
Masters of Science in Computer Science and Engineering

Enhancing Software Development Process (ESDP) using Data Mining

Integrated Environment

by
Ziaur Rahman

Systems and Software Lab (SSL)

Supervisor
Md. Kamrul Hasan, PhD

Associate Professor, Department of CSE, IUT

Department of Computer Science and Engineering (CSE)
Islamic University of Technology (IUT)

October, 2015

Form-A

The thesis titled “Enhancing Software Development Process (ESDP) using Data
Mining Integrated Environment” Submitted by Ziaur Rahman, Student No. 124606
of Academic Year 2014-2015, has been found satisfactory and is accepted as partial
fulfillment of the requirement for the Degree of Masters of Science in Computer
Science and Engineering on October 23, 2015.

Board of Examiners:

1. .
Dr. Md. Kamrul Hasan, Supervisor Chairman

Associate Professor,

Dept. of Computer Science and Engineering, IUT

2. .
Prof. Dr. M. A. Mottalib Member

Head, (Ex-Officio)

Dept. of Computer Science and Engineering, IUT

3. .
Dr. Abu Raihan Mostofa Kamal Member

Associate Professor,

Dept. of Computer Science and Engineering, IUT

4. .
Dr. Md. Hasanul Kabir Member

Associate Professor,

Dept. of Computer Science and Engineering, IUT

5. .
Prof. Dr. M. Kaykobad External Member

Dean, Faculty of Electrical & Electronic Engineering,

Bangladesh University of Engineering and Technology

ii

Form-B

Declaration of the Candidate:

It is hereby declared that this thesis report or any part of it has not been submitted
elsewhere for the award of any Degree or Diploma.

Signature of the Supervisor Signature of the Candidate

.
(Md. Kamrul Hasan, PhD) (Ziaur Rahman)
Associate Professor Systems and Software Lab
Department of Computer Science and Engineering Student No : 124606
Islamic University of Technology (IUT), Session : 2011-2012
Gazipur - 1704 Date: October 23, 2015

iii

Dedication

“This dissertation is dedicated to my parents and teachers for all their continuous

support, love and inspiration”

iv

Abstract

Nowadays, it has become a basic need to reuse existing Application Pro-
gramming Interface (API), Class Libraries and frameworks for the rapid software
development. Software developers often reuse this by calling the respective APIs
or libraries. But in doing so, developers usually encounter different problems in
searching for appropriate code snippets. In most cases API and Libraries are com-
plex and not well structured. Online search engine consumes time in searching,
yet match is not that relevant and representation is not good. To get a suggestion
according to the query we can find that snippet using code search engines. In some
cases database dependent searching and remote web server based mined repository
searching bring problem to the developers. Finding an API recommendation in
code search engine often deal with extra-large files that eventually slows down soft-
ware development process. We have searched for a solution throughout our work
and tried to bring a better outcome. As an alternative action we have implemented
a system what we call “Enhancing Software Development Process (ESDP)” tool
that is able to provide an efficient and working integrated environment to the
developers with a better abstraction and representation of the search results and
programmer’s need to be derived from the source codes. We also have built and
applied an XML based enriched repository to get recommendation from the mined
repository in the client side without interacting with the Internet dependent server
to save complications and times. ESDP provides the most relevant code skeletons
or mapping to developers using graph based representation. We have evaluated
that ESDP boosts up the software development process enough particularly by
reducing the response time in the coding phase. By giving a number of queries for
an API, ESDP gathers more relevant source snippets through data mining. We
have evaluated the efficiency of ESDP tool using a set of various queries and com-
pared with the other existing tools. The results show that in different experiments
ESDP consumes quite less time than some of the updated approaches to find the
code snippet solution.

Keyword: ESDP, DMIE, Directed Acyclic Graph (DAG), PattExplorer, Graph
Isomorphism, Receiving Operating Characteristics (ROC).

v

Acknowledgments

I would like to thank and express my deepest appreciation and sincere grat-
itude to my supervisor Md. Kamrul Hasan, PhD, who inspired me to take pride
in my research; his enthusiasm for research efforts surely will have a significant
effect on my future research. His advice throughout this process kept me focused
on the right direction. It is a great experience of my life time research. I am
really thankful to him for sharing his ideas and necessary insights. I am highly
grateful to Prof. Dr. M.A Mottalib, Head, Department of Computer Science and
Engineering (CSE), IUT, for his encouragements and unique cooperation. I would
like to especially thank to Dr. Hasanul Kabir and Hasan Mahmud for their kind
appreciation. Lastly but not least, I would acknowledge and recall all of the teach-
ers of IUT and my dear colleagues. They all supported me really a lot with their
reviews, comments and suggestions during the research work.

Ziaur Rahman
October 2015

vi

Preface

This master’s thesis is outlined based on Enhancing Software Development
Process (ESDP) using data mining integrated environment. The research was car-
ried out in the Systems and Software Lab (SSL) under the Department of Com-
puter Science and Engineering (CSE) of Islamic University of Technology (IUT),
OIC, Dhaka. It includes five chapters which are briefed as follows:

Chapter-1

Chapter 1 provides a detailed discussion on the importance of the work
that has been done and why the current topic is selected for the Master’s Thesis
along with an informative introduction.

Chapter-2

Chapter 2 discusses the background and related works to understand the
ESDP concepts. This also discusses the flaws of the existing approaches.

Chapter-3

Chapter 3 discusses the proposed idea and the ESDP framework in details.
It describes the Idea with the respective of four heuristics.

Chapter-4

Chapter 4 describes about the experimental evaluations. It shows the pre-
cision recall, Quantitative and Empirical evaluation.

Chapter-5

Chapter 5 provides conclusions to the discussions based on the ESDP con-
cept and gives ideas for the future scope.

And a consequent Appendix covers information about some of the relevant tech-
nical experiments that has been done during research work.

vii

Contents

List of Figures . x

List of Figures x
List of Tables . xi

List of Tables xi

1 13
1.1 PROBLEM STATEMENT . 18
1.2 AIMS AND OBJECTIVES . 19
1.3 COMPARATIVE CONTRIBUTION 20

2 23
2.1 MINING TO CODE REUSE . 23

2.1.1 MINING TO ANALYZE THE SYSTEM 25
2.1.2 MINING TO GUIDE SYSTEM CHANGES 27
2.1.3 MINING TO PREDICT AND DETECT BUGS 27
2.1.4 IMPROVING USER EXPERIENCE 27
2.1.5 PROBLEMS IN THE EXISTING APPROACHES 28

3 30
3.1 REPOSITORY HEURISTICS . 31

3.1.1 ENTERPRISE REPOSITORY 32
3.1.2 STANDARD LIBRARY . 34
3.1.3 REGULAR SEARCH . 34
3.1.4 REGULAR UPDATE . 35
3.1.5 EXTERNAL APIS . 35

3.2 DATA MINING HEURISTICS . 36
3.2.1 DATA PREPROCESSING 36
3.2.2 SOURCE CODE TO XML TRANSLATION 38
3.2.3 APPLYING DATA MINING ALGORITHM 39
3.2.4 SEQUENTIAL PATTERN MINING 39

viii

CONTENTS CONTENTS

3.2.5 BUILDING MINED API XML REPOSITORY 41
3.3 SEARCHING HEURISTICS . 41

3.3.1 RECOMMENDING SEQUENCES 42
3.3.2 RECOMMENDATION HEURISTICS 45

4 51
4.1 ENVIRONMENTAL SET UP . 51
4.2 RESPONSE TIME EVALUATION 52
4.3 PRECISION-RECALL EVALUATION 53

4.3.1 RESULT DISCUSSION OF PERFORMANCE EVALUA-
TION . 56

4.3.2 RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE
ANALYSIS . 58

4.4 QUANTITATIVE COMPARISON 59
4.5 EMPIRICAL STUDY . 60

5 62
5.1 FUTURE WORK . 63

Bibliography 66

ix

List of Figures

1.1 Software source code to source repository Transformation 15
1.2 Developer needs Recommendations while he is coding 16
1.3 A sample Search in Google Code Search 17
1.4 Search Example given by Koders.com using Open Hub Black Dock 18
1.5 Example of the Recommendations from the MAC 18

2.1 MAC Framework . 24
2.2 Mining API Usages from Open Source Repositories Approach . . . 25
2.3 Hipikat Tool . 26

3.1 Proposed ESDP Framework . 33
3.2 Repository Heuristics of ESDP System 34
3.3 Data Mining Heuristics of ESDP Framework 36
3.4 Source Abstraction from Raw Source to XML 40
3.5 Mined XML Repository . 42
3.6 Searching Heuristics of ESDP . 43
3.7 A user query is marked when the developer is writing codes 43
3.8 Match is stored in Mined API XML Repository 44
3.9 Suggestion after Sequential Pattern Mining to a query 45
3.10 Refactoring and Updating Window of ESDP Searching Heuristics . 46
3.11 Code Skeleton . 47
3.12 Recommendation Heuristics of ESDP 47
3.13 Code Skeleton . 48
3.14 Graph based object usage model . 49
3.15 Directed Acyclic Graph of Object Usage Model 50
3.16 Pattern Explorer Algorithm (PattExplorer) 50

4.1 Response Time Comparison of ESDP, MAC and MAPO 53
4.2 Average Precision and Recall Plotting for ESDP 57
4.3 ROC Comparison between ESDP and KODERS 60

x

List of Tables

3.1 Source Abstraction . 37
3.2 Details of Source Abstraction . 37
3.3 Considered 17 types of items purposing our ESDP research 38

