is associated 

with burnishing. 

 

 

 

Fig. 4.2  The mechanism of burnishing process 

 

 

 

 

Fig 1.2 Mechanics of Burnishing 

 

1.7 Burnishing in manufacturing 

 

Burnishing processes are used in manufacturing to improve the size, shape, surface 

finish, or surface hardness of a workpiece. It is essentially a forming operation that 

occurs on a small scale. The benefits of burnishing often include: Combats fatigue 

failure, prevents corrosion and stress corrosion, textures surfaces to eliminate visual 

defects, closes porosity, creates surface compressive residual stress. 
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There are several forms of burnishing processes, the most common are roller 

burnishing and ball burnishing (a subset of which is also referred to as ballizing). In 

both cases, a burnishing tool runs against the workpiece and plastically deforms its 

surface. In some instances of the latter case (and always in ballizing), it rubs, in the 

former, it generally rotates and rolls. The workpiece may be at ambient temperature 

or heated to reduce the forces and wear on the tool. The tool is usually hardened and 

coated with special materials to increase its life.  Ball burnishing, or ballizing, is a 

replacement for other bore finishing operations such as grinding, honing, or 

polishing. A ballizing tool consists of one or more over-sized balls that are pushed 

through a hole. The tool is similar to a broach, but instead of cutting away material, 

it plows it out of the way. Ball burnishing is also used as a deburring operation. It is 

especially useful for removing the burr in the middle of a through hole that was 

drilled from both sides.  

Ball burnishing tools of another type are sometimes used in CNC milling centres to 

follow a ball-nosed milling operation: the hardened ball is applied along a zig-zag 

tool path in a holder similar to a ball-point pen, except that the 'ink' is pressurized, 

recycled lubricant. This combines the productivity of a machined finish which is 

achieved by a 'semi-finishing' cut, with a better finish than obtainable with slow and 

time-consuming finish cuts. The feed rate for burnishing is that associated with 'rapid 

traverse' rather than finish machining. Roller burnishing, or surface rolling, is used 

on cylindrical, conical, or disk-shaped workpieces. The tool resembles a roller 

bearing, but the rollers are generally very slightly tapered so that their envelope 

diameter can be accurately adjusted. The rollers typically rotate within a cage, as in a 

roller bearing. Typical applications for roller burnishing include hydraulic system 

components, shaft fillets, and sealing surfaces. Very close control of size can be 

exercised. Burnishing also occurs to some extent in machining processes. In turning, 

burnishing occurs if the cutting tool is not sharp, if a large negative rake angle is 

used, if a very small depth of cut is used, or if the workpiece material is gummy. As 

a cutting tool wears, it becomes blunter and the burnishing effect becomes more 

https://en.wikipedia.org/wiki/Broaching_(metalworking)
https://en.wikipedia.org/wiki/Rake_angle
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pronounced. In grinding, since the abrasive grains are randomly oriented and some 

are not sharp, there is always some amount of burnishing. This is one reason the 

grinding is less efficient and generates more heat than turning. In drilling, burnishing 

occurs with drills that have lands to burnish the material as it drills into it. Regular 

twist drills or straight fluted drills have 2 lands to guide them through the hole. On 

burnishing drills, there are 4 or more lands, similar to reamers. 

     

1.8 Applications 

 

Burnishing tools are being used in sectors like 

 Automobile 

 Aircraft 

 Defense, Spacecraft, Railways 

 Textile, Machine Tool, Motors and Pump Industry 

 Hydraulic and Pneumatic Farm Equipment 

 Home Appliances  

 Areas where close tolerance and superior surface finish is required 

 

1.9 Benefits  

 Short cycle time and elimination of setting up and auxiliary processing time. 

 For use with either conventional or CNC controlled machines. 

 Complete processing in one setting. 

 Removes no material and generates no waste 

 Easily reproducible 

 Low lubricant requirements. 

 Low noise emission. 

 Long tool life. 

 No dimensional change through tool wear. 
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CHAPTER-2 

 

LITERATURE REVIEW 

 

2.1 Burnishing effects on the surface roughness of the different workpiece 

 

Khalid. S. Rababa et al. (2011) studied the outcome of roller burnishing on 

mechanical performance and surface quality of Alloy steel. Based on their study it 

was observed that the stress of material has been increased of about 150 MPa, Roller 

Burnishing has a positive effect on the surface roughness of alloy steel. The surface 

roughness decreased with increasing burnishing force. The enhancement percentage 

on the surface quality was 12.5%, Roller Burnishing has an effect on the ultimate 

tensile strength, the UTS has been increased by 166 MPa, Roller Burnishing has an 

effect on ductility of material; the percentage elongation of material has been 

increased of 13.6% RB has an effect on cross -sectional area, the reduction of cross-

sectional area has been increased by 1.8 % [4]. 

W Bouzid Sai et al. (2005) worked on Finite element modeling of burnishing of AISI 

1042 steel. Based on their work it was predicted that Good correlation was found 

based on roughness experimental results. For the range of feed, roughness results 

agree well qualitatively and quantitatively with results found by using Hertz contact 

theory [5]. 

L.N. Lopez De Lacalle et al. (2007) worked on the effect of ball burnishing on heat 

treated steel and inconel 718 milled surface. Based on their work it was observed that 

the hydrostatic ball burnishing process is a relatively new enhanced surface treatment 

on free-form parts, previously obtained by milling. It is observed that maximum 

pressure 20 MPa leads to the highest quality improvement in the steels, but not in the 

Inconel case.  
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In this ductile material high pressures induce the appearance of grooves on burnished 

surface. The best results are with pressures from 10 to 15 MPa [6]. It was seen that 

the surface roughness reduces after burnishing process.  

Ugur Esme et al. (2010) worked on Use of gray based Taguchi method in ball 

Burnishing process for the optimization of Surface roughness and microhardness of 

AA 7075 aluminum alloy. Based on their work it was predicted that the burnishing 

force has a maximum contribution of affecting the surface roughness. The 

contribution of burnishing force and no. of tool passes is more which 71.59% for 

force and 15.75% for no.of passes [7].  N.S.M. El Tayeb et al. (2007) worked on 

Influence of roller burnishing contact width and burnishing orientation on surface 

quality and triblogical behavior of Aluminum 6061 Based on their work it was 

predicted that the Optimum ranges of burnishing speed and force are identified to be 

250–420 rpm for 1mm roller contact width. Burnishing force above 220N is capable 

of decreasing the surface roughness by 35%. Below this limit, the surface roughness 

starts to deteriorate plastically; Burnishing with smaller roller contact width (1 mm) 

is capable of improving the surface roughness up to 40%. Burnishing speed 110 rpm 

yields the highest Improvement in hardness, as much as 30% increase. Increasing 

burnishing force has a negative impact on the wear resistance of burnished 

Aluminum 6061 surfaces [8].  Aysus Sagbas et al. (2011) worked on Analysis and 

optimization of surface roughness in the ball burnishing process using response 

surface methodology and desirability function. Based on his work it was predicted 

that the surface roughness reduces with increasing burnishing force and no. of tool 

passes [9]. N.S.M. EL-Tayeb et al. (2011) worked on Prediction of burnishing 

surface integrity using Radial Basis Function. Based on their work a radial basic 

function algorithm was successfully used to predict the surface roughness for 

burnishing brass surface [10]. Highest reduction in Ra (200%) was achieved at lower 

burnishing speeds. Increasing both burnishing speed and depth showed a negative 

impact on the improvement of surface roughness especially at higher feed rate. 50 % 

improvement in the hardness of burnishing surfaces was achieved at lower feed rate. 
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It is seen that from the above literature review ball diameter is not considered as 

burnishing parameter, in this study ball diameter is regarded as burnishing parameter 

and find out the effect of different ball diameter on surface roughness.  

 

2.2 Necessity of design a ball burnishing Tool 

G. Schneider Jr et al. (2002) It is pragmatic that the conventional machining methods 

such as turning and milling leave inherent irregularities on machined surfaces and it 

becomes necessary to very often resort to a series of finishing operations with high 

costs [11]. N.S.M. El Tayeb et al. (2009) However, conventional finishing processes 

like grinding, honing and lapping are traditionally used finishing processes, but these 

methods essentially depend on chip removal to attain the desired surface finish, these 

machining chips may cause further surface abrasion and geometrical tolerance 

problems. Accordingly, burnishing process offers an attractive post-machining 

alternative due to it‟s chipless and relatively simple operations [12]. Many 

researchers have done their works by developing different types of burnishing tools 

i.e. ball and roller burnishing and making them ready to use with conventional 

machine tools viz. Lathe and milling.  

A.M. Hassan et al. (2000) Developed ball burnishing tool with different ball 

diameters and examined the effects of parameters on non-ferrous workpiece 

materials like machining brass and Al-Cu alloy [13].  Mieczyslaw Korzynski et al. 

(2010) Developed the centreless burnishing device to conduct burnishing process on 

long length workpieces smoothly [14]. Effect of roller burnishing tool width and 

burnishing orientation was studied by N.S.M. El-Tayeb et al. (2011) to find the effect 

of different parameters on tribological properties as well as on surface qualities [10]. 

Fang-Jung Shiou et al. (2010) Sliding contact with rolling contact type burnishing 

tool is developed and effect of burnishing force is investigated on surface roughness 

on PDS5 plastic injection mold steel [15].  L.N. Lo´pez de Lacalle et al. (2007) 

Proposed reduction in lead time together with production cost in ball burnishing 
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process carried out on milling centre, using a large radial depth of cut in the previous 

ball end milling operation, together with a small radial depth during burnishing 

produces acceptable surface roughness [6]. H. Hamadache et al. (2006) Studied the 

Characteristics of Rb40 steel superficial layer properties under ball and roller 

burnishing and concluded that roller burnishing will give optimum surface roughness 

while ball burnishing becomes effective in case of hardness [16].  P. N. Patel et al.( 

2014) ,These study deals with optimization of newly design ball burnishing tool is 

used carried out experiment on conventional lathe machine with burnishing process 

parameters using taguchi analysis method. The work piece and ball materials used is 

Aluminum Alloy 6061 and high chromium high carbon with 8mm diameter. The 

levels of input process parameters are selected on basis of one factor at a time 

experiment are burnishing force, burnishing feed, burnishing speed and number of 

passes. The response parameters are hardness. The optimal parameters for hardness 

are as follows: burnishing speed 250 RPM, burnishing feed rate 0.06 mm/rev, 

burnishing force, 8 Kgf, No. of passes 5 [17]. Anil Jetani et al. (2015) burnishing is a 

cool working process in which plastic miss happening happens by applying a weight 

through a hard and smooth ball or roller on metallic surfaces. It is a finishing and 

strengthening methodology. Improvements in surface finish and surface hardness is 

genuine concern in organizations for achieving distinct advantage. Roller cleaning is 

a frigid working technique which conveys a fine surface wrap up by the planetary 

upset of hardened disturbs more than a depleted or turned metal surface. The nature 

of burnishing machined parts is altogether influenced by different parameters utilized 

as a part of the procedure. The point of present work is to study the four parameters 

of the roller burnishing process, such as number of passes, force, feed rate, and 

burnishing speed. Their impact on two reactions such as surface hardness and surface 

roughness of the test examples may contemplate. Outline of examinations are 

utilized to inspect the relationship between one or more reaction variables and an 

arrangement of quantitative exploratory variables or components. These systems are 

frequently utilized after recognized the critical controllable variables and to discover 
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the element choice that enhances the reaction [18]. Pavan Kumar et al. (2013), 

Today‟s metal processing industries are often interested to induce compressive 

residual stresses in the several components which they will come across in 

fabrication processes daily. The conventional methods of finishing process viz. 

grinding, broaching used to improve the surface finish of the metallic components, 

but the burnishing process which is having same role to play in finishing process has 

many advantages associated with it fulfilling above said requirement successfully. 

This paper presents results of the study about design and developmental issues of 

Ball burnishing tool. This tool is used to perform burnishing process successfully by 

controlling different parameters [19]. Vipul Patel et al. (2015), Burnishing is a chip 

less finishing method, which employs a rolling tool, pressed against the work piece, 

in order to achieve plastic deformation of the surface layer. Burnishing processes are 

largely considered in industrial cases in order to restructure surface characteristics. 

These study deals with investigating the effect of burnishing process parameter with 

roller burnishing tool on CNC Machine using Response Surface Methodology and 

develop the Mathematical Model. The Work piece material and Tool material are 

Aluminium Alloy 6351 T6 and Roller of Carbide used as burnishing tool. As per 

previous research the effect of burnishing speed, feed, ball diameter, burnishing 

force and no. of tool passes playing important role on the quality of the work surface 

produced and its wearing characteristics. The process parameters used are cutting 

speed, interference, tool feed, number of tool passes and response Parameters are 

Surface Roughness and Hardness. In design of experiment total L31 experiment has 

been carried out with four factors and five levels. From the experiment it was 

identified that the minimum Surface Roughness obtained is 0.080 μm at 450 rpm, 

0.064 mm/rev, 2 mm, 4 for Cutting Speed, Feed Rate, Interference and Number of 

Tool Passes respectively. It was identified that the maximum Hardness obtained is 

107 BHN at 450 rpm, 0.064 mm/rev, 5 mm, 3 for Cutting Speed, Feed Rate, 

Interference and Number of Tool Passes respectively. The analysis of variance 

(ANOVA) was performed to statistically analyze the results [20].  S. H. Tang et al. 
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(2012), Artificial Neural Network (ANN) approach is a fascinating mathematical 

tool, which can be used to simulate a wide variety of complex scientific and 

engineering problems. Due to its highly reliable prediction quality, the usage of it is 

growing rigorously and had already become an ultimate tool for various applications 

in the field of engineering. In this study an ANN technique was used to predict 

friction coefficient of roller burnishing AL6061 for two orientations which is parallel 

burnishing orientation (PB) and cross burnishing orientation (CB). The input 

parameters were defined by widths of roller curvature (7.5mm, 8mm and 8.5mm), 

burnishing speeds (110rpm, 230rpm, 330rpm and 490rpm), and burnishing forces 

(155.06N, 197.45N, 239.83N and 282.22N) while the output parameter was friction 

coefficient. 173 data was used for training the ANN and another 115 data was used 

to test the ANN. 60 different configurations of ANN was trained by using 6 different 

training algorithms. It was found that feed-forward back-propagation network with 

15 neurons in hidden layer that was trained by Levenberg-Marquardt training 

algorithm gave the best result when compared to other training algorithms used. 

