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Abstract

In an era where virtually every electronic device is built with the capability to connect
to the internet, and thus to the cloud, end users now are getting more adjoined with
numerous IoT devices which are part of a myriad of Smart Systems. Moreover, these
heterogeneous IoT environments, with newly boosted security features - thanks to
exponential growth in security solutions for IoT devices - possess unique behavioral
patterns in unique environments. Additionally, it is highly unlikely that in such
an environment, with plethora of device-types,every device will leak information at
once. Thus, in this work, we propose a security framework to establish secured
communication between end-user and the cloud using the behavioral patterns of the
IoT devices which are accessed by both the communicating parties following some
proper authorization. To implement our proposal, we have used Sensorscope sensor
network’s weather sensor data. After training an Long Short Term Memory network
model using time series of sensor data, we predicted session keys between the cloud
and the user using noisy data. The goals we attained from this work are Twofold.
First, we achieved forward secrecy using session keys which are generated using noisy
environment data. Second, it is observed that when we decrypted the messages using
noisy-data-generated session keys, the accuracy of decryption varied according to the
proportion of the added noise in the sensor data. For keys generated with normalized
noise with 3% standard deviation, we found out decryption accuracy to be as high
as 96%. On the other hand, communicating parties from two different environments
can only decrypt only 50% of the message bits accurately. Finally we argued, since
the noise in sensor data is reflected in the decryption accuracy, successful decryption
of messages with narrow margin of error verifies that the communicating parties are
part of the same environment and thus any intruder with information of the partial
environment cannot communicate without decryption accuracy falling drastically.
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To Carl Sagan
“The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the
carbon in our apple pies were made in the interiors of collapsing stars. We are

made of star stuff”
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Chapter 1

Introduction

Internet of Things (IoT) spectacularly emerged in the last decade, riding the all-
engulfing phenomenon of connecting every single device to the internet. Though a
formal definition of IoT is yet to be conceived, devices now are ever increasingly
sharing information with each other and with the internet. Consequently, new so-
called Smart Systems are coming to life. Cyber-Physical Systems in smart vehicles,
smart buildings, health monitoring, energy managements, construction management,
environmental monitoring, production and assembly line management, food supply
chain management are just some names [37] in an ocean of such systems. As IoT de-
vices are getting closer to our everyday life through various smart systems, ensuring
security for them are becoming increasingly challenging. If we look at the CISCO Pro-
posed seven layered architecture of IoT [13], we can broadly segregate them in three
major layers [37] - Edge-side Layer, Server/Cloud-side Layer and User-side Layer.
Most state-of-the-art security countermeasures for the vulnerabilities of the IoT ar-
chitectures constrict their scope within the Edge-side Layer of the aforementioned
architecture, while ignoring the other two layers as if they had no business with the
Edge-nodes. There is no denying the fact that it is absolutely imperative to ensure
the security of devices at the edges of any IoT architecture. However, our proposed
work here ensures secured communication between Server/Cloud-side and User-side
Layers utilizing the heterogeneity of the devices in Edge-side Layer.

An example of such secured communication is depicted in Figure 1.1. In our
example, sensors of different types in a smart car may connect to a remote cloud to
receive instructions. However, the instructions from the remote cloud must be passed
to the sensors through an on-board user-application. If all the brake-pedal pressure
sensors were compromised on a fateful day, it is highly unlikely that others would
walk the same path too. Thus an attacker may receive data from the car’s specific
sensors but not from the whole environment. Whereas, both the server and the on-
board user application can access the whole sensor array. Thus, for that particular
vehicle, both the app and the server coming to agree on the same session key to
encrypt communication, through the inputs from the heterogeneous sensors of the
car, implicitly results in Forward Secrecy and Group Membership Verification. Our
goal in this work is to use the heterogeneity of the IoT devices present in different
environments to come up with a security solution that rely neither on a particular
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Figure 1.1: Example of Secured Communication in a Smart Car

device which can be exploited for its specific vulnerabilities, nor on the user credentials
which can be set as default or lost.

In this work, we propose a LWE based public key encryption scheme that achieves
Forward-Secrecy by generating temporary session keys between the cloud and user
application. Our protocol achieves a common session key by predicting the outputs of
heterogeneous IoT devices in a particular environment using Long Short Term Mem-
ory network [50] generated time-series [22]. We tried to ensure that the behavior of
communicating parties in a certain environment is considered as an implicit part of our
forward secrecy scheme, so that the integrity of the messages remains intact, should
the long-term private key is compromised. Moreover, we ensured, to some extend,
anonymous verification of group-membership for the communicating parties. This is
achieved by assuming that observations of the same environment variables, spanning
over an extended period of time, can only be accessible to both parties of the same
environment. Consequently, such observations are hardly impeccable to reconstruct
without substantial error for anyone outside of that particular environment. As the
communicating parties need to observe and/or predict all the interacting variables in
a particular environment, we propose a protocol to construct a common session key to
send encrypted messages and successfully decrypt them. Moreover, communicating
parties attaining such session key proves that both the parties are part of the same
environment with access to the aforementioned variables. This, as a consequence,
verifies their Group Membership anonymously.

We demonstrated our scheme by collecting data from SensorScope sensor networks
deployed in Le Genepi[52] and Grand St. Bernerd[51] for over a period of more than
a month. We then generated session keys from predicting the time series of noise-
introduced sensor data using LSTM-network model. Later we used these session
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keys to encrypt messages following Learning With Error based public key encryption
method. Our best results show that after introducing 7.03% Normalized Root-Mean-
Squared Error (NRMSE) to the test sensor data, average decryption accuracy can get
as high as 96%.