4.1 Open Source Projects found from different Enterprise Repository
online . 52

4.2 Response TimeComparison among different Systems 52
4.3 Precision Recall for ESDP . 55
4.4 The average precision and recall for the of different user queries. . . 56
4.5 Precision Recall for KODERS . 56
4.6 Comparative results of the three tools to locate the 1st and 2nd

matches . 60
4.7 Three tasks given to two teams to find out the error vulnerability . 61
4.8 Result of the Empirical Experiment I 61
4.9 Result of the Empirical Experiment II 61

xi

List of Abbreviation

ESDP Enhancing Software Development Process
MSR Mining Software Repository
SR Software Repository
DMIE Data Mining Integrated Environment
MAPO Mining API Usages from Open Source Repositories
MAC Mining API Code for Code Reuse
API Application Programming Interface
XML Extensible Markup Language
CVS Version Control System
BTS Bug Tracking System
PD Pattern Database
TD Transaction Database
GUI Graphical User Interface
USG Usage Pattern
RAM Random Access Memory
MGEF My Eclipse Graphical Editing Framework
FP Frequent Pattern
PD Package Declaration
ID Import Declaration
TD Type Declaration
FD Field Declaration
CI Class Instance Creation
MD Method Declaration
MI Method Invocation
VD Variable Declaration
ACD Anonymous Class Declaration
AA Array Access
AC Array Creation
CTI Constructor Invocation
FA Field Access
SCI Super Constructor Invocation
RT Return Statement
SC Super Class Inheritance
PrefixSpan Prefix-Projected Sequential Pattern Mining
UQ User Queries

xii

Chapter 1:

Introduction

In software development, it is a common practice for software developers to
use the existing Application Programming Interface (API) libraries and frame-
works. While coding for an API library, developers often get stuck which object
needs to be instantiated and which sequence of methods need to be called for a
particular task? To get the solution, developers frequently look for the examples
and documentation provided by the vendor of API libraries, Language Forums,
textbooks and unofficial websites like blogs. However, a vast number of example
API usage scenarios, that are embedded in the billions of lines of already developed
code are largely unexploited. That could be a very good source of repository.

Software Development has been getting challenging day by day due to
rapid changeability of the type and pattern of Application Programming Inter-
faces (APIs). To accelerate the development process and ensure rapid produc-
tivity, software developers often reuse the code libraries and frameworks through
the particular programming interfaces. All we see that, the usage information
and documentation about the APIs are often incomplete and out of date. As a
result, both the novice and expert developers have to face several challenges to
learn new APIs. Recently, a field study of API learning obstacles was done over
440 professional developers of Microsoft Incorporation. According to the opinions
and experiences of those developers, five important factors are to be considered.
These are respectively designing API documentation: documentation of intent;
code examples; matching of APIs with scenarios; penetrability of API; and format
and presentation. Among those factors matching APIs with scenarios is the most
desired one to developer’s community [1].

The application of data mining technique has great advantages and po-
tentials in developing software. Software developers often need searching existing

CHAPTER 1.

project repositories. Code searching tool is one of the existing approaches that can
guide developers by providing related code snippets and patterns. A number of
efforts were found that influences the software development. There are some exist-
ing effort like PR Miner [2], Mining Repositories[3], Perracotta [4], MAPO [5],[6],
XSnippet [7], Mining API Patterns [8], PARSEWeb [9], MAC[10], Scenario Based
API Recommendation System[1] and etc to accelerate software development pro-
cess. As we have known that Mining API usages from Open Source Repositories
(MAPO) [5],[6] was one of the first and MAC[10] is one of the updated triumph
to mine API usage patterns.

SpotWeb was one of the earlier attempts to help developer. It is a code
search based tool. It is able to mine code examples. Basically, SpotWeb proposes
a method called ColdSpots that detects the rarely used API from a given project.

XSnippet is an approach based on context-sensitive code assistant tool. It
finds the relevant code fragments according to the given query. It has graph-based
code mining algorithm to support the range of queries.

MAPO which stands for Mining API Usages from Open Source Reposito-
ries is one of the popular approaches in this field. It is able to identify call pat-
terns from API usages of an existing project. It works on a query that describes
a method, class, package for a particular application programming interface.

MACs mines API code snippets for code reuse. It forms a transaction
database. Then a pattern database is formed from the transaction database. Af-
ter an initial program statement is given, MAC is able to predict related useful
API code snippets according to the initial statements. Thus it guides developers
through related API usage patterns.

The existing attempts in this area like MAPO and MAC can help de-
velopers by providing call patterns and related code snippets. But to ease the
development we have developed another tool which we call ESDP tool. It is able
to guide the frequent API that is used in the project. We will suggest a list of APIs
according to the query that is similar to the relevant API list in the databases.
For example if a developer types com.java.connection, then ESDP tool will sug-
gest frequents API sequences starting with com.java.connection. So, according
to the search the result of the suggestions can be like com.java.connection.mysql,
com.java.connection.session,

14

CHAPTER 1.

com.java.connection.httpRequest, com.java.connection.httpResponse. And the given
API suggestion will maintain the sequence. If API item I3 is used after I1 more
frequently then the suggestion will be (I1, I3) instead of (I1, i2)

When MAC predicts related API code snippets and MAPO identifies call
patterns then ESDP suggests relevant and frequent API sequences. So the basic
differences that we have found between existing approaches and ESDP are ana-
lyzing API similarity. MAPO and MAC compare call pattern and related code
snippets according to the similarity inside the APIs but ESDP guides the develop-
ers where we match the API’s similarity before entering into the APIs. In case of
previous approach there is a probability that the developers are guided by showing
call patterns and code snippets that is not needed to the developers.

So far, first of all we should know about software repository. Anything that
leaves a trial about software development, maintenance activities, software artifact,
version control system (CVS) and Bug Tracking System (BTS) or public commu-
nication tools is called Software Repository (SR). Then we also should know about
Mining Software Repository (MSR). There are a number of definitions available
to define MSR. But one of the common definitions is mining software repository
analyzes the rich data available in the software repositories to uncover interesting
actionable information about software systems and projects. Figure 1.1 shows a
sample transformation from software source code to software repository file.

Figure 1.1: Software source code to source repository Transformation

In our thesis we have proposed a way of providing the developers’ need
while they develop software. The idea we call Enhancing Software Development
Process (ESDP). In general a system that speed up the development process by
recommending relevant thing like API item or sequence, usage pattern, object

15

CHAPTER 1.

usage pattern etc is called ESDP as per our consideration. That means we want
to guide the developers to accelerate the development process.

As we see that Developers often face difficulties while using conventional
code search engines and existing tools like Google Code Search[11], Koders.com
[12] etc. There are a number of difficulties we have pointed out that the developers
face. Some of them are

i. Request and Response Latency Problems

ii. Search result is often large and it has to deal with extra-large files

iii. Mining strategy is not that good

iv. Finding the exact match is difficult from the recommendations.

For example let us consider a scenario where a developer is writing some codes.
He is writing a class called SearchTest as shown in the following Figure 1.2.

Figure 1.2: Developer needs Recommendations while he is coding

Now if the developers search on Google Code Search or Koders.com then
he will be given a chunk of recommendations as shown in the Figure 1.3 and 1.4
that makes him confused which one he might be choosing. Another thing he must
be online to do so. In that case he has to face request and response latency that
might consume some times.

Instead of searching on code search engines if he is more likely to search
using existing code assistance tools like MAC then the line he has typed will be

16

CHAPTER 1.

taken as an user query. The queries will be sent to Koders.com as the authors
of the MAC [9] have proposed. In accordance with the relevance of the user’s
search query association or sequential mining will be happened. In mining two
things must be held. Firstly, forming Transaction Database (TD) from the search
results and according to the transaction database a Pattern Database (PD) will
be formed by using data mining algorithm either association rule or sequential
mining as MAC [10] says.

Figure 1.3: A sample Search in Google Code Search

Then the developer will be given the recommendations as per that user
query from the instantly mined repository. Here, the sample MAC Recommenda-
tion is shown in the following Figure 1.5.

But instantly mining takes times. Developer should not be waiting for
that. And the searching on the Koders.com has to resolve request and response
latency. The most important thing is that they are extracting source code to an
abstract form before mining. If each of the source abstraction depends on class
base mining then the abstracted source item will be unique. And the uniqueness
of the item will keep us away from getting the relevant recommendations. Beside
these there are some other issues like server dependency that really can create
problem while the developer has been working on.

So from the investigation as we have ever made that comes to a decision is
that an easy way of code abstraction through XML based repository in the client
side can ease the development process. Advancement of a system that is able to

17

1.1. PROBLEM STATEMENT CHAPTER 1.

Figure 1.4: Search Example given by Koders.com using Open Hub Black Dock

Figure 1.5: Example of the Recommendations from the MAC

provide a Data Mining Integrated Environment (DMIE) can fulfill that developer’s
demand.

1.1 PROBLEM STATEMENT

So we can say, we have worked through our research “to design and develop a
system with better mining strategy following special representation of the enriched
repository in the client side”.

We have applied four different approaches each of which is called heuris-

18

1.2. AIMS AND OBJECTIVES CHAPTER 1.

tics for developing new project through ESDP framework. We have mined several
open source projects to evaluate the efficiency of three different tools. In the result
section we have observed that ESDP provides comparatively good performances.

ESDP has its own framework that will work as a data mining integrated
environment. Using framework like that will form reference snippets for the ex-
pected class, method and their pattern. Our ESDP system can be seen as an
approach for the flawless, light weight and rapid software development. As per
our motivation the proposed concept is different from most other existing concept
as it is able to process more statement types, only allows for the searching but
also generate relevant code skeleton or sample snippets and it has an ability to
provide useful API-sequences through sequence mining and graph mining for the
rapid software development.

1.2 AIMS AND OBJECTIVES

Enhancing Software Development Process (ESDP) is precisely a goal oriented
research. It has multiple purposes to be fulfilled. Objectives with specific aims are
prescribed as in the following-

• Developing an easy and less complicated way of code abstraction through
XML file based repository system without using conventional database server.

• To speed up software development process by reducing amount of time in
the coding stage with the help of set of mined existing projects.

• Advancing a system able to provide data mining integrated environment to
the programmers.

• Analyzing the comparison of efficiency of the existing concept with the pro-
posed concepts.

• Drawing conclusion showing future the prospects of the idea of “Enhanc-
ing Software Development Process (ESDP) using Data Mining Integrated
Environment”.