From the results it was found that the training performance and prediction 

performance was 0.000809 and 0.710 respectively. From this study, it became 

obvious that the selected ANN with the configuration and training algorithm proved 

to be the most suitable [21]. Deepak Mahajan et  al. (2013), Burnishing is a very 

simple and effective method for improvement in surface finish and can be carried out 

using existing machines, such as lathe. On account of its high productivity, it also 

saves more on production costs than other conventional processes such as super 

finishing, honing and grinding. Moreover, the burnished surface has a high wear 

resistance and better fatigue life. A literature survey being specifically focused on 

Ball burnishing process is done .It gives a thorough idea about various workpiece 

materials, various cutting tools and machine tools, process parameters ,lubricants, 

variable measured and methodology used as well as the prominent levels of each, 

being observed in the researches till today [22]. 
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It is seen that the tools that are now used to burnishing with balls of different 

diameter fails to remove or reduce the friction in axial direction which is vital for 

forming the surface roughness and surface hardness. Besides, the mechanism used 

for holding the balls is complicated and costly and may sometimes added additional 

friction. So, it is required to develop a tool with attachment where the ball can rotate 

without friction in both direction and have a simple ball holding device.  

 

2.3 Flexible magnetic holding ball burnishing Tool 

 

In this study, a flexible ball burnishing tool is designed for carrying out the 

experiments. The hardness of material is not uniform, so the flexible tool is required 

to harmonize the different hardness of different point of materials. Moreover to 

reduce the friction between workpiece and ball three bearing is used which is rolled 

with the ball. For using various diameter ball a small chuck is used and by 

magnetizing the chuck the ball is held on the bearing. Since the tool reduces the 

friction, as a result better surface finish is achieved. Furthermore, the opportunity to 

use various ball diameter in one tool. Previously designed tool has no flexibility to 

change the ball simply. It requires modifying the casing of the tool which is a tedious 

job. Considering of this issue, in this study, a ball burnishing tool is designed with a 

magnetic ball holding device.  

 

2.4 Methods Used in for optimization of burnishing parameters 

 

There are a number of methods used to predict optimized values of burnishing 

process. Many researchers studied and worked on the optimization methods. Fang-

Jung Shiou et al. (2003)  used Taguchi L18 Orthogonal array technique and ANOVA 

to investigate the surface roughness value. Best on their results The Vickers hardness 

scale of the tested specimen was improved from about 338 to 480 after ball 

burnishing process. The hardened layer thickness was about 30 μm. By applying the 

optimal burnishing parameters for plane burnishing to the surface finish of the 



16 

 

freeform surface mold cavity, the surface roughness improvement of the injection 

part of the plane surface was about 62.9% and that on the freeform surface was about 

77.8% [23]. U.M. Shirsat et al. (2004) studied the parametric analysis of combined 

turning and ball burnishing process they used factorial design (2
3
). 2

3
 factorial 

designs represent eight-experiments, where the experimental points are located at the 

vertices of a cube. Four experiments represent an added centre-point to the cube, 

repeated four times to estimate the pure error. The complete design consists of 12 

experiments divided into two blocks, each block containing six experiments and one 

combined block are considered (trial nos 1 to12)8, 9. This method classifies and 

identifies the parameters to three different levels (viz. low, center and high) [24]. In 

this experimentation, twelve tests were carried out at these levels. For each block, the 

model equations for surface roughness and the surface hardness are obtained by 

using the analysis of variance technique (ANOVA) and regression coefficient. They 

develop a mathematical model for obtaining values of surface roughness. J.N. 

Malleswara Rao et al. (2011) worked on finite element approach for the prediction of 

Residual stresses in aluminum workpieces Produced by roller burnishing. In this 

work using numerical approach, compressive residual stress is calculated. Roughness 

is considered as a triangular asperity in this numerical approach [25]. Before 

burnishing, the height of the triangle is considered as the roughness of the workpiece. 

The normal force is acting on the peak of the asperity. Fig 2.1 represents the 

triangular model for the numerical approach. The depth of deformed layer depends 

on the yield strength of the material (σy), normal load (Fn), and the asperity angle (α) 

Commercially available FEA package ANSYS- 12 is used to simulate the analysis 

process. The burnishing process is modeled as 2 D FEA and the surface roughness is  

considered as a triangular asperity with included angle of α equal to 800. The height 

of the triangular asperity is considered as the surface roughness before burnishing. 
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Fig 2.1: Coordinates of a point Q (r, θ) within a triangular asperity [25] 

 

N.S.M. EL-Tayeb et al. (2011) worked on Prediction of Burnishing Surface Integrity 

using Radial Basis Function. They used artificial neural network (ANN) and radial 

basic function (RBF) techniques to predict the value of surface roughness [26]. 

Artificial neural networks are computing elements, which are based on the structure 

and function of the biological neurons. These networks have nodes or neurons, 

which are described by difference or differential equations. The nodes are 

interconnected layer-wise or intra-connected among themselves. Each node in the 

successive layer receives the inner product of synaptic weights with the outputs of 

the nodes in the previous layer when the vectors are binary or bipolar, hard-limiting 

non-linearity is used. When the vectors are analog, a squashed function is used. D. 

M. Mate et al. (2014),The paper deals with the effect of burnishing process on the 

Aluminum Alloy material 2014 using Lathe. Surface roughness generated after the 

turning operation was used to ball burnishing. Improvement in the surface roughness 

values achieved for tool steel after ball burnishing process was 98.24%. These 

irregularities causes friction and surface damage which leads to low product life, 

poor metallurgical properties and overall poor product quality. These processes 
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essentially depend on chip removal to attain the desired surface finish and also, skill 

and the experience of the operator in handling the process [27]. 

Srinivas Athreya et  al. (2012),Taguchi Method is a statistical approach to optimize 

the process parameters and improve the quality of components that are 

manufactured. The objective of this study is to illustrate the procedure adopted in 

using Taguchi Method to a lathe facing operation. The orthogonal array, signal-to-

noise ratio, and the analysis of variance are employed to study the performance 

characteristics on facing operation. In this analysis, three factors namely speed; feed 

and depth of cut were considered. Accordingly, a suitable orthogonal array was 

selected and experiments were conducted. After conducting the experiments the 

surface roughness was measured and Signal to Noise ratio was calculated. With the 

help of graphs, optimum parameter values were obtained and the confirmation 

experiments were carried out. These results were compared with the results of full 

factorial method [28]. 

 

A.B Abdullah et al. (2010), In this study, a sensitivity analysis method was used to 

identify optimal machining conditions with respect to surface quality. Presently 

programming Turbo C++ is used to evaluate the property of machined surface with 

cutting parameter with arbitrary sets of experimental values. Based on the proposed 

equation and it‟s differentiate function, the quality of surface roughness can be 

known clearly through the sensitivities of proper local deviations [29].   

 

The literature review indicates that earlier investigations concentrated on the effect 

of the ball burnishing process dealing mostly with surface finish and surface 

hardness with little focus on optimization of the burnishing parameters. The present 

work aims at methodically studying the effect of process parameters like speed, feed, 

burnishing force, ball diameter and their interactions on surface roughness by newly 

developed ball burnishing tool. One factor at a time is carried out to identify the 

range of parameters used for the experiment. Experiments will be planned according 
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to statistical design of experiments using Taguchi‟s orthogonal array method, signal 

to noise ratio method is used to improve the reliability of results. Apart from this, 

RSM is used to verify the result of optimization which is achieved from Taguchi 

optimization method. 

 

2.5 Dimensional Analysis for mathematical model 

A ball burnishing tool consists one or more over-sized balls that are pushed through 

a hole. Burnishing is a cold working surface finishing process which is carried out on 

material surfaces to induce compressive residual stresses and enhance surface 

qualities. The improvements in surface qualities include a reduction in surface 

roughness, an increase in surface hardness, improvement in grain size, wear 

resistance, fatigue resistance and corrosion resistance. A burnishing tool typically 

consists of a hardened sphere which is pressed onto/across the part being processed 

which results in plastic deformation of asperities into valleys.  Mohammadpour et al. 

(2010) developed a two-dimensional finite element model for orthogonal cutting of 

AISI 1045 mild steel, and a numerical solution using the FEM. It investigated the 

effect of cutting speed and feed rate on residual stresses induced after orthogonal 

cutting [30]. The stress distribution was found to be increasing with respect to 

cutting speed and feed rate when the experimental and simulation results were 

compared. N.S.M El-Tayeb et al. (2007) investigated the burnishing process on 

aluminum 6061 with an interchangeable adapter for both roller and ball burnishing 

process [8]. The effect of different burnishing parameters like burnishing speed, 

burnishing force and burnishing tool dimension on the surface qualities and 

tribological properties were investigated. Partchapol et al. (2007) developed the 

finite element analysis of ball burnishing process to study the change in properties of 

work material [31]. The effect of feed rate, flow stress and ball diameter on the 

surface properties were studied and a detailed explanation was provided. Hamadache 

et al. (2009) studied the plastic deformation of structural RB40 steel when the ball 

and roller burnishing were performed. It also investigated the roughness,  
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hardness and wear resistance on RB40 steel [16]. Bouzid et al. (2005) investigated 

the change in surface roughness of AISI 1042 mild steel after burnishing [5]. A finite 

element model was formed in which the elastic-plastic behavior of the piece was 

taken into account to determine the material displacement. The experimental and 

simulation values were compared and found to be in good correlation. Yung-Chang 

Yen et al. (2004) studied the change in residual stress values after hard-turning and 

after roller burnishing process [32]. The corresponding experimental results were 

compared with the developed FEM models for roller burnishing process from 

DEFORM 2D and 3D software. The experimental and simulated values were 

validated.  

R. A. Kapgate et al. (2013)The complex phenomenon of wire electrical discharge 

machining (WEDM) is reducing its utilization to process aluminium silicon carbide 

with 10% weight metal matrix composite (Al/SiC10% MMC) for industrial 

applications. This paper presents an experimental investigations and development of 

mathematical models using dimensional analysis for selection of WEDM process 

parameters. Sequential classical experimentation technique has been used to perform 

experiments for triangular, circular and rectangular shape cuts on Al/SiC10% MMC 

as majority of industrial products are manufactured by these shapes or combinations. 

An attempt of mini-max principle and linear programming (LPP) has been made to 

optimize the range bound process parameters for maximizing material removal rate 

and minimum surface finish to machine Al/SiC10% MMC. The test results proved 

that MRR and Ra values were significantly influenced by changing important five 

dimensionless π terms. The process parameters grouped in π terms were suggested 

the effective guidelines to the manufacturer for improving productivity by changing 

any one or all from the available process parameters [33].  N. M. Qureshi et al. 

(2015) This experimental study focuses on effect of various parameters and 

optimization of burnishing processes on surface finish of EN8 material during 

burnishing operation. In industry area use various surface finishing operations such 

as lapping, honing, etc. which is removal of the material from its surface. In the 
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present experimentation, ball and roller burnishing processes which is plastic 

deformation are used with varying machining parameters to achieve the desirable 

surface finish. The experiment is carried out on the CNC machine of a particular job 

of EN8 material. By use of the Taguchi methodology optimum machining 

parameters obtained gives improved surface finish [34]. 

 

The above literature review shows that there is no mathematical model developed. In 

present work an effort is made to develop the mathematical model by using the 

technique of dimensional analysis to correlate speed, feed, force and ball diameter 

with the surface finish. The model helps in decreasing the number of experiments to 

be done and it predicts the optimum surface properties. By carefully modeling the 

ball burnishing process the prediction of the surface characteristic is possible which 

can be an answer for the time consuming and experimental dependent optimization 

techniques. 
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CHAPTER-3 

 

METHODOLOGY 

 

3.1 Taguchi Method  

After the Second World War, the allied forces found that the quality of the Japanese 

telephone system was extremely poor and totally unsuitable for long-term 

communication purposes. To improve the system the allied command recommended 

establishing research facilities in order to develop a state-of-the-art communication 

system. The Japanese founded the Electrical Communication Laboratories (ECL) 

with Dr. Genichi Taguchi in charge of improving the R&D productivity and 

enhancing product quality. He observed that a great deal of time and money was 

expended on engineering experimentation and testing (Ranjit 1990). Little emphasis 

was given to the process of creative brainstorming to minimize the expenditure of 

resources. He noticed that poor quality cannot be improved by the process of 

inspection, screening, and salvaging. No amount of inspection can put quality back 

into the product. Therefore, he believed that quality concepts should be based on, 

and developed around, the philosophy of prevention. Taguchi started to develop new 

methods to optimize the process of engineering experimentation. He believed that 

the best way to improve quality was to design and build it into the product. He 

developed the techniques which are now known as Taguchi Methods. His main 

contribution lies not in the mathematical formulation of the design of experiments, 

but rather in the accompanying philosophy. His concepts produced a unique and 

powerful quality improvement technique that differs from traditional practices. He 

developed manufacturing systems that were “robust” or insensitive to daily and 

seasonal variations of environment, machine wear and other external factors. His 

philosophy had far-reaching consequences, yet it is founded on three very simple 

concepts. His techniques arise entirely out of these three ideas. 
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The concepts are: 

 Quality should be designed into the product and not inspected into it. 

 Quality is better achieved by minimizing the deviation from a target. The product 

should be so designed that it is immune to uncontrollable environmental factors. 

 The cost-quality should be measured as a function of deviation from the standard 

and the losses should be measured system-wide. 

 

Taguchi viewed quality improvement as an ongoing effort. He continually strived to 

reduce the variation around the target value. The first step towards improving quality 

is to achieve the population distribution as close to the target value as possible. To 

accomplish this, Taguchi designed experiments using specially constructed tables 

known as “ Orthogonal Arrays” (OA). The use of these tables makes the design of 

experiments very easy and consistent. The Taguchi Method is applied in four steps. 

 

 Brainstorm the quality characteristics and design parameters important to the 

product/process. 

 Design and conduct the experiments. 

 Analyse the results to determine the optimum conditions. 

 Run a confirmatory test using the optimum conditions. 

 

Taguchi methods start with an assumption that we are designing an engineering 

system-either a machine to perform some intended function, or a production process 

to manufacture some product or item. Since we are knowledgeable enough to be 

designing the system in the first place, we generally will have some understanding of 

the fundamental processes inherent in that system. Basically, we use this knowledge 

to make our experiments more efficient. We can skip all the extra effort that might 

have gone in to investigating interactions that we know do not exist. Without going 

into the details, it has been shown that this can decrease the level of effort by a factor 
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of ten or twenty and sometimes much more. Another distinction of Taguchi methods 

is the recognition that there are variables that are under our control and variables that 

are not under our control. 

In Taguchi terms, these are called Control Factors and Noise Factors, respectively. 

This chapter gives a general introduction to Taguchi Methods. A detailed analysis of 

results using the method is beyond the scope of the thesis. Hence, we will limit the 

technique‟s applicability to the main research topic. 

The Taguchi method involves reducing the variation in a process through the robust 

design of experiments. The overall objective of the method is to produce high-quality 

product at low cost to the manufacturer. The Taguchi method was developed to 

maintain that variation. Taguchi developed a method for designing experiments to 

investigate how different parameters affect the mean and variance of a process 

performance characteristic that defines how well the process is functioning. The 

experimental design proposed by Taguchi involves using orthogonal arrays to 

organize the parameters affecting the process and the levels of which they should be 

varied. Instead of having to test all possible combinations of the factorial design, the 

Taguchi method tests pairs of combinations. This allows for the collection of the 

necessary data to determine which factors most affect product quality with a 

minimum amount of experimentation, thus saving time and resources. The Taguchi 

method is best used when there is an intermediate number of a variable (3 to 50), few 

interactions between variables, and when only a few variables contribute 

significantly. 

The Taguchi arrays can be derived or looked up. Small arrays can be drawn out 

manually; large arrays can be derived from deterministic algorithms. The arrays are 

selected by the number of parameters (variables) and the number of levels (states). 

Analysis of variance on the collected data from the Taguchi design of experiments 

can be used to select new parameter values to optimize the performance 

characteristic.  

 



25 

 

3.1.1 An Insight into Orthogonal Arrays (OA) & Taguchi Methods 

The technique of laying out the designs of experiments involving numerous factors 

was first proposed by Sir R. A. Fisher, in the 1920s (Ranjit 1990). The method is 

popularly known as factorial design of experiments. A full factorial design identifies 

all possible combinations of a given set of factors. Since most industrial experiments 

involve a significant number of factors, a full factorial design results may involve a 

large number of experiments. Factors are the different variable which determines the 

functionality or performance of a product or system. Factors are: 

 Design parameters that influence the performance. 

 Input that can be controlled. 

 Included in the study for the purpose of determining their influence upon 

the most desirable performance. 

In a heat treatment experiment, for example, a factor can be “cooling rate” or 

“temperature” etc. Each factor may be set to different levels. Hence for the same 

experiment the levels can be “slow cooling” and “fast cooling” or “low temperature” 

and “high temperature” etc. depending on the application. 

Taguchi‟s approach complements these two important areas. Taguchi constructed a 

special set of Orthogonal Arrays (OA) to lay out his experiments. By combining 

existing orthogonal latin squares in a unique manner, Taguchi prepared a new set of 

standard OAs which could be used for a number of experimental situations. He also 

devised a standard method for analysis of the results. A single OA may 

accommodate several experimental situations. Commonly used OAs are available for 

2, 3 and 4 levels. The combination of standard experimental design techniques and 

analysis methods in the Taguchi approach produces consistency and reproducibility. 
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3.1.2 Design of Experiments 

The design of experiments (DOE) is a systematic method to determine the 

relationship between factors affecting a process and the output of that process. In 

other words, it is used to find cause-and-effect relationships. This information is 

needed to manage process inputs in order to optimize the output. An understanding 

of DOE first requires knowledge of some statistical tools and experimentation 

concepts. Although a DOE can be analyzed in many software programs, it is 

important for practitioners to understand basic DOE concepts for proper application. 

In general usage, the design of experiments (DOE) or experimental design is the 

design of any information-gathering exercises where variation is present, whether 

under the full control of the experimenter or not. However, in statistics, these terms 

are usually used for controlled experiments. Formally planned experimentation is 

often used in evaluating physical objects, chemical formulations, structures, 

components, and materials. Other types of study, and their design are discussed in 

the articles on computer experiments, opinion polls and statistical surveys (which are 

types of observational study), natural experiments and quasi-experiments (for 

example, quasi-experimental design). See Experiment for the distinction between 

these types of experiments or studies. 

In the design of experiments, the experimenter is often interested in the effect of 

some process or intervention (the “treatment”) on some objects (the “experimental 

units”), which may be people, parts of people, groups of people, plants, animals, etc. 

The design of experiments is thus a discipline that has very broad application across 

all the natural and social sciences and engineering. 

The general steps involved in the Taguchi Method are as follows: 

 

 Define the process objective, or more specifically, a target value for a 

performance measure of the process. This may be Surface Roughness (Ra). The 

target of a process may also be a minimum; for example, the goal may be to 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Controlled_experiment
https://en.wikipedia.org/wiki/Physical_test
https://en.wikipedia.org/wiki/Chemical_test
https://en.wikipedia.org/wiki/Clinical_study_design
https://en.wikipedia.org/wiki/Computer_experiment
https://en.wikipedia.org/wiki/Opinion_poll
https://en.wikipedia.org/wiki/Statistical_survey
https://en.wikipedia.org/wiki/Observational_study
https://en.wikipedia.org/wiki/Natural_experiment
https://en.wikipedia.org/wiki/Quasi-experiment
https://en.wikipedia.org/wiki/Quasi-experimental_design
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Experimental_unit
https://en.wikipedia.org/wiki/Experimental_unit
https://en.wikipedia.org/wiki/Experimental_unit
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minimize the Ra. The deviation in the performance characteristic from the target 

value is used to define the loss function for the process. 

 

 Determine the design parameters affecting the process. Parameters are variables 

within the process that affect the performance measure such as speed, feed, force 

and ball diameter etc. that can be easily controlled. The number of levels that the 

parameters should be varied at must be specified. For example, speed might be 

varied to a low and high value of 70 rpm and 410 rpm. Increasing the number of 

levels to vary a parameter at increases the number of experiments to be 

conducted. 

 

 Create orthogonal arrays for the parameter design indicating the number of and 

conditions for each experiment. The selection of orthogonal arrays is based on 

the number of parameters and the levels of variation for each parameter and will 

be expounded below. 

 

 Conduct the experiments indicated in the completed array to collect data on the 

effect on the performance measure. 

 

 Complete data analysis to determine the effect of the different parameters on the 

performance measure. 
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See below for a pictorial depiction of these and additional possible steps, depending 

on the complexity of the analysis. 

 

 

 

 

 

Fig 3.1 General Steps of parameters optimization 
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The following figure depicted the process (design of experiment, conduct of 

experiments, selection of burnishing tools etc.) for optimization of burnishing 

parameter.    

 

 

Fig 3.2 Process flow of parameters optimization 
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3.1.3 Signal-to-noise ratio 

Signal-to-noise ratio (abbreviated SNR or S/N) is a measure used in science and 

engineering that compares the level of the desired signal to the level of background 

noise. It is defined as the ratio of signal power to the noise power, often expressed in 

decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. 

While SNR is commonly quoted for electrical signals, it can be applied to any form 

of signal (such as isotope levels in an ice core or biochemical signaling between 

cells). 

The signal-to-noise ratio, the bandwidth, and the channel capacity of a 

communication channel are connected by the Shannon–Hartley theorem. 

The signal-to-noise ratio is sometimes used informally to refer to the ratio of useful 

information to false or irrelevant data in a conversation or exchange. For example, in 

online discussion forums and other online communities, off-topic posts and spam are 

regarded as “noise” that interferes with the “signal” of appropriate discussion. 

 

3.1.4 Signal-to-noise ratio in a Taguchi design 

In Taguchi designs, a measure of robustness used to identify control factors that 

reduce variability in a product or process by minimizing the effects of uncontrollable 

factors (noise factors). Control factors are those design and process parameters that 

can be controlled. Noise factors cannot be controlled during production or product 

use but can be controlled during experimentation. In a Taguchi designed experiment, 

you manipulate noise factors to force variability to occur and from the results, 

identify optimal control factor settings that make the process or product robust, or 

resistant to variation from the noise factors. Higher values of the signal-to-noise ratio 

(S/N) identify control factor settings that minimize the effects of the noise factors. 

Taguchi experiments often use a 2-step optimization process. In step 1 use the 

signal-to-noise ratio to identify those control factors that reduce variability. In step 2, 

identify control factors that move the mean to target and have a small or no effect on 

the signal-to-noise ratio. 

https://en.wikipedia.org/wiki/Signal_%28electrical_engineering%29
https://en.wikipedia.org/wiki/Noise
https://en.wikipedia.org/wiki/Decibel
https://en.wikipedia.org/wiki/Ice_core
https://en.wikipedia.org/wiki/Biochemical_signaling
https://en.wikipedia.org/wiki/Bandwidth_%28signal_processing%29
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Channel_%28communications%29
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The signal-to-noise ratio measures how the response varies relative to the nominal or 

target value under different noise conditions. You can choose from different signal-

to-noise ratios, depending on the goal of your experiment. For static designs, Minitab 

offers four signal-to-noise ratios:  

 

Table 3.1 Data characteristic of S/N ratio: 

 

Signal-to-

noise ratio 

Goal of the 

experiment 

Data characteristics Signal-to-noise ratio formulas 

Larger is 

better 

Maximize the 

response 

Positive S/N = -10 *log(Σ(1/Y
2
)/n) 

Nominal 

is best 

Target the 

response and you 

want to base the 

signal-to-noise 

ratio on standard 

deviations only 

Positive, zero, or 

negative 

S/N = -10 *log(σ
2
) 

Nominal 

is best 

(default) 

Target the 

response and you 

want to base the 

signal-to-noise 

ratio on means 

and standard 

deviations 

Non-negative with 

an “absolute zero” 

in which the 

standard deviation is 

zero when the mean 

is zero 

 

The adjusted formula is: 

 

Smaller is 

better 

Minimize the 

response 

Non-negative with a 

target value of zero 

S/N = -10 *log(Σ(Y
2
)/n)) 

For Taguchi dynamic designs, Minitab provides one signal-to-noise ratio (and an 

adjusted formula), which is closely related to the nominal-is-best S/N ratio for static 

designs. 
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3.1.5 Taguchi Quality Loss Function 

The statistical methods developed by Genichi Taguchi to improve the quality of 

products. Taguchi recognized that in an industrial process it is vital to produce a 

product on target and that the variation around the mean caused poorly manufactured 

quality. Taguchi‟s key argument was that the cost of poor quality goes beyond direct 

costs to the manufacturer such as reworking or waste costs. Traditionally 

manufacturers have considered only the costs of quality up to the point of shipping 

out the product. Taguchi aims to quantify costs over the lifetime of the product. 

Long-term costs to the manufacturer would include brand reputation and loss of 

customer satisfaction leading to declining market share. Other costs to the consumer 

would include costs from low durability, difficulty interfacing with other parts, or the 

need to build in safety margins. The goal of the Taguchi method is to reduce costs to 

the manufacturer and to society from variability in manufacturing processes. Taguchi 

defines the difference between the target value of the performance characteristic of a 

process, τ, and the measured value, y, as a loss function as shown below. 

 

                                                                                                 (1)

     

Where:  

L = Loss (currency)  

y = Quality Characteristic (diameter, concentration, etc) 

m = Target Value for y 

k = Constant (defined below) 
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Where:  

A0 = Consumer Loss (currency) 

Δ0 = Maximum Deviation from Target Allowed by Consumer 

There are three characteristics used to define the quality loss function: 

 

1. Nominal–the-Best Characteristic         

2. Smaller-the-Better Characteristic 

3. Larger-the-Better Characteristic 

Each of these characteristic types is defined by a different set of equations, which is 

different from the general form of the loss function equation. 

 

3.1.6 Nominal–the-Best Characteristic 

 

For a nominal characteristic, there is a defined target value for the product which has 

to be achieved. There is a specified upper and lower limit, with the target 

specification being the middle point. Quality is, in this case, is defined in terms of 

deviation from the target value. 

The equation (1) used to describe the loss function of one unit of product: 

 

 

 

 

 

(y –m) = Mean Squared Deviation 

 

As the output value (y) deviates from the target value (m) increasing the mean 

squared deviation, the loss (L) increases. There is no loss when the output value is 

equal to the target value (y = m). 
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Again, we can develop a performance measure or S/N ratio which approximation the 

expected quality loss 

 

 

                                                                       (2) 

 

3.1.7 Lower-the- Better 

In the case of Smaller-the-Better characteristic, the ideal target value is defined as 

zero. An example of this characteristic is the minimization of heat losses in a heat 

exchanger. Minimizing this characteristic as much as possible would produce a more 

desirable product. 

The equation used to describe the loss function of one unit of product: 

 

                                      (4) 

 

Where:  

k = Proportionality Constant 

y = Output Value 

 

The proportionality constant (k) for the Smaller-the-Better characteristic can be 

determined as follows: 

 

 

 

Where:  

A0 = Consumer Loss (currency)  

y0 = Maximum Consumer Tolerated Output Value 

The loss is minimized as the output value is minimized.  
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Again, we can develop a performance measure or S/N ratio which minimize the 

expected quality loss 
  

 

 

                                                                                                                                                                                                                                                                                                                                        (5) 

 

 

3.1.8 Higher-the-Better 

The Larger–the-Better characteristic is just the opposite of the Smaller-the-Better 

characteristic. For this characteristic type, it is preferred to maximize the result, and 

the ideal target value is infinity. An example of this characteristic is maximizing the 

product yield from a process. 

 

The equation used to describe the loss function of one unit of product: 

 
      

                                                                                                                                                                                                                                                                            (6) 

 

Where:  

k = Proportionality Constant 

y0 = Minimum Consumer Tolerated Output Value 

The proportionality constant (k) for the Larger-the-Better characteristic can be 

calculated by using the equation given for the Smaller-the-Better proportionality 

constant. The only difference between the two is the definition of y0. 

This characteristic is the opposite of the Lower-the-Better characteristic, as the loss 

is minimized as the output value is maximized. 

Again, we can develop a performance measure or S/N ratio which minimize the 

expected quality loss 
 

 

 

 

   

 

                                                             

                                                                                                                                                                                                                                                                                                                    (7) 
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3.2 Response surface (RSM) 

Response surface Methodology (RSM) is a collection of mathematical and statistical 

techniques for empirical model building. By careful design of experiments, the 

objective is to optimize a response (output variable) which is influenced by several 

independent variables (input variables). An experiment is a series of tests, called 

runs, in which changes are made in the input variables in order to identify the 

reasons for changes in the output response. Originally, RSM was developed to model 

experimental responses (Box and Draper, 1987), and then migrated into the modeling 

of numerical experiments. The difference is the type of error generated by the 

response. In physical experiments, inaccuracy can be due, for example, to 

measurement errors while, in computer experiments, numerical noise is a result of 

incomplete convergence of iterative processes, round-off errors or the discrete 

representation of continuous physical phenomena (Giunta et al., 1996; van Campen 

et al., 1990, Toropov et al., 1996). In RSM, the errors are assumed to be random. The 

application of RSM to design optimization is aimed at reducing the cost of expensive 

analysis methods (e.g. finite element method or CFD analysis) and their associated 

numerical noise. With smooth functions that improve the convergence of the 

optimization process because they reduce the effects of noise and they allow for the 

use of derivative-based algorithms. Venter et al. (1996) have discussed the 

advantages of using RSM for design optimization applications.  

Two important models are commonly used in RSM. These are special cases of model 

(1) and include the first-degree model (d =1), 

 

                                                                   (8) 

 

and the second-degree model (d =2) 

 

                     (9) 
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The purpose of considering a model such as (1) is threefold: 

 

 To establish a relationship, albeit approximate, between y and x1,x2,...,xk that can 

be used to predict response values for given settings of the control variables. 

 To determine, through hypothesis testing, the significance of the factors whose 

levels are represented by x1,x2,...,xk. 