From the real world observation we have come to see that Dot Net Frame-
work is documented very well unlike others. It provides typical snippets along
with other documentations. But in case of many API, the provided snippets show
only single use instead of multiple applications. As we know a method or class in
the API might have multiple uses so the usage of these may not be exhibit rele-
vantly to the task we need to do. That is why the programmers often see that the

19

1.3. COMPARATIVE CONTRIBUTION CHAPTER 1.

associated documentations provided by an API builder company are merely useful.

Code search engine like Google Code Search [13] or code snippet recom-
menders like Strathcona [14] can be a helping hand for the novice programmers
towards finding a solution of the problem they face. As we know open source
projects have different usage patterns, so applying search engine or snippet rec-
ommenders can give useful results after searching through the files. If the open
source API libraries are huge then the search results found are also huge. Ranking
or indexing the search result is another challenging task for the programmers. Ex-
isting tools like Google Code Search, Strathcona, MAPO [5],[6],[15] have already
proved their weakness in the code searching and browsing issues.

So from the finding we have ever investigated to find the answer of differ-
ent unanswered questions.

Firstly, what are the issues should be considered before mining the repos-
itory. How an enriched repsitory influences the search matching?

Then how we can represent the code abstraction using XML file based
repository system instead of server based data manipulation system like database
system?

Thirdly, how we can get facilities from the client based repository with
mining instead of web based mined repository? How server dependency influences
the recommendations of the software repository mining process?

The last research question we have tried to find the answer is how to in-
crease the efficiency of the recommendations through graph mining algorithm that
is applied on the source skeleton?

1.3 COMPARATIVE CONTRIBUTION

Data mining [16] gives different useful techniques to mine huge scale of data.
The techniques in some cases have some drawbacks but in our work titled “En-
hancing Software Development Process (ESDP) using Data Mining Integrated En-
vironment” is able to bring a better outcome to help the programmers. ESDP-tool
is able to provide necessary usage pattern after traversing the existing library files
mined to it. With the help of that useful usage patterns ESDP-tool further help
the programmers. We claim that our work has made the following contributions-

20

1.3. COMPARATIVE CONTRIBUTION CHAPTER 1.

• Enriched and Updated Repository Mining Strategy: Repository build-
ing is an important issue in Mining Software Repository (MSR). If the source
repository is more updated and enriched then the mined system will be eas-
ily capable of recommending relevant suggestions and patterns. There are
a number of issues should be considered before building a repository. We
have considered multiple important sources of projects to build our central
repository. Besides enlarging the sources of codes we also have considered
how often the repository is updated to ensure the contemporary need of the
developers.

• Source Abstraction Technique using XML Based System: A special
type of techniques we have applied to extract the API usage pattern infor-
mation and documentations from the source code files. In different existing
approaches a distinguish code analyzer is able to analysis the code snippets
including API classes and methods. But in case of our ESDP tool we have
applied kind of different technique to extract the raw source code to an inter-
mediate form of source abstraction. First we extract these to code readable
files. Then we translate the codes to an abstract form. Detailed source code
is the appropriate way to represent the behavior of a system but the detailed
format itself has some limited applicability for analysis and mining purposes.

• Server Independent Searching and Recommendation Procedures:
ESDP tool provides a particular user interface to suggest usage patterns
and their related snippets to search the necessary snippets inside the mined
repository. Unlike other approaches we have stored our mined API into
XML based repository in the client side. So the user can easily search and
get recommendation according to their user query they type. To avoid server
concurrency and latency problem we have considered client based repository
instead of online based database system.

• Usage of Graph Mining Algorithm: We have applied graph mining
algorithm called pattern explorer to enrich the recommendation. In our
approach the usage of a set of objects in a scenario is transformed from
code skeleton to a Directed Acyclic Graph (DAG) of which nodes represent
constructor calls, method calls, field access and branching point of control
structure and edges represent temporal usage order and data dependencies
among them. An individual usage pattern is a sub graph that frequently
appears in mining object usage graphs. Thus we detect the usage patterns
related to the code snippets and recommend to the developers.

21

Chapter 2:

Background and Related Work

In software repository mining there are a number of existing approaches. Some
approaches have better recommendation system and some approaches have en-
riched repository. If the repository is enriched enough then we will get better
recommendation. There are some approaches that work in association with online
based code search engine like Koders and Google Code Search. And the search
results found in response to a particular query is then mined before the final rec-
ommendation given to the developers. Here we have explained different existing
approaches that are widely used inMining Software Repository (MSR).

2.1 MINING TO CODE REUSE

MAC [10] is an approach to mine API code snippets for code reuse. They
form a transaction database. According to that transaction database they develop
pattern database. And thus MAC suggests by evaluating the support, confidence
and rank list of the frequent item.

We also have investigated the MAC [10] framework as the following Fig-
ure 2.1 shows. MAC is of the updated approach that is able guide to developers
through association and sequence mining algorithms.

Mining API Usages from Open Source Repositories (MAPO) [5],[6] is one of
the popular approaches in this area. It identifies the call patterns from API us-
ages. A usage query is that describes a method, class, package for an API. They

2.1. MINING TO CODE REUSE CHAPTER 2.

Figure 2.1: MAC Framework

use koders.com as their search repository. Figure 2.2 shows the MAPO framework.

An Another approach Strathcona [13] gives a number of relevant snippets
by matching the structure of the code under development with the snippets be-
longs to the repository.

CodeBroker [14] is mostly similar tool to Strathcona. It automatically
searches the repository by using comments provided by the developer. CodeFinder
[15] uses a query browser to help the developer construct queries that can be sent
to the repository.

XSnippet [7] was developed by Tansalarak and Claypool. They extend
Prospector and add additional queries, ranking heuristics, and mining algorithms
to query a code snippet repository for the relevant snippet at hand.PARSEWeb
[9] developed by Thummalapenta and Xie used Google code search for collecting
relevant code snippets and mines the returned code snippets to find the solution.
Saul proposed an approach [17] to find API methods that are closely related to a
query API method of interest, by discovering API methods that share a caller or
a callee with the query API method.

24

2.1. MINING TO CODE REUSE CHAPTER 2.

Figure 2.2: Mining API Usages from Open Source Repositories Approach

Another attempt is GrouMiner [18],[19] a novel graph-based approach for
mining the usage patterns of one or multiple objects. GrouMiner approach includes
a graph-based representation for the multiple object usages, a pattern mining algo-
rithm and an anomaly detection technique that are efficient, accurate and resilient
to the software changes.

2.1.1 MINING TO ANALYZE THE SYSTEM

Another tool that automatically builds queries to send to the repository is the
Hipikat tool [16]. Hipikat creates links between different sources of information
in a project, including source files, cvs commits, bug reports, newsgroup postings,
and web articles.

Hipikat is a tool intended to solve this problem. Hipikat recommends rel-
evant software development artifacts based on the context in which a developer
requests help from Hipikat.Hipikat is an ongoing research project. To investigate
our ideas, we have applied Hipikat as an Eclipse plug-in to support development of
the Eclipse integrated development environment platform. Please be aware that
this working prototype recommends only in the context of Eclipse development

25

2.1. MINING TO CODE REUSE CHAPTER 2.

Figure 2.3: Hipikat Tool

(that is, it knows only about artifacts in dev.eclipse.org:/home/eclipse CVS repos-
itory, eclipse.org Web site, bugs.eclipse.orgBugzilla and eclipse.tools newsgroup).
In particular, Hipikat does not know about any other projects you might have in
your workspace. One of the working screen shots of Hipikat Tool is shown in the
Figure 2.3.

The Reuse View Matcher [20] uses a repository of constructed examples to
demonstrate how individual classes in the framework can be used. As these exam-
ples are constructed by the framework-authors, their correctness and applicability
can be more assured. However, this approach suffers from the fact that creating
the examples is time consuming and their coverage cannot be completed.

Mandelin initiated an important effort in this arena called Prospector [11].
It tried to synthesize solution jungloids from jungloid query.

26

2.1. MINING TO CODE REUSE CHAPTER 2.

2.1.2 MINING TO GUIDE SYSTEM CHANGES

Rose developed by Zimmermann can guide programmers to locate possible
changes. Historical information, such as source code and related files, is used to
suggest likely changes. This information prevents errors due to incomplete changes
and finds couplings undetectable by program analysis. Moreover, Ying, Murphy,
Ng, and Chu-Carroll and Hassan and Holt also show that suggestions based on
historical co-changes that are useful to correctly propose the entities which must
co-change.

2.1.3 MINING TO PREDICT AND DETECT BUGS

An approach initiated by Williams and Hollingsworth used the source code
change history of a software project to search for bugs. Their study shows that
their bug-finding technique is more effective than the same static analysis that
does not use historical data from the source code repository. Another contribution
in this arena was done by Li, Lu, Myagmar, and Zhou by proposing a tool called
CP-Miner, that uses data mining techniques to efficiently identify copy-pasted
code in large software suites and to detect copy-pasted bugs. Several additional
studies provide extensive discussions of the applications of data mining to the field
of detecting and predicting software bugs.

2.1.4 IMPROVING USER EXPERIENCE

An approach to improve to user experience is Stabilizer by Michail and Xie
in 2005. It allows users to collectively help each other to avoid bugs especially
in GUI (Graphical User Interface) applications. The tool can mine reported bugs
and execution logs to prevent an application from crashing. When users attempt
actions that have led to problems in the past, they will receive a warning and
be given the opportunity to abort the action. Another unified framework given
by Mockus, Ping, and Li was developed to investigate and predict the effort,
schedule, and defects of a software project. Instead of mining the source code
data, it mines data captured by project monitoring and tracking infrastructures,
as well as customer support records, to determine the expected quality of a software
application. They also created tools to retrieve, process, and model such data to
understand the relationships among process and product factors and key outcomes,
such as quality, effort, and interval. They found that the deployment schedule,

27

2.1. MINING TO CODE REUSE CHAPTER 2.

hardware configurations, and software platform have a significant effect on the
perceived quality of an application, increasing the probability of a software failure
by more than 20 times [10].