 To determine the optimum settings of x1,x2,...,xk that result in the maximum (or 

minimum) response over a certain region of interest. 

 

 

 

3.2.1Objectives and Typical Applications of RSM 

 
Response surface is useful in the solution of many types of industrial problems. 

Generally, these problems fall into three categories: 

 

 Mapping a Response Surface over a Particular Region of Interest. Consider the 

chemical process. Normally, this process would operate at a particular setting of 

reaction time and reaction temperature. However, some changes to these normal 

operating levels might occasionally be necessary, perhaps to produce a product 

that meets other specific customer requirement. If the true unknown response 

function has been approximated over a region around the current operating 

conditions with a suitably fitted response surface (say a second-order surface), 

then the process engineer can predict in advance the changes in yield that will 

result from any readjustments to time and temperature. 

 Optimization of the Response. In the industrial world, a very important problem 

is determining the conditions that optimize the process. A second-order model 

could then be used to approximate the yield response in a narrow region around 

point and from an examination of this approximating response surface, the 

optimum levels or condition for time and temperature could be chosen. 
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 Selection of Operating Conditions to Achieve Specifications or Customer 

requirements. In most response surface problems there are several responses that 

must in some sense be simultaneously considered. 

 

 

3.2.2 RSM and the Philosophy of Quality Improvement 
 

During the last few decades, industrial organizations in the United States and Europe 

have become keenly interested in quality and process improvement. Statistical 

methods, including statistical process control (SPC) and design of experiments, play 

a key role in this activity. Quality improvement is most effective when it occurs early 

in the product and process development cycle. It is very difficult and often expensive 

to manufacture a poorly designed product. Industries such as semiconductors and 

electronics, aerospace, automotive, biotechnology and pharmaceuticals, medical 

devices, chemical, and process industries are all examples where experimental 

design methodology has resulted in shorter design and development time for new 

products, as well as products that are easier to manufacture, have higher reliability, 

have enhanced field performance, and meet or exceed customer requirements. RSM 

is an important branch of experimental design in this regard. RSM is a critical 

technology in developing new processes, optimizing their performance, and 

improving the design and/or formulation of new products. It is often an important 

concurrent engineering tool, in that product design, process development, quality, 

manufacturing engineering, and operations personnel often work together in a team 

environment to apply RSM. The objectives of quality improvement, including 

reduction of variability and improved product and process performance, can often be 

accomplished directly using RSM. 
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3.3 Dimensional Analysis 

In engineering and science, dimensional analysis is the analysis of the relationships 

between different physical quantities by identifying their fundamental 

dimensions (such as length, mass, time, and electric charge) and units of 

measure (such as miles vs. kilometers, or pounds vs. kilograms vs. grams) and 

tracking these dimensions as calculations or comparisons are performed. Converting 

from one-dimensional unit to another is often somewhat complex. Dimensional 

analysis, or more specifically the factor-label method, also known as the unit-factor 

method, is a widely used technique for such conversions using the rules of algebra.  

The concept of physical dimension was introduced by Joseph Fourier in 

1822.Physical quantities that are commensurable have the same dimension; if they 

have different dimensions, they are incommensurable. For example, it is meaningless 

to ask whether a kilogram is less, the same, or more than an hour. 

Any physically meaningful equation (and likewise any inequality and in the 

equation) will have the same dimensions on the left and right sides, a property 

known as “dimensional homogeneity”. Checking this is a common application of 

dimensional analysis. Dimensional analysis is also routinely used as a check on the 

plausibility of derived equations and computations. It is generally used to categorize 

types of physical quantities and units based on their relationship to or dependence on 

other units.  

The dimensional analysis offers a method for reducing complex physical problems to 

the simplest (that is, most economical) form prior to obtaining a quantitative answer. 

Bridgman (1969) explains it thus: “The principal use of dimensional analysis is to 

deduce from a study of the dimensions of the variables in any physical system 

certain limitations on the form of any possible relationship between those variables. 

The method is of great generality and mathematical simplicity”. At the heart of the 

dimensional analysis is the concept of similarity. In physical terms, similarity refers 

to some equivalence between two things or phenomena that are actually different. 

For example, under some very particular conditions, there is a direct relationship 
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between the forces acting on a full-size aircraft and those on a small-scale model of 

it. The question is, what are those conditions, and what is the relationship between 

the forces? Mathematically, similarity refers to a transformation of variables that 

leads to a reduction in the number of independent variables that specify the problem. 

Here the question is what kind of transformation works? The dimensional analysis 

addresses both these questions. Its main utility derives from its ability to contract or 

make more succinct, the functional form of physical relationships. A problem that at 

first looks formidable may sometimes be solved with little effort after dimensional 

analysis. 

In problems so well understood that one can write down in mathematical form all the 

governing laws and boundary conditions, and only the solution is lacking, similarity 

can also be inferred by normalizing all the equations and boundary conditions in 

terms of quantities that specify the problem and identifying the dimensionless groups 

that appear in the resulting dimensionless equations. This is an inspectional form of 

similarity analysis. Since inspectional analysis can take advantage of the problem‟s 

full mathematical specification, it may reveal a higher degree of similarity than a 

“blind” (less informed) dimensional analysis and in that sense prove more powerful. 

Dimensional analysis is, however, the only option in problems where the equations 

and boundary conditions are not completely articulated and always useful because it 

is simple to apply and quick to give insight.  Some of the basic ideas of similarity 

and dimensional analysis had already surfaced in Fourier‟s work in the nineteenth 

century‟s first quarter, but the subject received more methodical attention only 

toward the close of that century, notably in the works of Lord Rayleigh, Reynolds, 

Maxwell, and Froude in England, and Carvallo, Vaschy and a number of other 

scientists and engineers in France (Macagno1971). By the 1920‟s the principles were 

essentially in place: Buckingham‟s now ubiquitous π− theorem had appeared 

(Buckingham, 1914), and Bridgman had published the monograph which still 

remains the classic in the field (Bridgman, 1922, 1931). Since then, the literature has 

grown prodigiously. Applications now include aerodynamics, hydraulics, ship 
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design, propulsion, heat and mass transfer, combustion, mechanics of elastic and 

plastic structures, fluid-structure interactions, electromagnetic theory, radiation, 

astrophysics, underwater and underground explosions, nuclear blasts, impact 

dynamics, and chemical reactions and processing (see for example Sedov, 1959, 

Baker et al, 1973, Kurth, 1972, Lokarnik, 1991), and also biology (McMahon & 

Bonner, 1983) and even economics (de Jong, 1967). Most applications of 

dimensional analysis are not in question, no doubt because they are well supported 

by experimental facts. The debate over the method‟s theoretical-philosophical 

underpinnings, on the other hand, has never quite stopped festering (e.g. Palacios, 

1964). Mathematicians tend to find in the basic arguments a lack of rigor and are 

tempted to redefine the subject in their own terms (e.g. Brand, 1957), while 

physicists and engineers often find themselves uncertain about the physical meanings 

of the words in terms of which the analysis cast. The problem is that dimensional 

analysis is based on ideas that originate at such a substantial point in science that 

most scientists and engineers have lost touch with them. To understand its principles, 

we must return to some of the very fundamental concepts in science. Dimensional 

analysis is rooted in the nature of the artifices we construct in order to describe the 

physical world and explain its functioning in quantitative terms. Einstein (1933) has 

said, “Pure logical thinking cannot yield us any knowledge of the empirical world; 

all knowledge starts from experience and ends in it. Propositions arrived at by purely 

logical means are completely empty as regards reality”. 

This treatise is an attempt to explain dimensional analysis by tracing it back to its 

physical foundations. We will clarify the terms used in the dimensional analysis, 

explain why and how it works, remark on its utility, and discuss some of the 

difficulties and questions that typically arise in its application. One single 

(unremarkable) application in mechanics will be used to illustrate the procedure and 

its pitfalls. The procedure is the same in all applications, a great variety of which 

may be found in the references and in the scientific literature at large. 
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3.3.1The steps of dimensional analysis 

The premise of dimensional analysis is that the form of any physically significant 

equation must be such that the relationship between the actual physical quantities 

remains valid independent the magnitudes of the base units. Dimensional analysis 

derives the logical consequences of this premise. Suppose we are interested in some 

particular physical quantity Q0 that is a “dependent variable” in a well defined 

physical process or event. By this, we mean that once all the quantities that define 

the particular process or event are specified, the value of Q0 follows uniquely. 

 

Step 1: The independent variables 

The first and most important step in dimensional analysis is to identify a complete 

set of independent quantities  

Q1...Qn that determine the value of Q0, 

Q0= f(Q1, Q2, ... , Qn) 

 

A set Q1...Qn is complete if, once the values of the members are specified, no other 

quantity can affect the value of Q0, and independent if the value of each member can 

be adjusted arbitrarily without affecting the value of any other member. Starting with 

a correct set Q1...Qn is as important in the dimensional analysis as it is in 

mathematical physics to start with the correct fundamental equations and boundary 

conditions. If the starting point is wrong, so is the answer. We defer to the question 

of how correct set is to be identified. 

The relationship expressed symbolically in above equation is the result of the 

physical laws that govern the phenomenon of interest. It is our premise that its form 

must be such that, once the values Q1...Qn are specified, the equality holds regardless 

of the sizes of the base units in terms of which the quantities are measured. The steps 

that follow derive the consequences of this premise. 
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Step 2: Dimensional considerations 

Next, we list the dimensions of the dependent variable Q0 and the independent 

variables Q1...Qn. As we have discussed, the dimension of a quantity depends on the 

type of system of units and we must specify at least the type the system of units 

before we do this. For example, if we use a system and are dealing with a purely 

mechanical problem, all quantities have dimensions of the form 

[Qi]=L
li
M

mi
t
Ti

  

where the exponents  

li, mi and Ti are dimensionless numbers that follow from each quantity‟s definition. 

We now pick from the complete set of physically independent variables  

Q1...Qn a complete, dimensionally independent subset Q1...Qk(k≤n), and express the 

dimension of each of the remaining independent variables Qk+1...Qn and the 

dependent variable Q0 as a product of powers of Q1...Qk. 

All physical quantities have dimensions which can be expressed as products of 

powers of the set of base dimensions. Alternatively, it is possible to express the 

dimension of one quantity as a product of powers of the dimensions of other 

quantities which are not necessarily base quantities. A subset Q1...Qk of the set 

Q1...Qn is dimensionally independent if none of its members has a dimension that can 

be expressed in terms of the dimensions of the remaining members. And complete if 

the dimensions of all the remaining quantities  

Q k+1 ...Qn of the full set can be expressed in terms of the dimensions of the subset 

Q1...Qk. Since equation mentioned in step1 is dimensionally homogeneous, the 

dimension of the dependent variable Q0 is also expressible in terms of the 

dimensions of Q1...Qk. The dimensionally independent subset Q1...Qk is picked by 

trial and error. Its members may be picked in different ways, but the  number k of 

dimensionally independent quantities in the full set Q1...Qn is unique to the set, and 

cannot exceed the number of base dimensions which appear in the dimensions the 

quantities in that set. For example, if the dimensions of Q1...Qn involve only length, 

mass, and time, then k≤ 3. Having chosen a complete, dimensionally independent 
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subset Q1...Qk, we express the dimensions of Q0 and the remaining quantities 

Qk+1...Qn in terms of the dimensions of Q1...Qk. These will have the form 

[Qi]=[Q1
Ni1

Q2
Ni2

...Qk
Nik

] 

if  i>k or  i=0. The exponents Nij are dimensionless real numbers and can in most 

cases be found quickly by inspection, although a formal algebraic method can be 

used. The formal procedure can be illustrated with an example where length, mass 

and time are the only base quantities, in which case all dimensions have the form of 

above equation. Let us take Q1, Q2,and Q3 as the complete dimensionally 

independent subset. Equating the dimension given by equation which is mentioned at 

step 2 with that of above equation, we obtain three equations 

 

li=∑Nijlj  

J=1~3 

 

mi=∑Nijmj  

J=1~3 

 

Ti=∑NijTj  

J=1~3 

Which can be solved for the three unknowns Ni1, Ni2,and Ni3. 

 

Step 3: Dimensionless variables 

We now define dimensionless forms of the n-k remaining independent variables by 

dividing each one by the product of powers of Q1...Qk  

which has the same dimension, 

Πi=Qk+i/Q1
N(k+i)1

Q2
N(k+i)2

...Qk
N(k+i)k

 

                    

 

where i=1, 2,..., n-k, and a dimensionless form of the dependent variable Q0, 
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Π0=Q0/Q1
N01

Q2
N02

...Qk
N0k

 

Step 4: The end game and Buckingham’s –theorem 

An alternative form of equation which mentioned at step1 is 

Π0= f(Q1,Q2, ...., Qk; Π1, Π2, ..., Π n-k) 

in which all quantities are dimensionless except Q1...Qk. The values of the 

dimensionless quantities are independent of the sizes of the base units. The values of 

Q1...Qk, on the other hand, do depend on base unit size. They cannot be put into 

dimensionless form since they are (by definition) dimensionally independent of each 

other. From the principle that any physically meaningful equation must be 

dimensionally homogeneous, that is, valid independent of the sizes of the base units, 

it follows that Q1...Qk must, in fact, be absent from equation above that is, 

Π0= f(Π1,Π2, ..., Πn-k) 

This equation is the final result of the dimensional analysis.  

 

3.3.2 Methods of Dimensional Analysis  

 

There are two methods of dimensional analysis.  

1. Rayleigh‟s method   

2. Buckingham‟s (– theorem) method  

 

Rayleigh’s method  

Rayleigh‟s method of analysis is adopted when a number of parameters or variables 

are less (3 or 4 or 5).  

 

Methodology  

 

X1 is a function of  X2, X3, X4………. Xn  

Then it can be written as X1 = f(X2, X3, X4… Xn)  
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In this equation, X1 is a dependent variable, while X2, X3, X4………. Xn are 

independent variables.  

The above-noted equation may be expressed as 

X1 = K (X2
a
, X3

b
, X4

c
 …)  

 

Taking dimensions for all the quantities [X1] = [X2] 
a
 [X3]

 b
 [X4] 

c
 ……  

Dimensions for quantities on left-hand side as well as on the right-hand side are 

written and using the concept of Dimensional Homogeneity a, b, c …. can be 

determined. The dimensionless parameters are then formed by grouping together the 

variables with like powers. 

Then, X1 = K X2
a. 

X3
b
. X4

c
 

In which K is a dimensionless constant which may be determined either from 

physical characteristics of the problem or from experimental measurements. 

 

Buckingham’s  Method   

 

This method of analysis is used when numbers of variables are more.   

 

Buckingham’s  Theorem  

If there are n – variables in a physical phenomenon and those n-variables contain „m‟ 

dimensions, then the variables can be arranged into (n-m) dimensionless groups 

called   terms.  

 

Explanation  

If f (X1, X2, X3 … Xn) = C and variables can be expressed using m dimensions then.  

f(1,2, 3, ………,  n – m)  = C1  

                      

 

Where, 1, 2, 3 ……..... are dimensionless groups. 
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Thus a total number of variable is n and this entire variable may be completely 

described by m fundamental dimensions of either M-L-T or F-L-T systems (i.e. 

m=3). Therefore there are (n-m) is dimensionless  terms 

Each   term being dimensionless, the dimensional homogeneity can be used to get 

each  term. 

1 = X1
a1

 X2
b1

 X3
c1

 … Xm
m1

Xm+1 

2 = X1
a2

 X2
b2

 X3
c2

 … Xm
m2

Xm+2 

……………………………………………………… 

 

n-m = X1
a(n-m)

 X2
b(n-m)

 X3
c(n-m)

 … Xm
m(n-m)

Xn 

 

The final general equation for the phenomenon may then be obtained by expressing 

any one of  terms as a function of the others as 

 

1 = f1 (2, 3 … n-m) 

2 = f2 (1, 3 … n-m) 

3 = f3 (1, 2 … n-m) 

Or any other desired relationship may be obtained. 

 

3.3.3 Selecting Repeating Variables 

The objectives of selecting repeating variables are to: 

 1. Avoid taking the quantity required as the repeating variable.  

 2. Repeating variables put together should not form a dimensionless group.  

 3. No two repeating variables should have same dimensions.  

 4. Repeating variables can be selected from each of the following properties.   

a. Geometric property: Length, height, width, area                              

b. Flow property: Velocity, Acceleration, and Discharge   

c. Fluid property: Mass density, Viscosity, Surface tension 
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3.4 Models in Research 

A model in OR is a simplified representation of an operation, or is a process in which 

only the basic aspects or the most important features of a typical problem under 

investigation are considered. The objective of a model is to identify significant 

factors and interrelationships. The reliability of the solution obtained from a model 

depends on the validity of the model representing the real system. A good model 

must possess the following characteristics: 

(i)It should be capable of taking into account, the new formulation without having  

any changes  in its frame. 

(ii)  Assumptions made in the model should be as small as possible.  

(iii) Variables used in the model must be less in number ensuring that it is simple and 

coherent. 

(iv) It should be open to the parametric type of treatment. 

(v) It should not take much time in its construction for any problem. 

 

3.4.1 Advantages of a Model 

There are certain significant advantages gained when using a model these are: 

(i)Problems under consideration become controllable through a model. 

(ii) It provides a logical and systematic approach to the problem. 

(iii) It provides the limitations and scope of an activity. 

(iv)  It helps in finding useful tools that eliminate duplication of methods applied to 

solve problems. 

(v) It helps in finding solutions for research and improvements in a system. 

(vi) It provides an economic description and explanation of either the operation or 

the systems they represent. 
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3.4.2 Models of Structure 

Mathematical models are most abstract in nature. They employ a set of mathematical 

symbols to represent the components of the real  system. These variables are related 

together  by means  of mathematical equations  to describe  the behavior  of the  

system.  The solution of the problem is then obtained by applying well-developed 

mathematical techniques to the model. We can also define a mathematical model as 

consisting of:  

 

 Decision variables, which are  the unknowns  to be  determined by  the solution  

to the model.  

 Constraints to represent the physical limitations of the system  

 An objective function  

 An optimal solution to the model is the identification of a set of variable values 

which are feasible (satisfy all the constraints) and which lead to the optimal value 

of the objective function.  

 

An optimization model seeks to find values of the decision variables that optimize 

(maximize or minimize) an objective function among the set of all values for the 

decision variables that satisfy the given constraints. 

 

3.4.3 Terminology 

Solution:  

The set of values of decision variables (j = 1, 2, ... n) which satisfy the constraints is 

said to constitute a solution to meet the problem. 

 

Feasible Solution:  

The set of values of decision variables Xj (j = 1, 2, ... n) which satisfy all the 

constraints and non-negativity conditions of a linear programming problem 

simultaneously is said to constitute the feasible solution to that problem. 
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Infeasible Solution:  

The set of values of decision variables Xj (j = 1, 2, ... n) which do not satisfy all  the 

constraints  and non-negativity  conditions of  the problem  is said  to constitute  the 

infeasible solution to that linear programming problem. 

 

Basic Solution:  

For a set of m simultaneous equations in n variables (n > m), a solution obtained by 

setting (n –m) variables equal to zero and solving for remaining m variables is called 

a basic feasible solution. 

 

The variables which are set to zero are known as non-basic variables and the 

remaining m variables which appear in this solution are known as basic variables: 

 

Basic Feasible Solution:  

A feasible solution to LP problem which is also the basic solution is called the basic 

feasible solution. Basic feasible solutions are of two types; 

(a) Degenerate: A basic feasible solution is called degenerate if the value of at least 

one basic variable is zero. 

(b) Non- degenerate: A basic feasible solution is called non-degenerate„ if all values 

of m basic variables are non-zero and positive. 

 

Optimum Basic Feasible Solution:  

A basic feasible solution which optimizes (maximizes or minimizes) the objective 

function value of the given LP problem is called an optimum basic feasible solution. 

 

Unbounded Solution:  

A basic feasible solution which optimizes the objective function of the LP problem 

indefinitely is called unbound solution 
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3.5 Introduction to Linear Programming 

Linear programming deals with the optimization (maximization or minimization) of 

a function of variables known as objective functions.  It is  subject to  a set  of linear  

equalities and /or inequalities known  as constraints. Linear  programming is  a  

mathematical technique,  which involves the  allocation of  limited resources  in an  

optimal manner,  on the  basis of  a  given criterion of optimality. In this section 

properties of Linear Programming Problems (LPP) are discussed. The graphical 

method of solving an LPP is applicable where two variables are involved. The most 

widely used method for solving LP problems consisting of any number of variables 

is called Simplex method. 

3.5.1 Formulation of LP Problems 

The procedure for mathematical formulation of an LPP consists of the following 

steps: 

 

Step 1 To write down the decision variables of the problem. 

Step 2 To formulate the objective function to be optimized (Maximized or 

Minimized) as a linear function of the decision variables. 

Step 3 To formulate  the other  conditions of  the problem  such as  resource 

limitation,  market constraints,  interrelations between  variables etc.,  as linear  in 

equations or  equations in  terms of the decision variables. 

Step 4 To add the non-negativity constraint from the considerations so that the 

negative values of the decision variables do not have any valid physical 

interpretation.  

The objective  function, the set of  constraint and  the non-negative  constraint 

together  form a Linear programming problem. 
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3.5.2 General Formulation of LPP 

The general formulation of the LPP can be stated as follows: 

In order to find the values of n decision variables x1 , x2 , x3 ,....., xn to maximize or 

minimize the objective function. 

Z = c1x1 + c2 x 2 + ..... + cn x n  

and also satisfy m-constraints 

a11 x1+a12x2+....a1nxn ≤=≥ b1 

a21 x1+a22x2+....a2nxn ≤=≥b2 

....... 

am1 x1+am2x2+....amnxn ≤=≥ bm 

 

Where constraints may be in the form of inequality < or > or even in the form an 

equation (=) and finally satisfy the nonnegative restrictions 

x1≥, x 2≥, x3≥,.....xn≥ 0. 

3.6 Sum of squares 

The sum of squares represents a measure of variation or deviation from the mean. It 

is calculated as a summation of the squares of the differences from the mean. The 

calculation of the total sum of squares considers both the sum of squares of the 

factors and from randomness or error.  

 

3.6.1 Sum of squares in ANOVA 

In an analysis of variance (ANOVA), the total sum of squares helps express the total 

variation that can be attributed to various factors. For example, you do an experiment 

to test the effectiveness of three laundry detergents.  

The total sum of squares = treatment sum of squares (SST) + sum of squares of the 

residual error (SSE)  
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The treatment sum of squares is the variation attributed to, or in this case between, 

the laundry detergents. The sum of squares of the residual error is the variation 

attributed to the error.  

Converting the sum of squares into mean squares by dividing by the degrees of 

freedom lets you compare these ratios and determine whether there is a significant 

difference due to detergent. The larger this ratio is, the more the treatments affect the 

outcome.  

3.6.2 Sum of squares in regression 

In regression, the total sum of squares helps express the total variation of the y‟s. For 

example, you collect data to determine a model explaining overall sales as a function 

of your advertising budget.  

The total sum of squares = regression sum of squares (SSR) + sum of squares of the 

residual error (SSE)  

                                                                              (10) 

The regression sum of squares is the variation attributed to the relationship between 

the x‟s and y‟s, or in this case between the advertising budget and your sales. The 

sum of squares of the residual error is the variation attributed to the error. By 

comparing the regression sum of squares to the total sum of squares, you determine 

the proportion of the total variation that is explained by the regression model (R2, the 

coefficient of determination). The larger this value is the better the relationship 

explaining sales as a function of advertising budget.  
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3.7 Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) is similar to regression in that it is used to 

investigate and model the relationship between a response variable and one or more 

independent variables. However, analysis of variance differs from the regression in 

two ways: the independent variables are qualitative (categorical), and no assumption 

is made about the nature of the relationship (that is, the model does not include 

coefficients for variables). In effect, analysis of variance extends the two-sample t-

test for testing the equality of two population means to a more general null 

hypothesis of comparing the equality of more than two means, versus them not all 

being equal. Several of MINITAB‟s ANOVA procedures, however, allow models 

with both qualitative and quantitative variables. 

Like so many of our inference procedures, ANOVA has some underlying 

assumptions which should be in place in order to make the results of calculations 

completely trustworthy. They include: 

(i)Subjects are chosen via a simple random sample. 

(ii) Within each group/population, the response variable is normally distributed. 

(iii) While the population means may be different from one group to the next, the 

population standard deviation is the same for all groups. 

Analysis of Variance (ANOVA) is a computational technique to quantitatively 

estimate the relative contribution, which each controlled parameter makes to the 

overall measured response and expressing it as a percentage. ANOVA uses the S/N 

ratio responses for these calculations. The basic idea of ANOVA is that the total sum 

of squares of the standard deviation is equal to the sum of squares of the standard 

deviation caused by each parameter.  

 

3.7.1 One-way and two-way ANOVA models 

 

 One-way analysis of variance tests the equality of population means when 

classification is by one variable. The classification variable, or factor, usually has 
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three or more levels (one-way ANOVA with two levels is equivalent to a t-test), 

where the level represents the treatment applied. For example, if you conduct an 

experiment where you measure the durability of a product made by one of three 

methods, these methods constitute the levels. The one-way procedure also allows 

you to examine differences among means using multiple comparisons. 

 Two-way analysis of variance performs an analysis of variance for testing the 

equality of population means when the classification of treatments is by two 

variables or factors. In two-way ANOVA, the data must be balanced (all cells 

must have the same number of observations) and factors must be fixed. If you 

wish to specify certain factors to be random, use Balanced ANOVA if your data 

are balanced; use General Linear Models if your data are unbalanced or if you 

wish to compare means using multiple comparisons. 

 

3.7.2 One-Way ANOVA Table 

When you have an experiment with a one-way layout, you compute the F statistic 

using a one-way ANOVA table. Below is how the ANOVA table is calculated. 

Table 3.2 Table of One-Way ANOVA 

 

 

 

 

 

 

[[        

Some helpful definitions for this table: 

a = the number of levels for a factor 

i = level of factor 

j = trial at a given level 
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ni = the number of trials at the i
th

 factor level 

yij = the response value at ith factor level and the j
th

 trial 

y.. = overall mean of data 

yi. = the mean at i
th
 factor level 

The Fcrit for such an analysis is Falpha, a-1, N-a and can be found in the F table.  

 

3.7.3 Two-Way ANOVA Table 

When you have an experiment with a two-way layout, use a two-way ANOVA table 

to calculate the F statistic. Below is how the two-way ANOVA table is calculated. 

 

Table 3.3 Table of Two-Way ANOVA 

 

 

 

 

 

 

 

Some helpful definitions for this table:  

a = the number of levels for the first factor 

b = the number of levels for the second factor 

i = level of the first factor 

j = level of the second factor 

ni = the number of trials at the i
th

 factor level for the first factor 

nj = the number of trials at the j
th

 factor level for the second factor 

yij = the response value at ith and j
th

 factor levels 

y.. = overall mean of data 

http://controls.engin.umich.edu/wiki/images/4/4f/Fdistributiontable.xls
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yi. = the mean at the i
th

 factor level for the first factor 

y.j = the mean at the j
th 

factor level for the second factor 

The Fcrit for such an analysis is Falpha, a-1, (a-1)(b-1) for factor A and Falpha, b-1, (a-1)(b-

1) for factor B. This can be found in the F table.  

The percentage contribution, P of the process parameters on the roughness can be 

calculated as: 

 

(11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://controls.engin.umich.edu/wiki/images/4/4f/Fdistributiontable.xls
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CHAPTER-4 

 

EXPERIMENTAL SETUP 

 

4.1 Design of Ball Burnishing Tool  

A magnetic holding ball burnishing tool is designed to carry out the experimental 

work on Mild Steel using high chromium high carbon ball. The ball is holder is 

supported elastically by a pre-calibrated spring, which could apply the required force 

when pressed onto the workpiece surface. The use of the spring is important for 

reducing sticking due to friction between the ball and the workpiece. The amount of 

spring compression with relation to the applied vertical force (PY). 

The burnishing tool consists of parts namely ball holder, circular casing, magnet, 

spring, and bearing. The design is made in consideration with the parameters in the 

work. The experimental work is planned to conduct mainly considering four 

different parameters and burnishing force is one among the parameters. So, the force 

is measured by means of spring deflections in the tool. 

To design burnishing tool, it is essential to calculate the normal burnishing force for 

given condition.  

P.N Patel et al (2014) shown the Normal Burnishing Force equation to evaluate the 

spring stiffness [17] 

Normal Burnishing Force: PY = ᴨεHR
2
                                                                 (12) 

Where  

ε = h/R= Depth of penetration/Ball Radius = Relative depth of penetration = 0.002-

0.003  

R = Ball Radius = 1.5, 2.5, 3.5, 4.5, 5.5 mm 

H = Vickers Hardness of Work Material   

 

For mild steel, H = Vickers Hardness = 140 
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(a)       R = Ball Radius = 1.5                                

Normal Burnishing Force PY = ᴨεHR
2
  

PY = (3.14) x(0.0025)x(140)x(1.5)
2
  

PY = 2.47Kgf = 24 N 

Feed force: PX = (0.04 to 0.20) x PY = 0.1x24= 2.4 N 

 

b) R = Ball Radius = 2.5 

Normal Burnishing Force PY = ᴨεHR
2
  

PY = (3.14)x(0.0025)x(140)x(2.5)
2
  

PY = 6.87 Kgf = 67 N 

Feed force: PX = (0.04 to 0.20) x PY = 0.1x69= 6.90 N 

 

c) R = Ball Radius = 3.5 

Normal Burnishing Force PY = ᴨεHR
2
  

PY = (3.14)x(0.0025)x(140)x(3.5)
2
  

PY = 13.46 Kgf = 132 N 

Feed force: PX = (0.04 to 0.20) x PY = 0.1x132= 13.20 N 

 

(d) R = Ball Radius = 4.5 

Normal Burnishing Force PY = ᴨεHR
2
  

PY = (3.14)x(0.0025)x(140)x(4.5)
2
  

PY = 22.25 Kgf = 218 N 

Feed force: PX = (0.04 to 0.20) x PY = 0.1x218= 21.8 N 

 

(e) R = Ball Radius = 5.5 

Normal Burnishing Force PY = ᴨεHR
2
  

PY = (3.14)x(0.0025)x(140)x(5.5)
2
  

PY = 33.24 Kgf = 326 N 

Feed force: PX = (0.04 to 0.20) x PY = 0.1x326= 32.60 N 

Taking maximum normal burnishing force: PY(max) = 1.2 x 326= 391.2 N 
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4.1.1 Spring Stiffness  

The spring used in these work is of EN 9 material, which helps to measures 

burnishing force by means of spring deflections in the square casing.  