The previous approaches mine properties without temporal information,
whereas in our ESDP tool we will mine more complex patterns involving multiple
methods and temporal information.

2.1.5 PROBLEMS IN THE EXISTING APPROACHES

In the previous approaches there are some flaws as we have investigated.
Some approaches build their repository without regular update concepts, some
approaches search query from the server based repository like database or web
based repository [5],[6],[10]. There are some approaches where mining is held
during the instant query execution [9]. There are also some approaches found
that works only graph mining strategy without integrating the general mining
approach to the graph mining algorithm [18], [19]. These things work but in some
cases it can bring hassles to the developers. Representation and abstraction of
the source code is a vital thing in source repository mining. If the representation
is not that readable to the developers then the recommendations does not make
any important sense. Server dependency of different software repository mining
tools is an another issue. If everything belongs to the remote server then request
and response might consume valuable times of the developers. So it will bring a
better outcome to the developers if the framework of the repository tool has some
distinguished characteristics as mentioned below.

i. Enriched and Updated Repository

ii. Better Source Abstraction

iii. Convenient Source Representation

iv. Easy and Smooth Mining Strategy

v. Server Independency

vi. Integration of Graph mining algorithm.

If an approach can integrate these issues in the single framework of the repos-
itory mining tool then the developer will be highly benefited. In our ESDP system
we have tried our best to do so.The Mining Approach of our ESDP differs from
the Existing Approaches. In the Existing Approach[10] they mine the API item

28

2.1. MINING TO CODE REUSE CHAPTER 2.

where each item is unique as they have taken the location of the item like line
number. So it is difficult to find the resembling item while mining because each of
the item becomes unique if that type of class based mining is used. Another thing
is that as most of the existing approaches do not have their own code searching
tool instead they depend on some online based code searching tool like Google
Code search, KODERS and etc. In that case, request and response latency and
search dimension become a deciding issue that surely influence the efficiency of
getting relevant matches within expected time. In our approach we have taken
the particular part of the API item instead of taking the location or line number.
Beside, we have used XML based representation in the client site to avoid server
interaction instead of conventional database dependency.

29

Chapter 3:

ESDP Framework

It will be a better software repository mining system if the system has some
special features integrated. These special features are like better representation,
server independency, enriched repository, fast and accurate recommendation etc.
For example before store the source code lies in the repository needs to trans-
late from the detail source code to an abstract form. The process needs to do so
may vary approach to approach. In our system we have a different representa-
tion system. Another vital issue is server independency. In our ESDP system we
have designed the system without server dependency. Even for storing the mined
sources we have applied XML based system. That is why it is able to handle mul-
tiple search queries simultaneously without any concurrency and latency problem.
Thus our ESDP system is kept away from the server failure problem. The ESDP
framework is shown in the Figure 3.1.

To extract usage pattern from the given code segments we apply data mining
technique. We filter the source files before applying mining procedure over the set
of referenced codes available. Then we check different combinations among code
pattern.

According to the particular combination we will decide which of the technique
can be applied. If the existing API is small in size then ESDP will apply Apriori
principle [21] to find the frequent item set. If the API files are comparatively large
according to the given threshold file size then another algorithm FP-Growth [22]
will be applied. And to find the frequent sequence pattern we will use PrefixSpan
[21] algorithm. The API files will be inserted into XML repository just as usual
tables. The following steps will be applied before we suggest the usage pattern

3.1. REPOSITORY HEURISTICS CHAPTER 3.

and their snippet to the novice developers.

To automatically mine Classes and APIs usage pattern from the existing
source repositories we use our framework. The framework receives query describ-
ing the name of method, class or package and will give output a set of API usages
and snippet.

We have applied our own idea to provide better outcome comparing with
the existing concepts. For that we have a distinguish framework as shown in the
above figure. In the framework as shown in the Figure 3.1, there are four different
parts that work together. These are explained here below by turn.

3.1 REPOSITORY HEURISTICS

Repository building is an important part in software repository mining. If
the source repository is more updated and enriched then the mined system will
be easily capable to recommend relevant suggestions and patterns. There are a
number of issues should be considered before building a repository. Two of these
are very fundamental that are listed below.

i. What are the sources of codes that are used to build the repository?

ii. How often the repository is updated?

First of all we have thought about the fundamental sources of the repository.
If the sources are limited then the mined repository will be comparatively light
weighted. We have investigated on different data mining based on API recommen-
dation system like MAPO [5],[6], GROUMINER [23],[24] and MAC s[10].

In MAPO cite4[6], the sources are taken from open source repositories. They
have not used any other sources like regular update, external APIs, standard li-
braries as their sources of repository.

GROUMINER [23],[24] is one of the popular research works in APIs rec-
ommendation system from mind repository. They also have built repository from
open source projects available online.

MACs is another one of the contemporarily published research work. They
have mined sources according to the user query instantly given by the user. Before
mining they have dynamically built the repository using Koders.com.

31

3.1. REPOSITORY HEURISTICS CHAPTER 3.

In the above mentioned works they have not considered standard library
APIs of a particular platform as well as APIs found from the regular searches or
from external APIs.

If the open source projects and the code search engines like Koders.com or
Google code search engine become the only source of building repository then the
mined repository will be obsolete and expired after certain duration of time.

Another thing is that real time software development is getting changed so
rapidly. The developers today have been using a set of APIs or framework that
might be old tomorrow. So prediction is merely applicable on what will come
tomorrow with the development change and evolution. We should open up the
door of regular update to keep ourselves sustainable and cope with the modern
challenges in rapidly changing software industry.

Before we work on our ESDP system we have considered these challenges.
In ESDP the central repository is formed from different types of dynamic sources.
We have done it to keep our repository up to date.

As we will see that, we have five different sources of repository that provides
APIs and class sources to form central repository of the repository heuristics of
ESDP tool as shown in Figure 3.2. The sources are-

i. Enterprise Repository

ii. Standard Library

iii. Regular Searches

iv. Regular Update

v. External APIs

3.1.1 ENTERPRISE REPOSITORY

Software is developed by a particular company using a platform. After cer-
tain duration the company might have a number of projects that follows the same
platform and framework. Let us consider a company that has developed a project
which contains similar type of APIs or code pattern. The development of the pro-
posed software might ease the process and save time if the company gets suggestion
and recommendations from the previous completed project. Considering this phe-
nomenon we have contacted with a leading software company [25] in Bangladesh

32

3.1. REPOSITORY HEURISTICS CHAPTER 3.

Figure 3.1: Proposed ESDP Framework

33

3.1. REPOSITORY HEURISTICS CHAPTER 3.

Figure 3.2: Repository Heuristics of ESDP System

about taking their sources repository. They have conditionally agreed to provide
some projects sources only purposing research. Thus enterprise repository is one
of our sources of building central repository.

3.1.2 STANDARD LIBRARY

Suppose a novice developer is going to develop project using a particular
platform java. So java standard library and documentation could be an important
source of building central repository. For example if this developer needs collection
APIs then he or she need not to seek for somewhere else away from the java stan-
dard collection APIs. If he execute a search query alongside standard APIs then
he will be given number of suggestions and recommendations in response to that
search query. Considering the easiness and well decorated features of the standard
library of different platforms we have used standard APIs as another source of
building central repository.

3.1.3 REGULAR SEARCH

We have seen that MAC [10] has used a code search engine to get the desired
item following a search query. In case of MAC, searching happened before mining
instantly. But if we bind the search dimension only inside the area of code search
engine like Google Code Search Engine or Koders.com then it comparatively keeps
us away from the exact match. Searching rapidly online using a user query has
some drawbacks itself. For example let us consider that a developer is typing his

34

3.1. REPOSITORY HEURISTICS CHAPTER 3.

code on an IDE editor. All on a sudden he seeks for a specific term or item and he
starts searching in the internet. After he gets the desired result he continues work-
ing and after a couple of minutes he looks for another item again. Thus he does
the same as he has done just before. Unfortunately if it takes longer time due to
latency and concurrency issue. That means anyway it kills some valuable time of
the programmer. So we see that rapidly searching on the web during development
period is not that convenient because of server dependency. Server dependency
has different other issues to resolve. For example security issues, connection issues
etc. How much a developer is likely to get connected to respond with an unknown
server while he is on the version control system that does matter? We have seen
the comparison between the response time of the server and client. It is easier and
faster to search from the client offline than searching from somewhere dependent
on the Internet.

Considering this issues and draw backs all we have done is that we have
gone through and tracks the trending search terms of a code search engine and get
connected into our tools to eliminate server dependency. According to the search
queries we have added the prominent and frequently used APIs to our control
repository. This is also mentionable that after an interval we update our central
repository according to the trending search terms found right then mine the code
searching protocol.

3.1.4 REGULAR UPDATE

All we see in the previous works that the repository is not updated after it
is built once. Even MAC [10], MAPO [5],[6], GROUMINER [23],[24] has not ex-
plicitly mentioned the updating concept. If the repository is not updated then the
mined repository eventually fails to fulfill the user required matching. Considering
the updating issues of the repository we keep our central repository updated after
three months of interval.

3.1.5 EXTERNAL APIS

Besides enriching our central repository from multiple sources we have opened
up an opportunity to add API files from the external sources. As we see that the
new APIs comes with times. We have some APIs writer that we call ESDP API
Developer. ESDP API developer will write newer APIs to survive and sustain
with the development pattern change.

35

3.2. DATA MINING HEURISTICS CHAPTER 3.

Figure 3.3: Data Mining Heuristics of ESDP Framework

3.2 DATA MINING HEURISTICS

The second heuristics of ESDP Framework is captioned as Data Mining Heuris-
tics. Here, basically two things happen. In the first step the central repository is
preprocessed to an XML Repository following a special type of XML conversion
strategy. Then in the last step a data mining is applied on the XML repository to
build mined API XML repository as shown in the Figure 3.3.