Length of Spring LF = 44 mm  

Spring Diameter D = 18 mm  

Spring Wire Diameter d = 2.5 mm  

Number of Turns N = n + 2 = 9+2 = 11  

Solid Length Ls = N x d = 27.5 mm 

Deflection of spring is provided by rotating the Force 

LF   = Nxd + ᵟmax+ (N-1) x 0.5 mm                                                              (13) 

ᵟmax = 11.5 mm 

In this expression, the clearance between two adjacent coils is taken as 0.5 mm 

(when compressed) 

Maximum Deflection of spring ᵟmax = 11.5 mm  

Maximum Normal Burnishing Force PY = 391.2 N 

Stiffness K1 = PY /ᵟ = 391.2/11.5x10
-3

 = 34,017 N/M  

Selected spring deflection is 0.25mm for 1kgf force 

So, available Stiffness of spring we selected for the study K = 9.81/0.25x10
-3

 = 

39,240 N/M  

As (K1< K), The Design of spring is safe. 

 

4.1.2 Adjustable Chuck with Magnet  

An adjustable chuck of 80 mm dia and 70 mm length is used for this burnishing tool. 

The chuck has three jaws separated by 120
0 

angle. In each of these jaws, a slot is 

prepared according to a small size bearing (Bearing No: 504 Z, Dimension: OD= 12 

mm & Thickness = 4 mm). Inside the chuck, a cylindrical magnet is placed which 

hold the ball of various diameter on the bearing. This burnishing tool is designed in 

such a way that it produces less friction between the ball and the workpiece.   
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Fig. 4.1 CAD Drawing of Ball Burnishing Tool 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Ball Burnishing Tool 
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4.2 Workpiece  

Commercially available Mild steel is used in the present experimental work. Work 

piece diameter is 45mm. Burnishing experiments are conducted on turned Mild 

workpiece. First, the workpiece is held in 3- jaw chuck of a lathe and facing 

operation is completed on both sides and centre drilling is completed on both the 

faces. Then, the workpiece is held in between centers of lathe and it is driven by the 

lathe dog. A high-speed steel (H. S.S.) single point cutting tool is fixed in the tool 

post of the lathe and workpiece is turned to have 75mm length and 45 mm diameter 

of 25 pcs workpiece. In actual experiments, the different parameters were applied on 

the workpiece. 

 

 

 

 

 

 

 

 

Fig.  4.3 CAD Drawing of Workpiece 

 

 

 

 

 

 

 

 

 

Fig.  4.4 Workpiece for Experiment 
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4.3 Setup of Burnishing tool and workpiece 

The Ball burnishing tool is mounted on the Lathe. The experimental set up with ball 

burnishing tool is shown in Fig. 4.1. It consists of the parts: (1) Three jaw chuck, (2) 

Live center, (3) Dead center, (4) Mild steel workpiece, (5) Ball Burnishing tool, (6) 

Hand wheel for cross slide of lathe 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Experimental setup with Ball burnishing tool 
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4.4 Setup of Roughness measuring device 

 

The values of mean surface roughness (Ra) before and after burnishing were 

measured by using Roughness tester „„Surftest SJ-210‟‟, Mitutoyo.  For each 

workpiece, the average Ra was obtained by three measurements conducted along the 

longitudinal direction at different positions. 

Specification of Roughness tester: 

Measuring range: 17.5 mm 

Measuring speed: 0.25, 0.5, 0.75 mm/s 

Detector range: 360 µm (-200 µm to + 160 µm ) 

 

 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 Experimental setup of Surface Roughness measuring device 

 

 

 



65 

 

4.5 Array Selector 

Orthogonal arrays are a special standard experimental design that requires only a 

small number of experimental trials to find the main factors effects on output. Before 

selecting an orthogonal array, the minimum number of experiments to be conducted 

is to be fixed based on the formula below 

N Taguchi = 1+ NV (L – 1)                      (14) 

N Taguchi = Number of experiments to be conducted 

NVMax =Maximum Number of parameters 

L = Number of levels 

From formula 

NVMax = 6 and L = 5, Hence 

N Taguchi = 1+ 6 (5-1) = 25 

Hence at least 25 experiments are to be conducted. Based on this orthogonal array 

(OA) is to be selected which has at least 25 rows i.e., 25 experimental runs 

L25 is applicable for Number of parameter 2 ~ 6. 

In this work, Number of parameter 4 and level 5. So we will use L25 Table 

  

 

 

 

 

 

 

 

 

4.6 Design of Experiment (DOE) 

In this study, four burnishing parameters were selected for optimizing the burnishing 

process using Taguchi method. The examined burnishing parameters include: (1) 

Burnishing speed, (2) Force and (3) Feed rate (4) Ball diameter. Other parameters 
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such as a number of burnishing passes and penetration depth are considered constant 

in the course of this study. For each parameter, 5(five) levels were considered. 

According to Taguchi method with 4 (four) independent parameters, 25 experiments 

will be conducted. Five coded levels will be used for each parameter and MINITAB 

software has used for data analysis. The materials used in this work are made of Mild 

Steel with dimension L=75mm and D=45mm. A burnishing tool device designed and 

made to perform the burnishing experiments. The device is in the form of a small 

lathe chuck of 80mm diameter with adjustable 3(three) jaws separated by 120° angle. 

In each of these jaws, a 504Z No. bearing of OD =12mm T = 4mm can be mounted. 

The tool is designed in such a way that it can be simply mounted onto a Center Lathe 

Machine. A Conventional Lathe machine will be used for this study. 

Table 4.1 Parameter of burnishing process 

Factors Symbols Levels 

-2 -1 0 1 2 

Speed (n), rpm X1 70 155 240 325 410 

Force (PY), N X2 24 78 132 186 240 

Feed (f), mm/rev X3 0.1 0.18 0.26 0.34 0.42 

Ball diameter (d), mm X4 3 5 7 9 11 

Ball material (HB), N/mm
2
(Brinell 

scale) 

- 653 - - - - 

Relative Penetration (ε) - 0.0025     

No. of Passes - 1 - - - - 

Burnishing Condition - Dry - - - - 

 

Z-2σ <= X <= Z+2σ 

Z = Mean 

σ = Standard Deviation  

[-2, -1, 0, 1, 2] using the following transformation equations: 

X1 = (n-240)/85 

X2 = (PY-132)/54 

X3 = (f-0.26)/0.08 
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X4 = (d-7)/2                        

Where X1, X2, X3and X4 denotes burnishing speed, force, feed rate and ball 

diameter, respectively.  

                      

Table 4.2 Taguchi L25 (5
4
) Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Runs Factor A Factor B Factor C Factor D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 1 4 4 4 

5 1 5 5 5 

6 2 1 2 3 

7 2 2 3 4 

8 2 3 4 5 

9 2 4 5 1 

10 2 5 1 2 

11 3 1 3 5 

12 3 2 4 1 

13 3 3 5 2 

14 3 4 1 3 

15 3 5 2 4 

16 4 1 4 2 

17 4 2 5 3 

18 4 3 1 4 

19 4 4 2 5 

20 4 5 3 1 

21 5 1 5 4 

22 5 2 1 5 

23 5 3 2 1 

24 5 4 3 2 

25 5 5 4 3 
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CHAPTER-5 

 

RESULTS AND DISCUSSION 

  

5.1 Result of surface quality 

In this research design the experiments using Taguchi L25 table for four burnishing 

factors, and optimization the level of these factors analyze by Signal-to-noise ratio. 

However, Taguchi method cannot judge the contribution of individual factor, so 

ANOVA is used to determine the individual contribution of each factor. Apart from 

this, to test the optimum level of parameter that is achieved by Taguchi method RSM 

is applied. A second order mathematical model is used to analyze the RSM. The 

coefficient of this model is evaluated by regression analysis by MINITAB16 

software. For the purpose of verifying the optimum level of Taguchi method, two 

optimum factors have been remained constant and roughness is changed with another 

two parameters in the RSM model. Then analyze the graphical representation of this 

model. As per objectives of this research to establish the relationship among the 

factors an empirical data based model is formulated by dimensional analysis of the 

physical burnishing parameters.      

 

Table 5.1 Four independent Burnishing Parameters 

 

Factors Levels 

-2 -1 0 1 2 

Speed (n), rpm 70 155 240 325 410 

Force (PY), N 24 78 132 186 240 

Feed (f), mm/rev 0.1 0.18 0.26 0.34 0.42 

Ball diameter (d), mm 3 5 7 9 11 
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According to DOE, 4 (four) independent parameters, 25 experiments had been 

conducted with the workpiece, which had 2.85 µm initial roughness and following 

results were obtained. 

 

Table 5.2 Experimental design matrix and result of surface quality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Parameters optimization by Taguchi Method 

The Full Factorial Design requires a large number of experiments to be carried out. It 

becomes laborious and complex if the number of factors increases. To overcome this 

problem Taguchi suggested a specially designed method called the use of the 

orthogonal array to study the entire parameter space with a lesser number of 

experiments to be conducted. Taguchi thus, recommends the use of the loss function 

Exp 
No. 

Speed, rpm Force, N Feed, mm/rev Ball Diameter Responses 

Coded 
Value 

Actual 
Value 

Coded  
Value 

Actual 
Value 

Coded  
Value 

Actual 
Value 

Coded 
Value 

Actual 
Value 

Ra, 
µm 

1 -2 70 -2 24 -2 0.1 -2 3 1.60 

2 -2 70 -1 78 -1 0.18 -1 5 1.13 

3 -2 70 0 132 0 0.26 0 7 2.68 

4 -2 70 1 186 1 0.34 1 9 2.26 

5 -2 70 2 240 2 0.42 2 11 1.73 

6 -1 115 -2 24 -1 0.18 0 7 2.23 

7 -1 115 -1 78 0 0.26 1 9 1.14 

8 -1 115 0 132 1 0.34 2 11 1.22 

9 -1 115 1 186 2 0.42 -2 3 2.12 

10 -1 115 2 240 -2 0.1 -1 5 1.55 

11 0 240 -2 24 0 0.26 2 11 1.23 

12 0 240 -1 78 1 0.34 -2 3 1.47 

13 0 240 0 132 2 0.42 -1 5 2.95 

14 0 240 1 186 -2 0.1 0 7 1.20 

15 0 240 2 240 -1 0.18 1 9 1.72 

16 1 325 -2 24 1 0.34 -1 5 2.55 

17 1 325 -1 78 2 0.42 0 7 1.26 

18 1 325 0 132 -2 0.1 1 9 1.50 

19 1 325 1 186 -1 0.18 2 11 1.73 

20 1 325 2 240 0 0.26 -2 3 2.15 

21 2 410 -2 24 2 0.42 1 9 2.72 

22 2 410 -1 78 -2 0.1 2 11 1.16 

23 2 410 0 132 -1 0.18 -2 3 2.50 

24 2 410 1 186 0 0.26 -1 5 2.30 

25 2 410 2 240 1 0.34 0 7 2.20 
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to measure the performance characteristics that are deviating from the desired target 

value. The value of this loss function is further transformed into signal-to-noise 

(S/N) ratio. Usually, there are three categories of the performance characteristics to 

analyze the S/N ratio. They are nominal-the-best, larger-the-better, and smaller-the-

better. For the higher performance of product, a low surface roughness is always 

desired. Hence, the response parameter surface roughness (Ra) and less effect on 

specimen diameter (d) after burnishing means accuracy that has been categorized as 

„lower is better‟ type problem and the signal to noise ratio, in this case, has been 

calculated as equation (5). 

 

 

 

Also, for better performance a first-rate microhardness (HRB) are required. Hence, 

this response parameter has been categorized as „higher is better‟ and the signal to 

noise ratio, in this case, has been calculated as equation (7). 

 

 

 

 

Where, n= Sample Size, and Y= Responses in that run. 

 

The following table shows the S/N ratio using „lower is better‟ formula for resulted 

surface roughness of each experiment to determine the optimum level of burnishing 

parameters. 
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Table 5.3 S/N ratio table with respect to response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

By average the S/N ratio of each factor from the above table for every level (+2 to -

2) we get the following table  

 

 

 

Exp No. Responses 

Ra, 

µm 

S/N Ratio 

1 1.60 -4.08 

2 1.13 -1.06 

3 2.68 -8.56 

4 2.26 -7.08 

5 1.73 -4.76 

6 2.23 -6.97 

7 1.14 -1.14 

8 1.22 -1.73 

9 2.12 -6.53 

10 1.55 -3.80 

11 1.23 -1.80 

12 1.47 -3.34 

13 2.95 -9.40 

14 1.20 -1.58 

15 1.72 -4.71 

16 2.55 -8.13 

17 1.26 -2.00 

18 1.50 -3.52 

19 1.73 -4.76 

20 2.15 -6.65 

21 2.72 -8.69 

22 1.16 -1.29 

23 2.50 -7.96 

24 2.30 -7.23 

25 2.20 -6.85 
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Table 5.4 Average S/N Ratios for each factor 

 

Level Speed, rpm Force, N Feed, mm/rev Ball Diameter, mm 

-2 -5.11 -5.93 -2.85* -5.71 

-1 -4.03* -1.76* -5.09 -5.92 

0 -4.17 -6.23 -5.07 -5.19 

1 -5.01 -5.44 -5.43 -5.02 

2 -6.40 -5.35 -6.28 -2.87* 

Rank -1 -1 -2 2 

 

The factor levels corresponding to the highest S/N ratio were chosen to optimize the 

condition. 

Best set of variables: Speed (n) = 155 rpm, Force (PY) = 78 N, Feed (f) = 0.1, Ball 

Diameter (d) = 11 mm 

By using these parameters experiment had conducted and 0.8 µm roughness was 

achieved.   