3.2.1 DATA PREPROCESSING

In the central repository the API and class files are stored as .java or .jar files.
First we extract these to code readable files. Then we translate the codes to an
abstract form. Question may arise that why we do not use detailed source code.
Yes, detailed source code is the appropriate way to represent the behavior of a
system but the detailed format itself has some limited applicability for analysis
and mining purposes [10]. Let us consider the two field declaration statements in
java.

36

3.2. DATA MINING HEURISTICS CHAPTER 3.

Connection connection;
Connection conn;

Here, the object declaration is made with just different names. The two state-
ments have the same meaning. To overcome this problem, we translate the raw
source code into a higher level of abstraction form. The common item form was
expressed as shown in the following Table 3.1 and 3.2.

Table 3.1: Source Abstraction
Serial Generic Example Real Example

01 type, name, entity, location FD, dom.ASTParser,
com.Test:05

02 type, name, entity, location MI, method A(java.lang.String):
void,com.class B.method C():
130

Table 3.2: Details of Source Abstraction
Key Term Elaboration

FD Implies for the Field Declaration. FD is an item.
dom.ASTParser Field Declaration (FD) statement. dom.ASTParser

is an item name.
Com.Test:05 appears at the line 5 within class Test, of package

com.

In the second real example [Table 3.1 and 3.2] a method invocation method-A()
with a parameter in type of java.lang.String and return void type appearing in the
method method-C() that is inside the class Class-B() which is under the package
com.

In our ESDP tool, we have considered 17 types of items purposing our ESDP
research as shown in the Table 3.4. Our approach can be applied for any object
oriented programming language, but for the ease and availability of evaluation and
its correctness the considered platform here is Java 2.0.

37

3.2. DATA MINING HEURISTICS CHAPTER 3.

3.2.2 SOURCE CODE TO XML TRANSLATION

In this step we cover the abstraction code with the XML meta tag. An
example is given below.The above transaction represents the field declaration
javax.swing. JButton of the class classB in the package pkga and its position
(line number) inside the file is 87. A transaction is the set of entities simultane-
ously used in a block such as class block or method block. A sample set of entities
is given in the following equation 3.1. The element of the XML transaction is
called item. Each item represents a way to use one or more specific API and these
are the basis for later mining process.

Table 3.3: Considered 17 types of items purposing our ESDP research
Serial Code Item Description Example

1 PD Package Declaration package foo.biz;
2 ID Import Declaration import javaioFile;
3 TD Type Declaration public class

Example Class ;
4 FD Field Declaration private Connection

conn;
5 CI Class Instance Creation newFile ();
6 MD Method Declaration public File method

(String s)
7 MI Method Invocation method.open (file-

name);
8 VD Interface Implementation implements Runnable

9 IF Local Variable Declaration String s
10 ACD Anonymous Class Declaration new Enumeration () ;
11 AA Array Access file array[i]++;
12 AC Array Creation newFile[n];
13 CTI Constructor Invocation this (parameter);
14 FA Field Access object.field A = 2;
15 SCI Super Constructor Invocation super (parameter);
16 RT Return Statement return a file object;
17 SC Super Class Inheritance extends SuperClass

38

3.2. DATA MINING HEURISTICS CHAPTER 3.

T =

(VD,.Core.ICompilaionUnit,p.ClassA.m():40),
(VD,.core:dom:ASTParser; p:classA:m():97),
(MI,..............dom:ASTParser:setKind(int); p:classA:m():155),

.

.

.

.
(MI,..dom:ASTParser:setSource(); p:classA:m(): 210),
(MI,...........dom:ASTParser:setResolve. . . (); p:classA:m(): 260)

eqn(3.1)

3.2.3 APPLYING DATA MINING ALGORITHM

The ultimate goal of API code snippet mining is to mine the sequential usage
pattern (rules) from a given repository and that are relevant to the task at hand.
In our thesis we have proposed and used PrefixSpan as sequential pattern mining
algorithm.

3.2.4 SEQUENTIAL PATTERN MINING

The API code snippet pattern mined by association rule pattern mining can
be used to create the structure of a class including class attributes and method
definitions. However the association rule mining does not consider the order of the
transaction. In a method block ordering of invocation is important. For example
in an API calling sequence developers call the methods of an object after they
declare the object. At these situations association rule mining is not appropriate,
Sequential pattern mining is needed. Given the XML transaction as shown in the
following Figure 3.4, translated from the statements in methods in the previous
sections, we can create a sequence XML files, S. The sequence XML files consist
of a set of transaction along with <SID, S>, where SID is a sequence ID and S is
a sequence. In ESDP the SID is an XML tag that is the location of the sequence.
A sequence <SID, S>is said to contain a sequence a if a is a subsequence of S.
The support of a sequence a in a sequence XML files is the number of sequence in
the files containing a. It can be denoted as supports (a) if the sequence data sets
are clear from the content. Given a positive integer min support as the minimum
support threshold a sequence a is frequent in the XML sequence files S if and
only if supports (a) > min support.That is, for sequence a to be frequent it must
occur at least min support times in S. A frequent sequence is called a sequential
pattern. A sequential pattern with length K is called a k-pattern sequence. Here
is the example,

39

3.2. DATA MINING HEURISTICS CHAPTER 3.

Figure 3.4: Source Abstraction from Raw Source to XML

Support S (a) =|
{
< SID,S> | <SID,S> ∈(S)∧(aj S)

}
| eqn (3.2)

40

3.3. SEARCHING HEURISTICS CHAPTER 3.

A = <S1, S2, S3, S5> eqn (3.3)

Where, S1 = MI, dom.ASTParser.newParser(int):dom.ASTParser
S2, S3, S5 refer to the values in the figure of abstraction API forms respectively.
Here, there are four instances of items in the sequence a, therefore, it has a length
of four and is called a 4-sequence. We have used a recently proposed sequential
pattern mining algorithm, called prefixSpan (Prefix-Projected Sequential Pattern
Mining). This is a sequence mining algorithm which is a pattern growth method
that does not require candidate generation. The algorithm mines the complete set
of patterns, but greatly reduces the effort of candidate generation. It can reduce
the projected repository size and lead to the efficient processing.

3.2.5 BUILDING MINED API XML REPOSITORY

We apply sequential pattern mining algorithm (PrefixSpan) to the prepro-
cessed data results to find the API sequence pattern from the XML repository.
Each XML repository consists of API-usage patterns and each pattern consists of
a set of API code snippets that have been used together frequently in the past.
To find the frequent API pattern we apply different queries using our referral
programming language feature like String Manipulation and XML Parsing. The
Querying and Ranking phase using the strategy of string manipulation and XML
parsing APIs take a set of candidate recommendation, order and filter it from the
set to generate a refined recommendation list. The list are ranked and covered
by XML tags as shown in the Figure 3.5. ESDP recommends the sequential API
code snippets and each recommendation includes several statements. The amount
of statements in a sequence is called k-sequence. We took the product of k and
the support value of the sequence to rank the API pattern in the mined XML
repository.

3.3 SEARCHING HEURISTICS

In searching heuristics there are several steps need to be traversed to get
the code skeleton. Here a sequence recommendation is given according to the
user query searched by the developers. If the recommendation is chosen by the
developers then it can be refactoring and updating if the developers want to do
so. After doing that a code skeleton is found. This thing is done by searching
heuristics. And the Searching Heuristics is shown in the Figure 3.6.

41

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.5: Mined XML Repository

3.3.1 RECOMMENDING SEQUENCES

After the mined XML repository is built, searching is kind of easy with a
particular user query statement. Here we get a set of fragment code into a method
block after getting searched. As we know that the code snippets are stored in the
Mined API XML repository according to their frequency, ranking, support, con-
fidence and with necessary methods and field’s snippets. So when the developers
look for a suggestion the typed statements is taken as user query and searched to
find the required matching in the Mined API XML Query.

For example, let us consider that the user is writing a class called SearchTest.
He has written some statement like below. While he is typing the line as shown

42

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.6: Searching Heuristics of ESDP

as user query in the figure below he wants suggestions from the ESDP tool.

Figure 3.7: A user query is marked when the developer is writing codes

The certain statement as shown in the Figure 3.7 he marks as user query
will be sent to the Mined API XML Repository to find the match.

43

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.8: Match is stored in Mined API XML Repository

As we already have mentioned that the statements and the associated methods
and attributes are stored in the Mined API XML Repository with the support,
confidence, rank and sequence number.The sample XML representation is shown in
the Figure 3.8.We get by querying the sequential pattern rules with the statement
as shown in the Figure 3.9.We use it as the input to query the relevant statement
sequences. The example shows that we found several statements sequences ranked
with their ranking scores. We choose the first recommendation in the form of code.
Then we can update and refactor the recommended statements in the preview
window as shown in Figure 3.10 of the ESDP plug-in inside the IDE.Finally we
get code skeleton as shown in the Figure 3.11.

44

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.9: Suggestion after Sequential Pattern Mining to a query

3.3.2 RECOMMENDATION HEURISTICS

In Recommendation Heuristics we apply another approach for mining the us-
age pattern of the objects and classes using graph based algorithm. In our approach
the usage of a set of objects in a scenario is transformed code skeleton to a Directed
Acyclic Graph (DAG) of which nodes represent constructor calls, ,method calls,
field access and branching point of control structure and edges represent temporal
usage order and data dependencies among them. Recommendation Heuristics is
shown in the following Figure 3.12.A usage pattern is considered as a sub graph
that frequently appears in the object usage graphs extracted from all methods in
the code base.

In Object-Oriented Paradigm, an object interacts with another object of the
same or different class by invoking methods and fields. As we can see the object
or method call and control flow as shown in the Figure 3.13 and a 3.14 among
them eventually follow specific orders or control structure constraints in consider-
ing the class or interfaces. Specific orders and/or control flows of objects’ method
calls cannot be checked at compile time. If development team members lack of
usage documentation due to busy schedules as a consequence, errors could not be
caught until testing and even go unnoticed for a long time. Inside our ESDP tool
we have converted the existing source snippet to Directed Acyclic Graph (DAG)
[24] is shown in Figure 3.15 where nodes represents method calls, field accesses,

45

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.10: Refactoring and Updating Window of ESDP Searching Heuristics

constructors, branching and looping of control structures and edges represent tem-
poral usage orders and data dependencies among them.

Here, an individual usage pattern is a sub graph that frequently appears in
mining object usage graphs. We detect the usage patterns using a novel graph
based algorithm for mining the frequent induced sub-graph in a graph dataset.
The patterns are generated increasingly by their sizes (i.e. number of nodes).
Each pattern of size k+1 is discovered from pattern P of size K via extending the
occurrence of P in every method’s graph G in the dataset with the relevant nodes
of G. The generated sub graphs are then compared to find isomorphic ones. To
avoid the computational cost of graph isomorphism solutions we use Exas [23] our

46

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.11: Code Skeleton

Figure 3.12: Recommendation Heuristics of ESDP

47

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.13: Code Skeleton

efficient structural feature extraction method for graph based structure to extract
a characteristic vector for each sub graph. In the algorithm as shown in the Figure
3.16, each pattern P is represented by D (P), the set of its occurrences in the
whole graph dataset. Each of such occurrences X is a sub graph and it might be
extended into a larger sub graph by adding a new node Y and all edges connecting
Y and the nodes of X. Let us denote that graph X+Y. Since a large pattern must
contain a smaller pattern Y must be a frequent sub graph, i.e. an occurrence of
a pattern U of size 1. This will help to avoid generating non-pattern sub graphs
(i.e. cannot belong to any larger pattern).The operation ⊕ is used to denote the

48

3.3. SEARCHING HEURISTICS CHAPTER 3.

process of extending and generating all occurrences of candidate patterns from all
occurrences of such two patterns P and U:

P ⊕ U =
{

X + Y | X ∈Gi(P), Y ∈Gi(U), i = 1..n
}

eqn(3.5)

Figure 3.14: Graph based object usage model

49

3.3. SEARCHING HEURISTICS CHAPTER 3.

Figure 3.15: Directed Acyclic Graph of Object Usage Model

Figure 3.16: Pattern Explorer Algorithm (PattExplorer)

50

Chapter 4:

Experimental Evaluation

Enhancing Software Development Process (ESDP) aims at accelerating devel-
opment process through better performance and influencing the time consumption
in a platform where the integrated environment preserves the mined xml repository
with better abstraction technique in server independent surroundings. To compare
and justify the efficiency of ESDP system we have evaluated its response time, per-
formance, quantitative comparison for the first and second match and empirical
study. We have designed and installed our own environment before starting up
the expected evaluation.

4.1 ENVIRONMENTAL SET UP

To evaluate performance and effectiveness of our ESDP tool, we have applied
it to several open source Java projects as shown in the Table 4.1. The experiments
were carried out in a computer with Windows 7 Operating System, Intel Core I 5
Processor, RAM of 4GB with 3G internet connection of local operator.

Here, the table shows the number of files, methods, usage patterns and the
Prominent API used in that project. The column files says that total number
files are found in the projects, and number of methods denotes that total amount
methods considered from the project sources and the similarly the usage pattern
shows the total number usage pattern that we have considered that they have
sequence among themselves.

4.2. RESPONSE TIME EVALUATION CHAPTER 4.

Table 4.1: Open Source Projects found from different Enterprise Repository online
P Projects Files Methods USG Pattern Prominent API
P1 jEdit 3.0 14 74 8 jmlspecsorg.

eclipse.core.
runtime.Plugin

P2 Log4J 1.2.15 17 79 4 org.apache.
commons.codec.
binary.Base64

P3 Jigsaw 2.0.5 11 28 7 Javax.sql
P4 Struts 1.2.6 13 109 8 oracle. core.lmx
P5 Fluid VC12.05 15 106 6 c
P6 JabRef-2.7.2 8 92 9 Com.mysql.

jdbc.jdbc
P7 tftp4java-0.8 9 29 9 org.osgi.framewor

k.BundleContext
P8 pooka 10 42 14 com.sun.

mail.auth
P9 Vocabulary Test 12 32 17 javax.swing
P10 jMusic 6 32 7 javax.sound.

sampled

4.2 RESPONSE TIME EVALUATION

We have applied the projects to build our Mined API XML Repository.Then
we have searched some user queries on ESDP , MAC and MAPO to check the
time complexity. Here the Table 4.2 and Figure 4.1 show the comparisons among
those found required time complexity to respond. Here, we have searched different
queries on three different systems and have come to see that in case of our ESDP
it takes very fewer times to get the recommendations.

Table 4.2: Response TimeComparison among different Systems
UQ Search Terms MAC[9] Methods MAPO[5]
1 Connection 0.59 s 5.39 s 0.15 s
2 XMLParser 0.83 s 6.23 s 0.10 s
3 getConnection() 0.55 s 5.56 s 0.09 s
4 ActionListener 0.74 s 4.96 s 0.10 s
5 InputMissmatchException 0.67 s 5.35 s 0.17 s

The time complexity of the ESDP tool shows that when MAC [10] takes 0.59

52

4.3. PRECISION-RECALL EVALUATION CHAPTER 4.

Figure 4.1: Response Time Comparison of ESDP, MAC and MAPO

seconds then our ESDP takes only 0.15 seconds to respond. ESDP has amazing
outcomes in case of time because of its server dependency and XML Based mining.
As we know, when we want to search something online then we have to resolve
the request and response latency. If the server takes longer times than usual then
the developer of the system may have to wait or pass idol time that is totally
inconvenient to the users. However, server dependency has another short-comes
also. That is if the server fails then total system may crash and lose everything
that is already developed.

4.3 PRECISION-RECALL EVALUATION

We have searched the user queries after building the Mined API XML repos-
itory. We also have measured how many results are indexed as search result and
how many of them are relevant. As we cannot directly search the user queries on
MAPO and MAC so, we cannot show their precision recall performance evalua-
tion. We have checked our user queries on KODERS.COM and on our ESDP tool.
The results are compared in the precision-recall comparative analysis.

53

4.3. PRECISION-RECALL EVALUATION CHAPTER 4.

The performance of information retrieval systems is often evaluated by an-
alyzing their recall and precision. Precision is defined as the number of relevant
materials retrieved by a search divided by the total number of materials retrieved
by that search. Recall is defined as the number of relevant materials retrieved by
a search divided by the total number of existing relevant materials which should
have been retrieved. In our contexts, precision and recall are defined in terms of
a set of retrieved API usage scenarios (e.g., the list of API usage scenarios recom-
mended by ESDP for a query) and a set of relevant API usage scenarios (e.g., the
list of API usages scenarios found in local repository by manual inspection for a
particular programming task). More formally, we define precision and recall as

precision = |{relevantAPI−attributeusagepattern}∩{retrievedAPI−attributeusagePattern}|
|{retrievedAPI–Attributeusagepatternstatment}|

recall = |{relevantAPI−attributeusagepattern}∩{retrievedAPI−attributeusagePattern}|
|{retrievedAPI–Attributeusagepatternstatment}|

So, Precision is defined as the number of relevant materials retrieved by a
search divided by the total number of materials retrieved by that search. Recall is
defined as the number of relevant materials (API Sequence) retrieved by a search
divided by the total number of existing relevant materials (API Sequence) which
should have been retrieved. In our contexts, precision and recall are defined in
terms of a set of retrieved API usage scenarios (e.g., the list of API usage scenar-
ios recommended by ESDP for a query) and a set of relevant API usage scenarios
(e.g., the list of API usages scenarios found in local repository by manual inspec-
tion for a particular programming task). For example, more formally, we define
precision and recall as below. Consider that we have a system to recognize dogs, if
the system identifies 7 dogs in a scene containing 9 dogs and some cats. If 4 of the
identifications are correct but 3 are actually cats then Precision is 4/7 and Recall
is 4/9. When ESDP engine returns 30 API Sequences and out of total 30 API
Sequences only 20 API Sequences are relevant, then the precision is P = 20/30.
And as it fails to match 40 additional API Sequences that means it had 60 API
Sequences items in total then Recall is, R= 20/60.Here, If we could use the associ-
ation pattern rule and then ESDP recommended 5 relevant API-statements out of
the top 10 recommendations where we have 6 API-Statement in total, the preci-
sion is 0.6 (6/10) and the recall is 0.83 (5/6).But as we have applied the Sequential
Pattern Mining Algorithm Prefix-Span so we cannot evaluate the Precision and
recall like above. To evaluate the sequential pattern rule, we took a query state-
ment as the input. In ESDP, each recommendation (sequence) includes several
API-statements; in a query, ESDP recommended several sequences. Therefore,
we compute precision and recall of each sequence, then average them in the top

54

4.3. PRECISION-RECALL EVALUATION CHAPTER 4.

N. In this sample query, the relevant API-statements should contain those 4 API
statements and must appear in sequence. If the ESDP recommended for the query
in the first sequence, there are 5 API-statements, including four that are relevant.
The precision of the sequence is 0.8 (4/5) and the recall of the sequence is 1 (4/4).
But we tried to find the similar type result to extract to see the comparison. And
it has some limitations. One thing we should keep in mind that what exactly the
relevance means? We have got recommended API Statement after applying a user
query. And we compared that with our original API-Query API statement found
checked the relevance. And the high Precision means it has more relevance than
irrelevance. That anyway ensures the exactness and the Quality of the system. On
the other contrary, the high Recall means that the system has the performance
with most of the relevance. The high recall ensures the completeness and quantity
of the system. We present the calculated precision and recall value for each task
in Table 4.3 and Table 4.5 respectively for ESDP and KODERS. We also have
calculated the average of the Precision and Recall that is shown in the Table 4.4.
In the Tables, ‘P’ indicates precision and ‘R’ indicates recall. The comparative
precision recall result is plotted in the Figure 4.2 below. Here there are scenarios
starting from 5 and ended to 30. The plotted curve shows that ESDP brings better
relevance than the KODERS.COM.