5.3 Effect of burnishing parameters on roughness according to ANOVA 

Taguchi Method cannot judge and determine effect of individual parameters on 

entire process while percentage contribution of individual parameters can be well 

determined using ANOVA 

Table 5.5 Average Responses (Ra) for each factor 

Level Speed, rpm Force, N Feed, mm/rev Ball Diameter, mm 

-2 1.88 2.06 1.40 1.97 

-1 1.65 1.23 1.86 2.09 

0 1.71 2.17 1.90 1.91 

1 1.84 1.92 1.94 1.87 

2 2.18 1.87 2.16 1.41 

Over all 

Mean 

1.852 1.85 1.852 1.85 
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Sum of Square of Factors (Speed, Force, Feed, and Ball Diameter) will be evaluated 

by “Between group” and Sum of Square of Error will be evaluated by "Within 

group” 

 

 SS Total = ∑ [(Ra) – (Ra)]
 2
                      (15) 

= (1.6-1.852)
2
 + (1.13-1.852)

2
 + (2.68-1.852)

2
 + (2.26-1.852)

2
 + (1.73-1.852)

2
 + 

(2.23-1.852)
2
 + (1.14-1.852)

2
 + (1.22-1.852)

2
 + (2.12-1.852)

2
 + (1.55-1.852)

2
 

+(1.23-1.852)
2
 + (1.47-1.852)

2
 + (2.95-1.852)

2
 + (1.2-1.852)

2
 + (1.72-1.852)

2
 + 

(2.55-1.852)
2
 + (1.26-1.852)

2
 + (1.5-1.852)

2
 + (1.73-1.852)

2
 + (2.15-1.852)

2
 

+(2.72-1.852)
2
 + (1.16-1.852)

2
 + (2.5-1.852)

2
 + (2.3-1.852)

2
 + (2.2-1.852)

2
  

 SS Total = 7.884 

SS Factor = n ∑ [(Ra) (i) – (Ra) (i)]
 2
                     (16) 

 

Here, n= Level No. = 5, i = -2,-1, 0, 1, 2  
 

SS speed     = 5[(1.88-1.852)
2
 + (1.65-1.852)

2
 + (1.71-1.852)

2
 + (1.84-1.852)

2
 +     

(2.18 -1.852)
2
] 

                = 0.846  

 

SS Force     = 5[(2.06-1.85)
2
 + (1.23-1.85)

2
 + (2.17-1.85)

2
 + (1.92-1.85)

2
 + (1.87-

1.85)
2
] 

                     = 2.681 

 

SS Feed       = 5[(1.40-1.852)
2
 + (1.86-1.852)

2
 + (1.90-1.852)

2
 + (1.94-1.852)

2
 + 

(2.16 -1.852)
2
] 

                     = 1.546 

SS Ball Dia = 5[(1.97-1.85)
2
 + (2.09-1.85)

2
 + (1.91-1.85)

2
 + (1.87-1.85)

2
 + (1.41 -

1.85)
2
] 

                     = 1.348 
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SS Error = SS Total - SS speed - SS force - SS feed - SS ball dia                     (17) 

 = 7.884- (0.846+2.681+1.546+1.348)  

 = 1.463     

Table 5.6 ANOVA for Reponses (Ra) 

 

Source of Variance Sum 

of 

Square 

DF Variance 

(Mean 

Square) 

F ratio (Variance 

ratio) 

P (%) 

Speed, rpm 0.846 4 0.211 1.159 10.73% 

Force, N 2.681 4 0.670 3.681 34.00% 

Feed, mm/rev 1.546 4 0.386 2.120 19.61% 

Ball Diameter, mm 1.348 4 0.337 1.851 17.09% 

Error 1.463 8 0.182 1 18.55% 

Total 7.884 24   100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Percentage of contribution of individual parameter 

         



75 

 

5.4 Surface Response Method 

From the Table 4.1 X1, X2, X3and X4 denotes burnishing speed, force, feed rate and 

ball diameter, respectively. Table 5.2 shows the arrangements and the results of the 

25 experiments that were performed based on Taguchi design. Using these results in 

order to find the relationship between the surface roughness of Mild Steel and the 

four ball burnishing parameters X1, X2, X3and X4, a second-order mathematical 

model was used to the form as equation (9): 

 

Y = b0 + b1X1 + b2 X2 + b3 X3 + b4 X4 + b11 X1
2
 + b22X2

2
+ b33X3

2
 +b44X4

2
 

+ b12X1X2 + b13X1X3 + b23X2X3+ b34 X3X4 

 

Where the b terms are the regression coefficients and y is Ra . The estimated 

coefficients b by MINITAB Software as shown in Appendix-1 

 

Table 5.7 Analysis of Variance of RSM        

Source                 DF          SS               MS           F             P 

Regression            11        3.8447        0.3495     1.12      0.415 

Residual Error      13        4.0395        0.3107 

Total                     24        7.8842 
 

 

Source                    DF                  Seq SS 

X1           1      0.3026 

X2           1      0.0444 

X3           1      1.2577 

X4           1      0.8924 

X1xX1       1      0.5092 

X2xX2       1      0.0510 

X3xX3       1      0.0844 

X4xX4       1      0.3774 

X1xX2       1      0.2128 

X1xX3       1      0.1003 

X3xX4       1      0.0124 

Total    11    3.8447 
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The regression equation is 

 
Ra = 1.86 + 0.0695 X1 + 0.0273 X2 + 0.136 X3 - 0.179 X4 + 0.0936 X12+ 0.0567 X22 - 0.0573 X32 - 0.0992 

X42 - 0.0452 X1X2 - 0.045 X1X3 - 0.0166 X3X4                          (18) 

 

 

5.4.1 Validation of RSM Model 

The purpose of the validation is to evaluate the accuracy of the prediction model 

with the experimental data. In this work, the prediction errors are defined as follows 
 

 

 

 

 

 

 

           

                                                                                                                                          (19) 

 

Table 5.8 Ra (Experimented) and Ra (RSM model)  

Exp 
No. 

Speed, rpm Force, N Feed, mm/rev Ball Diameter Responses 

Coded 
Value 

Actual 
Value 

Coded  
Value 

Actual 
Value 

Coded  
Value 

Actual 
Value 

Coded 
Value 

Actual 
Value 

Ra, 
µm 

Ra 
(RSM 
Model) 

1 -2 70 -2 24 -2 0.1 -2 3 1.6 1.30 

2 -2 70 -1 78 -1 0.18 -1 5 1.13 1.81 

3 -2 70 0 132 0 0.26 0 7 2.68 2.10 

4 -2 70 1 186 1 0.34 1 9 2.26 2.14 

5 -2 70 2 240 2 0.42 2 11 1.73 1.96 

6 -1 115 -2 24 -1 0.18 0 7 2.23 1.73 

7 -1 115 -1 78 0 0.26 1 9 1.14 1.59 

8 -1 115 0 132 1 0.34 2 11 1.22 1.22 

9 -1 115 1 186 2 0.42 -2 3 2.12 2.17 

10 -1 115 2 240 -2 0.1 -1 5 1.55 1.71 

11 0 240 -2 24 0 0.26 2 11 1.23 1.28 

12 0 240 -1 78 1 0.34 -2 3 1.47 1.96 

13 0 240 0 132 2 0.42 -1 5 2.95 2.01 

14 0 240 1 186 -2 0.1 0 7 1.2 1.44 

15 0 240 2 240 -1 0.18 1 9 1.72 1.69 

16 1 325 -2 24 1 0.34 -1 5 2.55 2.41 

17 1 325 -1 78 2 0.42 0 7 1.26 2.05 

18 1 325 0 132 -2 0.1 1 9 1.5 1.37 

19 1 325 1 186 -1 0.18 2 11 1.73 1.19 

20 1 325 2 240 0 0.26 -2 3 2.15 2.18 

21 2 410 -2 24 2 0.42 1 9 2.72 2.28 

22 2 410 -1 78 -2 0.1 2 11 1.16 1.48 

23 2 410 0 132 -1 0.18 -2 3 2.5 2.20 

24 2 410 1 186 0 0.26 -1 5 2.3 2.45 

25 2 410 2 240 1 0.34 0 7 2.2 2.46 
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Table 5.9 Prediction error (%) of RSM 

Exp 

No. 

Speed, rpm Force, N Feed, mm/rev Ball Diameter Responses Prediction 

Error (%) 

Coded 
Value 

Actual 
Value 

Coded  
Value 

Actual 
Value 

Coded  
Value 

Actual 
Value 

Coded 
Value 

Actual 
Value 

Ra, 
µm 

Ra 
(RSM 
Model) 

4 -2 70 1 186 1 0.34 1 9 2.26 2.14 -5.30% 

8 -1 115 0 132 1 0.34 2 11 1.22 1.22 0% 

9 -1 115 1 186 2 0.42 -2 3 2.12 2.17 2.35% 

11 0 240 -2 24 0 0.26 2 11 1.23 1.28 4.06% 

15 0 240 2 240 -1 0.18 1 9 1.72 1.69 -1.74% 

16 1 325 -2 24 1 0.34 -1 5 2.55 2.41 -5.49% 

18 1 325 0 132 -2 0.1 1 9 1.5 1.37 8.67% 

20 1 325 2 240 0 0.26 -2 3 2.15 2.18 1.39% 

24 2 410 1 186 0 0.26 -1 5 2.3 2.45 6.52% 

 

The Prediction error of Experiment 4, 8, 9,11,15,16,18,20,24 is less than ±10% 

So we consider the model as a valid model [35, 36]. 

 

Fig 5.2 Experimental value Vs RSM model value 
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Graph in fig 5.2 compares the experimental response and RSM model response. It 

can be seen from the graph that the responses from the experiment and RSM model 

are almost same 4, 8,11,15,20 and 24 experiments. From the experiment 4 to 8 the 

roughness gradually decreases and remains steady from the experiment 8 to 11. 

Beyond this portion up to experiment 24 the roughness increases again. It can be 

concluded that the best set burnishing parameters would be exist in the experiments 8 

to 11.    

5.4.2 Effect of burnishing parameters on roughness according to RSM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5.3 Effect of ball diameter on roughness at different speed 

 

Ball diameter 

Figure 5.3 shows the effect of ball diameter on the roughness for a different speed. 

From 3mm to 5 mm, roughness increases with the increases of ball diameter. After 5 

mm, roughness decreases with the increases in ball diameter and it remains up to 
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11mm. The results indicate that the roughness is low at ball diameter 11mm at 155 

rpm.  

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Effect of speed on roughness at different ball diameter 

 

Burnishing Speed 

 

The effects of burnishing speed on the roughness for various ball diameters are 

shown in Fig. 5.4. It can be observed in Fig. 5.4 that the relationship between the 

roughness and the burnishing speed is parabolic. For each graph, the roughness goes 

though a minimum value at a given burnishing speed. Examining all ball diameters, 

the value of burnishing speed at which a minimum roughness is achieved ranges 

from 70 to 155 rpm. After 155 rpm, roughness increases with the increase of speed. 

It is also indicated that at speed 155 rpm and ball diameter 11 values of roughness is 

achieved at low.  
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Fig.  5.5 Effect of force on roughness at different feed 

 

Burnishing Force 

 

Figure 5.5 presents the variations of the roughness with burnishing force at the 

different feed, indicating that the roughness can be significantly altered by the 

burnishing force. According to Fig. 5.5, the minimum roughness is obtained with a 

burnishing feed of 0.1mm/rev. Therefore, a feed of 0.1 mm/rev is considered the 

optimum burnishing feed for MS shaft. It should be noted that at a feed of 0.1 

mm/rev, a combination of burnishing force 78 N is detrimental to the roughness. 

This is because high forces cause shear failure in the subsurface layers which in turn 

causes flaking.  
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Fig. 5.6 Effect of feed on roughness at different force 

 

Burnishing Feed 

Figure 5.6 shows the effect of feed rate on the roughness for different burnishing 

force and at a fixed speed (n = 155 rpm) and ball diameter (d = 11 mm). The results 

indicate that roughness is proportioned to feed rate and it increases with the feed. 

The force 78 N curve shows the lowest roughness at the different feed. The 

combination of 78 N force and 0.1 mm/rev is given the desired roughness.   

 

 

 

 

 

 



82 

 

5.5 Formulation of Generalized Experimental Data Base Model 

The relation for Ra may be expressed as 

Ra= f (n, PY, f, d, HB) 

Which is most general form may be written as  

f (Ra, n, PY, f, d, HB) = C 

Thus in present case, the number of variables n = 6 and these can be described by 

three fundamental dimensions. Hence m = 3 and (n- m) = 3. Thus there are 3 

dimensionless π- groups in terms of which the above functional relationship may be 

expressed. 

 

Choosing n, d, HB as repeating variables, we have 

 

π1 = na1
 HB

b1
 d

c1
 Ra 

π2 = na2
 HB

b2
 d

c2
 f 

π3 = na3
 HB

b3
 d

c3
 PY 

 

Now, 

π1 = na1
 HB

b1
 d

c1
 Ra 

 

[M
0
L

0
T

0
] = [M

0
L

0
T

-1
]

 a1
 [M

1
L

-1
T

-2
]

 b1 
[M

0
L

1
T

0
]

 c1
[M

0
L

1
T

0
]

 
 

 

Equating the exponents of M, L and T we get 

For           M:  b1 = 0 

For  L:  0 = - b1+ c1+1 

For  T:  0 = - a1- 2b1 

From which a1 = 0, b1 = 0, c1 = -1 

         

π1 = n0
 HB

0
 d

-1
 Ra 

π1 = (Ra/d) 
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Similarly, we have 

π2 = n-1
 HB

0
 d

-1
 f 

π2 = (f/nd) 

π3 = n0
 HB

-1
 d

-2
 PY 

π3 = (PY/HBd
2
) 

Thus it obtained 

(Ra/d) = f [(f/nd), (PY/HBd
2
)]  

Ra= K (d) x [(f/nd) x (PY/HBd
2
)] 

 

The value of π1, π2 and π3 is shown as Appendix-2 

 