Table 4.3: Precision Recall for ESDP
UQ 5 10 15 20 25 30
% P R P R P R P R P R P R
1 100 20 80 32 85 52 75 60 72 64 70 84
2 80 16 70 28 80 48 80 64 72 64 67 80
3 60 16 70 32 80 48 70 56 64 57 57 68
4 100 12 100 28 73 44 75 60 64 57 63 76
5 40 20 60 40 93 56 75 60 64 57 53 64
6 100 08 90 24 66 40 70 56 60 53 57 68
7 80 20 80 36 86 52 75 60 76 79 67 80
8 80 16 80 32 73 44 75 60 76 67 63 76
9 100 16 90 32 80 48 70 56 68 60 67 80
10 100 20 80 36 86 52 75 60 76 67 63 76

Top 100 20 100 40 93 56 80 64 76 79 67 84

55

4.3. PRECISION-RECALL EVALUATION CHAPTER 4.

Table 4.4: The average precision and recall for the of different user queries.
Serial

Top Recommended Scenarios
ESDP KODERS

Average Average Average Average
Precision Recall Precision Recall

1 5 84.00 16.40 70.9 13.45
2 10 80.00 320 70.00 28.72
3 15 80.20 48.40 70.45 21.08
4 20 74.00 59.20 71.81 57.81
5 25 69.20 62.50 61.81 56.72
6 30 62.70 75.20 56.45 70.54

Table 4.5: Precision Recall for KODERS
UQ 5 10 15 20 25 30
% P R P R P R P R P R P R
1 80 16 70 28 73 48 70 56 64 57 57 76
2 60 12 60 28 66 44 75 60 64 64 53 68
3 60 12 60 28 80 48 70 56 56 53 53 68
4 80 12 80 24 73 44 70 56 56 53 63 64
5 60 16 60 36 80 48 75 56 64 57 53 64
6 80 08 80 24 66 40 70 56 56 53 53 68
7 60 16 70 32 66 48 70 60 64 57 63 76
8 60 16 60 28 73 44 75 60 72 53 53 76
9 80 12 80 28 80 48 70 56 56 60 57 76
10 80 16 70 24 73 48 70 56 64 53 53 64

Top 80 16 80 36 80 48 75 64 64 63 63 76

4.3.1 RESULT DISCUSSION OF PERFORMANCE EVAL-
UATION

The results of the experimental evaluation to measure the performance of
ESDP system we have summarized in the Table 4.3 and 4.4. For each top-N in
our sample, we list the precision and recall of recommended API-statements.

And the following graph of curve shows the precision and recall values that
resulted from applying our evaluation method to both investigations on ESDP and
KODERS.COM. The lines connecting the data points on the recall versus preci-
sion plot show the trade-off between precision and recall as the parameter values
are altered. For example, scenario 5 stands for 5 total recommendations where we
have the first sequence of all the recommendations for a particular user query.

56

4.3. PRECISION-RECALL EVALUATION CHAPTER 4.

Figure 4.2: Average Precision and Recall Plotting for ESDP

Then the average is of the precision and recall for 5 to 30 scenarios is plot-
ted in the Figure 4.2. It shows that the precision decreases according to the liner
increment of the scenarios whereas the recall increases if the number of scenarios
is raised. And in a single point near 27 or 28 scenarios the precision and recall
gets equal. The point we can call the equilibrium of precision and recall. We have
considered 27 scenarios as our standard recommendations.

Each preprocessing and mining task we have performed for a specific input
query in this study took less time on a PC with 4 GB RAM with a 2.86 GHz pro-
cessor. The task included the time it took for the ESDP to retrieve the 20 relevant
source files from its Mined XML repository. On the other hand Koders.com to
retrieve the 20 relevant source files from its web based database repository. For
coding a program statement, the process of retrieving the relevant files is more
time consuming, but it is performed less often because the MACs can find several
program statements that can be used within a class or method.

57

4.3. PRECISION-RECALL EVALUATION CHAPTER 4.

As we know the Apriori algorithm computes all patterns before hand, then
searches the pattern set for a given developing task. However, computing all pat-
terns takes time. In our experiments, ESDP uses two optimizations to compute
patterns on demand. First, considering our specific application, the antecedent of
the patterns is equal to the given program statement; hence, we only mine pat-
terns which match the situation. Second, in our application, ESDP only computes
patterns with a single item in their consequent. ESDP uses the PrefixSpan al-
gorithm and dynamically controls the minimum support of mining to obtain less
than 50 patterns for each query. In our experiments, 50 patterns are sufficient for
our application. These optimizations make our mining very efficient.

We see that the recall and precision of the first sequence are also quite high
as shown in the Table 4.3. If they are 0.82 and 0.85 respectively that means the
statements of the sequence cover 82% of the developer’s needs and with a preci-
sion 85% Ẇhen the sequence length was reduced, the recall was reduced too, but
precision rose. Shorter sequences cannot cover all necessary statements, but they
can do it more easily target the need.

Either Association or sequential patterns mining both generally assume a
large number of transactions. Too few transactions may affect the results of mining.
To address the performance issue, we retrieve 20 relevant source files and produce
transaction in the mined XML repository for further sequential pattern mining.
The number of transactions seems too few; however, our objective in mining is to
find out the limit API-usage patterns that are relevant to the statement assigned
by the developer, rather than all API-usage patterns. In fact, in our study, if
we have retrieved too many relevant source files, some useful patterns related to
the query may be lose due to the minimum support count set to achieve better
performance. So we can say throughout the precision and recall evaluation that the
Enhancing Software Development Process (ESDP) works much better than many
of the related and existing approach in the field of mining software repository.
We also like to mention that the data available here are collected from manual
inspection using the ESDP and other system and their repository.

4.3.2 RECEIVER OPERATING CHARACTERISTICS (ROC)
CURVE ANALYSIS

Receiver Operating Characteristic (ROC), or simply ROC curve, is a graphical
plot which illustrates the performance of a binary classifier system as its discrim-
ination threshold is varied. It is created by plotting the fraction of true positives
out of the positives (TPR = true positive rate) vs. the fraction of false positives

58

4.4. QUANTITATIVE COMPARISON CHAPTER 4.

out of the negatives (FPR = false positive rate), at various threshold settings.
True Positive (TP) is the correct matches as we want to. False Negative (FN) is
the non-matches item that is correctly rejected.

TPR =
TP

(TP + FN)
(eqn.4.1)

FPR =
FP

(FP + TN)
(eqn.4.2)

Therefore, Precision =
TP

(TP + FP)
(Eqn.4.3)and

Recall =
TP

(TP + FN)
(eqn.4.4)

TPR is also known as sensitivity, and FPR is one minus the specificity or true
negative rate.ROC analysis is related in a direct and natural way to cost/benefit
analysis of diagnostic decision making [26].

In our performance evaluation we have calculated the precision and recall in
different cases. Then we have drawn the ROC curve. The datasets are built after
executing different queries by turns.

The ROC is drawn and shown in the Figure 4.3. The blue dotted line marks
ROC for ESDP system and red dashed line marks the ROC curve for the KODERS.
From the graph we see that the standard region for the ESDP is better than the
standard region of KODERS.

4.4 QUANTITATIVE COMPARISON

We have taken five different user queries (UQ) to see the search matching.
When we search for the first user query the result for the first match is found
within 6 results by MAC [10], within 2 results by MAPO[5][6] and within 1 result
by our ESDP tool. The entire system is manually designed for experiment purpose.
Similarly for the other user queries the found results for both first matching and
second matching is listed in the following Table 4.6.

59

4.5. EMPIRICAL STUDY CHAPTER 4.

Figure 4.3: ROC Comparison between ESDP and KODERS

Table 4.6: Comparative results of the three tools to locate the 1st and 2nd matches
UQ First Matched Second Matched Sum of the items

MAC MAPO ESDP MAC MAPO ESDP MAC MAPO ESDP
UQ1 6 2 1 7 3 2 13 5 3
UQ2 2 1 1 3 - 1 5 1 2
UQ3 2 2 2 2 3 2 4 5 4
UQ4 - 1 1 1 2 1 1 3 2
UQ5 2 - - - 2 1 2 2 1

4.5 EMPIRICAL STUDY

To see the efficiency with respect to the error vulnerability we have formed
two different teams. The first team is called Experimental Team and second team
is called ESDP team. Both teams have two members. Then they are said to do

60

4.5. EMPIRICAL STUDY CHAPTER 4.

three tasks. The experimental team use the manual process using Intellij Idea[27]
IDE and the second team use the IDE where ESDP tool is integrated. The three
different tasks are given in the following Table 4.7. For the first experiment the
Experimental Team consisting of members 1 and 2 brings 6 errors while they
do their given tasks where as the ESDP teams face only two according to our
observation as shown in the Table 4.8 and 4.9.

For the second experiment team members are shuffled. That means the
Member 1 and two works for the ESDP team and the rest of the Member 3 and 4
works for the Experiment team. And in that case the given tasks were not changed
that they are said to do the same tasks.

Table 4.7: Three tasks given to two teams to find out the error vulnerability
Track ID Description API Calls

T-001 Add a context menu to an editor 5
T-002 Update the name and the bounds of a figure 4
T-003 Save the content of a editor 8

Table 4.8: Result of the Empirical Experiment I
Tasks Experimental Team ESDP Team

M1 M2 Total M3 M4 Total
T-001 0 1 1 1 0 1
T-002 1 2 3 0 1 1
T-003 0 2 2 0 0 0

Grand Total= 6 Grand Total= 2

Table 4.9: Result of the Empirical Experiment II
Tasks Experimental Team ESDP Team

M1 M2 Total M3 M4 Total
T-001 2 2 4 3 2 5
T-002 1 3 4 5 3 8
T-003 0 2 2 4 3 7

Grand Total= 10 Grand Total= 20

61

Chapter 5:

Conclusion and Future Work

The application of data mining technique is presented as a task that can
offer great advantages and potentials. There are number of efforts have been seen
to speed up software coding process within the least amount of time. This the-
sis titled “Enhancing Software Development Process (ESDP) using Data Mining
Integrated Environment” is actually a method for the application of data mining
tools that work with the general data mining technique with graph mining algo-
rithm to guide developers in the coding phase of software development. As we
claim ourselves that our ESDP system has better source code abstraction with a
smooth representation using XML parsing process in mining and server indepen-
dency in searching beside enriched repository than any other existing approaches.
Through the work we have done that the ESDP framework is able to recommend
the snippets more accurately. For data mining we have used prior mining process
instead of post mining [9]. That means our source abstraction is mined as a whole
using data mining algorithm and then it is stored in the XML data storage. For
this reason it is able to work in the client system without being interfered by any
server dependency. In response to the user query it provides recommendation se-
quences of usage pattern with necessary code skeleton in background. Then the
code skeleton is refactored and updated with the snippets it needed. After that
a graph based algorithm pattern explorer and EXUS is used to provide the final
recommendation to the user.