Table 5.10 Logarithmic Value of π2, π3, πRa 

Exp No. Log(π2)  Log(π3) Log(π2
2
) Log(π3

2
) Log(π2xπ3) LogπRa 

1 -3.32239 -2.37675 -6.64479 -4.7535 -5.69914 -0.27572 

2 -3.28904 -2.3098 -6.57807 -4.61961 -5.59884 -0.63827 

3 -3.27572 -2.37675 -6.55145 -4.7535 -5.65247 -0.42022 

4 -3.26841 -2.4437 -6.53682 -4.88739 -5.71211 -0.60206 

5 -3.2636 -2.50864 -6.52721 -5.01728 -5.77224 -0.79588 

6 -3.78252 -3.11351 -7.56503 -6.22702 -6.89603 -0.49485 

7 -3.73049 -2.82391 -7.46097 -5.64782 -6.5544 -0.88606 

8 -3.70115 -2.76955 -7.40229 -5.5391 -6.4707 -0.95861 

9 -3.04431 -1.48812 -6.08862 -2.97623 -4.53243 -0.14874 

10 -3.88941 -1.82391 -7.77882 -3.64782 -5.71332 -0.50864 

11 -4.00877 -3.50864 -8.01755 -7.01728 -7.51741 -0.95861 

12 -3.32606 -1.86646 -6.65212 -3.73292 -5.19252 -0.3098 

13 -3.45593 -2.08092 -6.91186 -4.16184 -5.53685 -0.22915 

14 -4.22185 -2.22185 -8.4437 -4.4437 -6.4437 -0.76955 

15 -4.08092 -2.3279 -8.16184 -4.6558 -6.40882 -0.72125 

16 -3.67985 -2.82391 -7.35971 -5.64782 -6.50376 -0.29243 

17 -3.73283 -2.60206 -7.46566 -5.20412 -6.33489 -0.74473 

18 -4.46852 -2.58503 -8.93704 -5.17005 -7.05355 -0.76955 

19 -4.30103 -2.61979 -8.60206 -5.23958 -6.92082 -0.79588 

20 -3.57349 -1.37675 -7.14698 -2.7535 -4.95024 -0.14267 

21 -3.9431 -3.3279 -7.88619 -6.6558 -7.271 -0.52288 

22 -3.65561 -3 -7.31122 -6 -6.65561 -1 

23 -3.83565 -1.63827 -7.67129 -3.27654 -5.47392 -0.08092 

24 -3.8962 -1.95861 -7.79239 -3.91721 -5.8548 -0.33724 

25 -3.92812 -2.14874 -7.85624 -4.29748 -6.07686 -0.50864 
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The relationship between various parameters was unknown. The dependent 

parameter πRa bear an intricate relationship with π2, π3 evaluated on the basis of 

experimentation. The true relationship is difficult to obtain. The possible relation 

may be linear, log-linear, polynomial with n degrees, linear with products of 

independent πi terms. In this manner, any complicated relationship can be evaluated 

and further investigated for error. Hence the relationship for Ra has formulated as: 

πRa = k1 x (π2)
a1

 x (π3)
b1 

 

Equation is modified as:  

Obtaining Log on both sides we get, 

Log (πRa) = Log (k1) + a1 Log (π2) + b1 Log (π3) 

 

This linear relationship now can be viewed as the hyperplane in seven-dimensional 

spaces. To simplify further let us replace log terms by capital alphabet terms implies, 

 

Let, 

Z1 = Log (πRa), K1 = Log (k1), A= Log (π2), B = Log (π3) 

Putting the values in equations, the same can be written as 

  Z1 = K1 + a1A + b1B 

 

Applying the theories of regression analysis on Table 5.11, the aim is to minimize 

the error (E) = Ye – Yc. Yc is the computed value of πRa using regression equation 

and Ye are the value of the same term obtained from experimental data with exactly 

the same values of π2 to π3. Correlation and reliability were computed for model 

accuracy. 

Minitab16 Software Regression analysis: 
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Regression Analysis: LogπRa versus Log(π2xπ3)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Regression Analysis of LogπRa versus Log(π2xπ3) 

 

The regression equation is 

Log (πRa) = 1.042 + 0.2616 Log(π2xπ3) 

Log (πRa) = Log (11.015) + 0.2616 Log(π2xπ3) 

πRa =  11.015 x (π2xπ3) 0.2616 
  
 

 

It is necessary to correlate quantitatively various independent and dependent terms 

involved in this very complex phenomenon. This correlation is nothing but a 

statistically significant (p < 0.05).

The relationship between LogpRa and Log(p2xp3) is

> 0.50.10.050

NoYes

P = 0.000

by the regression model.

45.77% of the variation in LogpRa can be accounted for

100%0%

 R-sq (adj) = 45.77%

Log(p2xp3) increases, LogpRa also tends to increase.

The positive correlation (r = 0.69) indicates that when

10-1

0.69

-5-6-7

0.0

-0.5

-1.0

Log(p2xp3)
L
o

g
p

R
a

causes Y.

A statistically significant relationship does not imply that X

 

or range of values for LogpRa.

settings for Log(p2xp3) that correspond to a desired value

to predict LogpRa for a value of Log(p2xp3), or find the

If the model fits the data well, this equation can be used

   Y =  1.042 + 0.2616 X

relationship between Y and X is:

The fitted equation for the linear model that describes the

Y: LogpRa

X: Log(p2xp3)

Is there a relationship between Y and X?

Fitted Line Plot for Linear Model

Y =  1.042 + 0.2616 X

Comments

Regression for LogpRa vs Log(p2xp3)

Summary Report

% of variation accounted for by model

Correlation between Y and X

Negative                      No correlation                      Positive
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mathematical model as a design tool for such situation. The mathematical model for 

internal knot removal operation is shown below: 

 

         

(Ra/d) = 11.015 x [(f PY/nHBd
3
) 

0.2616
] 

 Ra = 11.015 x (f PY /n HB ) 
0.2616

 x d 
0.215

 

 

 

5.5.1 Validation of Mathematical Model 

The purpose of the validation is to evaluate the accuracy of the prediction model 

with the experimental data. In this work, the prediction errors are defined as equation 

19. 

 

   

Table 5.11 Prediction error (%) of Mathematical model 

 

Exp No. π2  π3  

 

π2x π3 πRa= Ra/d 

(Model) 

Ra 

(Model) 

Ra 

(Exp) 

Prediction 

Error (%) 

3 0.00053 0.0042 2.226E-06 0.37 2.59 2.68 -3.35% 

9 0.000903 0.0325 2.9348E-05 0.72 2.16 2.12 1.88% 

10 0.000129 0.015 1.935E-06 0.35 1.70 1.55 9.67% 

11 0.000098 0.00031 3.038E-08 0.12 1.32 1.23 7.31% 

12 0.000472 0.0136 6.4192E-06 0.48 1.44 1.47 -2.04% 

18 0.000034 0.0026 8.84E-08 0.16 1.44 1.5 -4% 

19 0.00005 0.0024 0.00000012 0.17 1.87 1.73 8.09% 

25 0.000118 0.0071 8.378E-07 0.28 1.98 2.2 -10% 
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The Prediction error of Experiment 3, 9,10,11,12,18,19,25 is less than ±10% 

So the model is valid [35,36].  

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5.8 Experimental Value (Ra) Vs Mathematical Value (Ra) 

 

Graph in fig 5.8 compares the experimental response to data base mathematical 

model response. It can be seen from the graph that the responses characteristic from 

the experiment and mathematical model are almost same at 9, 10,11,18 and 25 no. 

experiments. From the experiment 9 to 11 the roughness gradually decreases and it is 

clear that at experiment 11exist lowest roughness. Beyond this portion, from 

experiment 11 to 25 the roughness increases again. It can be concluded that the 

nature of surface rough curve with respect to burnishing parameters is parabolic.    
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5.6 Comparison of Experimental Value, RSM and Mathematical Model Value 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.  5.9 Comparison of Experimental Value, RSM and Mathematical Model Value  

 

Graph in fig 5.9 compares the experimental, RSM and mathematical model 

responses. It can be seen from the graphs that the responses characteristic from the 

experiment, RSM and mathematical model are almost same at 9, 10, 11, 18 and 25 

no. experiments. From the experiment 9 to 11 the roughness gradually decreases and 

it is clear that at experiment 11exist lowest roughness. Beyond this portion, from 

experiment 11 to 25 the roughness increases again. It can be concluded that the 

nature of surface rough curve with respect to burnishing parameters is parabolic.    
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5.7 Discussions on result 

 

The following points can be drawn based on the above experimental results of this 

study                            

 From Taguchi method, we get the optimum surface roughness at ball 

diameter 11mm.To prove this result Response Surface methodology 

(RSM) has been applied and it shows the same ball diameter for optimum 

surface roughness. Initially, roughness increases with the increases of ball 

diameter. After ball diameter 5 mm, roughness decreases with the 

increases in ball diameter and it remains up to 11mm. The roughness is 

low at ball diameter 11mm.   

 

 The relationship between the roughness and the burnishing speed is 

parabolic. The roughness goes though a minimum value at a given 

burnishing speed. The minimum roughness is achieved ranges from 70 to 

155 rpm. After 155 rpm, roughness increases with the increase of speed. 

From RSM and Taguchi method at speed 155 rpm the low roughness is 

achieved.  

 

 The roughness can be significantly altered by the burnishing force. At 

lower and higher force roughness is high. From RSM the lower surface 

roughness is achieved at 78 N. After 78 N force, the roughness is directly 

proportional to roughness. The high forces cause shear failure in the 

subsurface layers which in turn causes flaking.  

 

 It is clear from RSM that the roughness is proportioned to feed rate and it 

increases with the feed. At higher feed rate gives higher surface 

roughness. The feed rate 0.1 mm/rev is given the desired roughness in 

this study. By applying Taguchi Method the same result is achieved. 
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 Formulation of generalized experimental database model by dimensional 

analysis. The mathematical model for roughness  

Ra = 11.015 x (f PY /n HB ) 
0.2616

 x d 
0.215

 

 

 By ANOVA, the percentage of contribution of the individual parameter is 

evaluated. The contributions of speed, force, feed and ball diameter are 

10.73%,  34.00%, 19.61% and 17.00% respectively.
 
 It is clear that force 

has a great impact on surface roughness.                        
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CHAPTER-6 

 

CONCLUSIONS AND RECOMMENDATION 

 

The effect of ball burnishing speed, feed, force and ball diameter on the surface 

roughness of Mild Steels were studied for a special designed burnishing tool. The 

main results obtained are as follows: 

 

 In this research a flexible ball burnishing tool is designed with possibility 

use of different ball diameter fast replacing it. 

 

 In this study the relationship among the surface roughness and the 

burnishing parameter speed, feed, force and ball diameter are established. 

 

 Optimum burnishing parameters for the given materials (Mild Steel) 

using the designed tool is established by Taguchi L25 matrix and these 

can be used for the selection of the parameter for given surface 

roughness.  

 Experimental results show that the highest surface finish effect can be 

achieved at feed of 0.1 mm/rev, speed of 155 rpm, burnishing force of 

78N and ball diameter of 11 mm.  

 

 Experimental work shows that an improvement of about 60% in the 

surface roughness of Mild Steel can be obtained by using the designed 

tool.  
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Appendix-1 
 
 
Regression Analysis: Ra versus X1, X2, X3, X4   
 
* X2xX3 is highly correlated with other X variables 

* X2xX3 has been removed from the equation. 

 
 

The regression equation is 

Ra = 1.86 + 0.0695 X1 + 0.0273 X2 + 0.136 X3 - 0.179 X4 + 0.0936 X1xX1 

     + 0.0567 X2xX2 - 0.0573 X3xX3 - 0.0992 X4xX4 - 0.0452 X1xX2 - 0.045 X1xX3 

     - 0.0166 X3xX4 

 
 

Predictor      Coef  SE Coef      T      P 

Constant     1.8646   0.3318   5.62  0.000 

X1          0.06950  0.08911   0.78  0.449 

X2          0.02726  0.09593   0.08  0.941 

X3          0.13598  0.08911   1.53  0.151 

X4         -0.17876  0.09400  -1.90  0.080 

X1xX1       0.09358  0.07851   1.19  0.255 

X2xX2       0.05665  0.08308   0.68  0.507 

X3xX3      -0.05734  0.07851  -0.73  0.478 

X4xX4      -0.09920  0.08464  -1.17  0.262 

X1xX2      -0.04525  0.08308  -0.54  0.595 

X1xX3       -0.0451   0.1093  -0.41  0.687 

X3xX4      -0.01660  0.08308  -0.20  0.845 

 

 

S = 0.557434   R-Sq = 48.8%   R-Sq(adj) = 5.4% 

 

 

Analysis of Variance 
 

         

Source          DF      SS      MS     F      P 

Regression      11  3.8447  0.3495  1.12  0.415 

Residual Error  13  4.0395  0.3107 

Total           24  7.8842 

 
 

Source  DF  Seq SS 

X1       1  0.3026 

X2       1  0.0444 

X3       1  1.2577 

X4       1  0.8924 

X1xX1    1  0.5092 

X2xX2    1  0.0510 

X3xX3    1  0.0844 

X4xX4    1  0.3774 

X1xX2    1  0.2128 

X1xX3    1  0.1003 

X3xX4    1  0.0124 

 

 

Unusual Observations 

 

Obs    X1     Ra    Fit  SE Fit  Residual  St Resid 

 13  0.00  2.950  2.020   0.339     0.930      2.10R 

 

R denotes an observation with a large standardized residual. 



Appendix-2 
 

The Value of  π1, π2 and π3 

 

Exp No. π2  π3  

 

π2
2
  π3

2
  

 

 

π2x π3 π1=πRa= Ra/d 

1 0.000476 0.0042 2.26576E-07 0.00001764 1.9992E-06 0.53 

2 0.000514 0.0049 2.64196E-07 0.00002401 2.5186E-06 0.23 

3 0.00053 0.0042 2.809E-07 0.00001764 2.226E-06 0.38 

4 0.000539 0.0036 2.90521E-07 0.00001296 1.9404E-06 0.25 

5 0.000545 0.0031 2.97025E-07 0.00000961 1.6895E-06 0.16 

6 0.000165 0.00077 2.7225E-08 5.929E-07 1.2705E-07 0.32 

7 0.000186 0.0015 3.4596E-08 0.00000225 2.79E-07 0.13 

8 0.000199 0.0017 3.9601E-08 0.00000289 3.383E-07 0.11 

9 0.000903 0.0325 8.15409E-07 0.00105625 2.9348E-05 0.71 

10 0.000129 0.015 1.6641E-08 0.000225 1.935E-06 0.31 

11 0.000098 0.00031 9.604E-09 9.61E-08 3.038E-08 0.11 

12 0.000472 0.0136 2.22784E-07 0.00018496 6.4192E-06 0.49 

13 0.00035 0.0083 1.225E-07 0.00006889 2.905E-06 0.59 

14 0.00006 0.006 3.6E-09 0.000036 0.00000036 0.17 

15 0.000083 0.0047 6.889E-09 0.00002209 3.901E-07 0.19 

16 0.000209 0.0015 4.3681E-08 0.00000225 3.135E-07 0.51 

17 0.000185 0.0025 3.4225E-08 0.00000625 4.625E-07 0.18 

18 0.000034 0.0026 1.156E-09 0.00000676 8.84E-08 0.17 

19 0.00005 0.0024 2.5E-09 0.00000576 0.00000012 0.16 

20 0.000267 0.042 7.1289E-08 0.001764 1.1214E-05 0.72 

21 0.000114 0.00047 1.2996E-08 2.209E-07 5.358E-08 0.30 

22 0.000221 0.001 4.8841E-08 0.000001 2.21E-07 0.1 

23 0.000146 0.023 2.1316E-08 0.000529 3.358E-06 0.83 

24 0.000127 0.011 1.6129E-08 0.000121 1.397E-06 0.46 

25 0.000118 0.0071 1.3924E-08 0.00005041 8.378E-07 0.31 

 

 