We also investigated how implicit Class frame, Methods and API-usage
patterns mined from relevant source files can be used to facilitate software devel-
opment. To investigate our approach with realistic programming tasks, we have
designed an ESDP Tool that works as a data mining integrated environment. Using

5.1. FUTURE WORK CHAPTER 5.

ESDP Tools can form such reference Frames for the Classes, Methods and API-
usage pattern along with the recommended patterns suggested from the databases.

In this thesis we have tried to enhance the software development process
through reusing the usage pattern of existing projects. It is a basic need to reuse
existing Application Programming Interface (API), Class Libraries or even frame-
work for rapid software development. Our ESDP system is able to ease this process
through the framework.

5.1 FUTURE WORK

In future the research can be implemented for the use of professional pur-
poses. Here, we have evaluated the efficiency by collecting codes of some open
source projects, but before we implement this concept professionally the empirical
evaluation should be done by using large scale projects. ESDP tool is developed
considering the research purpose use. To extend the use it needs to be tested
professional testing tool.

Another thing is that there is a rich literature regarding bug detection and
prediction. Most studies used the analysis of static code to detect bugs in soft-
ware systems. In Recent years, with the increasing usage of data mining, mining
bugs from source control systems has become one of the more rapidly advancing
subfields of mining software repositories. In future, we will try to mine existing
projects that will be used to detect the bugs and errors in the proposed applica-
tions. Thus it will improve user experience.

ESPD concept is different from most other approaches mentioned above in
many extents. In future we intend to work with our ESDP system purposing pro-
fessional implementation after eliminating the flaws that are found in our current
research.

63

Appendix

APPENDIX A

To evaluate performance and effectiveness of our ESDP tool, set up our system
with the following configuration-

• System: Intel Core I 5 Processor

• Operating System: Windows 7 Operating System

• RAM: 4 GB

• Tested Projects: Open Source Java projects as shown in the Table 5

APPENDIX B

As we are using PattExplorer (Pattern Explorer) algorithm we have to use some
general terms related to this algorithm.

DEFINITION 1 (Groum): A groum (Graph-Based Object Usage Model) is a
DAG such that:

• Each node is an action node or a control node.

• Operating System: Windows 7 Operating System

• Each edge represents a (temporal) usage order and a data dependency

DEFINITION 2: Two groums are (semantically) equivalent if they are
label-isomorphic [MOUP 24].

64

5.1. FUTURE WORK CHAPTER 5.

DEFINITION 3:A groum dataset is a set of all groums extracted from the
code base, denoted by D = G1, G2, ...,Gn.

DEFINITION 4:An induced sub graph X of a groum Gi is called an
occurrence of a groum P if X is equivalent to P.

DEFINITION 5:The frequency of P in Gi, denoted by fi(P), is the maximum
number of independent (i.e. non-overlapping) occurrences of P in Gi. The
frequency of P in the entire dataset, f(P), is the sum of frequencies of P in all
groums in the dataset.

DEFINITION 6 (PATTERN): A groum P is called a pattern if f(P) ≥ σ,
i.e. P has independently occurred at least σ times in the entire groum dataset. σ
is a chosen threshold.

DEFINITION 7 (PATTERN MINING PROBLEM):Given D and σ,
find the list L of all patterns.

65

Bibliography

[1] Shahnewaz, “A scenerio based api recommendation system using syntax and
semantics of client source code,” in Masters Thesis. Department of CSE,
Islamic University of Technology, OIC, 2012.

[2] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit programming
rules and detecting violations in large software code,” in ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 306–315.

[3] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of ap-
proaches for mining software repositories in the context of software evolu-
tion,” Journal of Software Maintenance and Evolution: Research and Prac-
tice, vol. 19, no. 2, pp. 77–131, 2007.

[4] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: mining
temporal api rules from imperfect traces,” in Proceedings of the 28th interna-
tional conference on Software engineering. ACM, 2006, pp. 282–291.

[5] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and recom-
mending api usage patterns,” in ECOOP 2009–Object-Oriented Programming.
Springer, 2009, pp. 318–343.

[6] T. Xie and J. Pei, “Mapo: Mining api usages from open source reposito-
ries,” in Proceedings of the 2006 international workshop on Mining software
repositories. ACM, 2006, pp. 54–57.

[7] N. Tansalarak and K. Claypool, “Xsnippet: Mining for sample code,” Proc.
21st OOPSLA, pp. 413–430, 2006.

[8] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns as partial orders
from source code: from usage scenarios to specifications,” in Proceedings of
the the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering.
ACM, 2007, pp. 25–34.

66

BIBLIOGRAPHY BIBLIOGRAPHY

[9] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering.
ACM, 2007, pp. 204–213.

[10] S.-K. Hsu and S.-J. Lin, “Macs: Mining api code snippets for code reuse,”
Expert Systems with Applications, vol. 38, no. 6, pp. 7291–7301, 2011.

[11] G. Wielenga, “Plug-in to google in 3 lines,” in Integrating Google Code Search
in NetBeans. NetBeans Magazine, Second Edition, 2005.

[12] “Koders,” http://www.koders.com, [Online; Accessed: 6-Jan-2015].

[13] M. Gabel and Z. Su, “Javert: fully automatic mining of general temporal
properties from dynamic traces,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering. ACM,
2008, pp. 339–349.

[14] R. Holmes and G. C. Murphy, “Using structural context to recommend source
code examples,” in Proceedings of the 27th international conference on Soft-
ware engineering. ACM, 2005, pp. 117–125.

[15] G. Uddin, B. Dagenais, and M. P. Robillard, “Analyzing temporal api usage
patterns,” in Proceedings of the 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering. IEEE Computer Society, 2011,
pp. 456–459.

[16] J. Han and M. Kamber, “Data mining, southeast asia,” in Southeast Asia:
Concepts and Techniques. Morgan kaufmann, 2006.

[17] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining
using a bitmap representation,” in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
2002, pp. 429–435.

[18] Y. Ye and G. Fischer, “Information delivery in support of learning reusable
software components on demand,” in Proceedings of the 7th international
conference on Intelligent user interfaces. ACM, 2002, pp. 159–166.

[19] S. Henninger, “Supporting the process of satisfying information needs with
reusable software libraries: an empirical study,” in ACM SIGSOFT Software
Engineering Notes, vol. 20, no. SI. ACM, 1995, pp. 267–270.

[20] P. S. R. Hudson, “Ef in depth,” in Proceeding of the second Eclipse Conference,
2005.

67

http://www.koders.com

BIBLIOGRAPHY BIBLIOGRAPHY

[21] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project
memory for software development,” Software Engineering, IEEE Transactions
on, vol. 31, no. 6, pp. 446–465, 2005.

[22] X. Zhang, K. Dimitrova, L. Wang, M. El Sayed, B. Murphy, B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner, “Rainbow: multi-xquery
optimization using materialized xml views,” in Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. ACM, 2003, pp.
671–671.

[23] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Grapacc:
a graph-based pattern-oriented, context-sensitive code completion tool,” in
Proceedings of the 34th International Conference on Software Engineering.
IEEE Press, 2012, pp. 1407–1410.

[24] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen,
“Graph-based mining of multiple object usage patterns,” in Proceedings of
the the 7th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering.
ACM, 2009, pp. 383–392.

[25] C. Orian̊a, A. Patrizio, B. P. Roberta, C. Marianna, J. Claudio, and
T. Rosanna, “De innovatione: the concept of innovation for medical tech-
nologies and its implications for healthcare policy-making,” Health Policy and
Technology, 2015.

[26] T. Fawcett, “Roc graphs: Notes and practical considerations for researchers,”
Machine learning, vol. 31, pp. 1–38, 2004.

[27] “Jet brain,” https://www.jetbrains.com/idea/, [Online; Accessed: 6-Jan-
2015].

68

https://www.jetbrains.com/idea/

	List of Figures
	List of Figures
	List of Tables

	List of Tables
	
	 PROBLEM STATEMENT
	 AIMS AND OBJECTIVES
	 COMPARATIVE CONTRIBUTION

	
	MINING TO CODE REUSE
	MINING TO ANALYZE THE SYSTEM
	MINING TO GUIDE SYSTEM CHANGES
	MINING TO PREDICT AND DETECT BUGS
	IMPROVING USER EXPERIENCE
	 PROBLEMS IN THE EXISTING APPROACHES

	
	REPOSITORY HEURISTICS
	 ENTERPRISE REPOSITORY
	 STANDARD LIBRARY
	REGULAR SEARCH
	REGULAR UPDATE
	EXTERNAL APIS

	 DATA MINING HEURISTICS
	DATA PREPROCESSING
	SOURCE CODE TO XML TRANSLATION
	APPLYING DATA MINING ALGORITHM
	SEQUENTIAL PATTERN MINING
	BUILDING MINED API XML REPOSITORY

	SEARCHING HEURISTICS
	 RECOMMENDING SEQUENCES
	RECOMMENDATION HEURISTICS

	
	ENVIRONMENTAL SET UP
	RESPONSE TIME EVALUATION
	PRECISION-RECALL EVALUATION
	RESULT DISCUSSION OF PERFORMANCE EVALUATION
	RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE ANALYSIS

	QUANTITATIVE COMPARISON
	EMPIRICAL STUDY

	
	FUTURE WORK

	Bibliography