1.1 Problem Statement

On October 21, 2016, many major internet sites like Twitter, Amazon, Tumblr, Red-
dit, Spotify and Netflix faced unprecedented congestion due to an attack on Krebs on
Security, OVH and Dyn, restraining them from providimg critical internet infrastruc-
ture services to the mentioned destinations [4]. Though this is not particularly a new
phenomenon in the recent years, what unique about this particular attack by Mirai
Botnet was the devices used - devices that were pervasive in nature. Hackers scoured
the internet in search for devices with factory set usernames and passwords. They
targeted devices from a specific manufacturer and exploited them to muster an attack
so immense that it affected millions of legitimate users and sustained for a significant
amount of time. These pervasive devices with internet connection - commonly known
as IoT - seemingly harmless while working alone can have earth shattering effects if
victimized in large numbers.

We understood from this security fallout that two major faults - one of them being
devices with default username and password - played the most decisive role in this
attack. But we cannot rely only on the users to be vigilant enough to always take
proper measures in changing default username and password. Moreover, the second
major flaw of such system is the staggering number of similar devices throughout the
internet. If one particular type of IoT devices show vulnerability to an attack, all
of these devices require revamped security to overcome such flaw. Yet, IoT devices
tend to work in collaboration with one another where such collaborative environments
remain heterogeneous. Additionally, IoT devices in a particular environment tend to
behave is specific ways.

From our perception of the attack by Mirai Botnet, we, here, have proposed a
solution which attempts to answer two Research Questions.

RQ1: Can we propose an encryption scheme that not only depends on
long-term secrets but collaborative behavior of a particular environment?

To answer RQ1, we have implemented forward secrecy in public key encryption.
The session key for the forward secrecy is generated from the behaviors of the IoT
devices. The session keys, coupled with long-term secret form the secret for encryption
of messages.

RQ2: Can we reflect the noise in behavior of an environment while de-
crypting an encrypted message?
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To answer RQ2, we have implemented our proposed protocol using weather sensor
data gathered from SensorScope Sensor Network spread through St. Bernerd and Le
Genepi. We introduced noise in data gathered from these sensors and emulated
them as behavior from a particular environment. Our result analysis shows that
as we introduce more noise in our behavior data, we find that larger percentage of
encrypted message bits are decrypted inaccurately.

1.2 Security Model

Lattice based encryption is relatively recent addition in cryptography, ushered in by
Ajtai [1], which can withstand even quantum algorithm based cryptanalysis. Re-
grettably, the same cannot be said for other popular cryptographic tools, such as,
Discrete Logarithm problem or Integer Factorization, which can easily be broken by
Shor’s Algorithm for Quantum Computers [54]. As of today, we do not have any
algorithm to solve Lattice based Closest Vector Problem (CVP) in polynomial time
[33], which makes CVP a perfect candidate for building foundation of Public Key
Cryptography. It can also be shown that a certain machine learning problem called
Learning With Error (LWE) is as hard to solve as CVP [48]. Moreover, Chris Peikert
proposes a non-quantum reduction from the variants of the shortest vector problem
to corresponding versions of the LWE problem which has given rise to efficient public-
key cryptosystems [43] and our proposed protocol is built upon the foundation of his
work. However, no matter how strong a public key encryption mechanism may be,
once implemented, it always runs the risk of being compromised by merely leaking
the private key or by using a default one. Forward Secrecy in public key cryptography
mitigates the risk of a secret key being leaked when the same secret key is being used
for a long time, by generating temporary session keys from the long-term secrets using
some one-way function. Our main focal point was to formulate a protocol that dose
not allow an attacker to ’Break’ the scheme before the session expires. Moreover, two
communicating parties can verify their membership to a common group by sharing
a common shared key as can be seen in [2] where the membership verification to a
group is done by Bloom Filters. In our proposed protocol to verify group membership,
we used the shared secret key that is generated by accessing the same environment
variables.

In this work, our goal is to propose a Public Key scheme with forward secrecy
and group membership verification for pervasive devices where we can ensure three
goals. First, our target is to make sure that the sender and the receiver of the
messages must be from the same environment. Second, we aspire to generate session
keys for both communicating parties at the start of each session of communication
by observing the environment variables. This means, the receiver can only decipher
a message successfully when she has access to the same session key as the sender.
Third, we allocated slim margin of error while observing data from the environment
so that such noise do not hinder encryption or decryption of the messages.

We considered a scenario where the long-term secret key is compromised and we
came up with a solution where we generated session keys from the data provided by
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pervasive devices. Such data are used to encrypt and share the session key between
the communicating parties. We implemented our customized version of encrypting
the key with One-Time Pads to allow noisy data from the pervasive devices to be
used in encryption and decryption of the session key at sender’s and receiver’s end
respectively. Later, the session keys are used as the secret key to create a One-Way
hash of the public key using Short Integer Solutions [34] by both the communicating
parties. Finally, the hash of the Public Key is used to encrypt and decrypt messages
using Learning With Error based Public Key encryption.

1.3 Our Contributions

The protocol we proposed in this work focuses on communication between two parties
where both of them have access to same environment variables. These variables may
be generated from private sensor cloud like the array of sensors found in a smart
car, weather stations or even in today’s cellphones. Our assumptions in this work
are that these sensors are heterogeneous in nature and replicating the sensor data is
difficult, even if some of the sensors in a particular environment is compromised. To
the best of our knowledge, achieving forward secrecy and verifying group membership
using heterogeneous pervasive device data as session keys in Lattice-based encryption
mechanism have never been done before. It should also be realized that, in our
proposed protocol, the observation of sensor variables may be accompanied with
significant amount of noise which, we have shown, has proportionally reflected on
the decryption accuracy of the messages encrypted following our protocol. After
the session key is shared, it is used to calculate the public key by both parties of
communication. We used Lattice-based encryption mechanism since lattices have
shown resilience to any contemporary cryptanalysis and their hardness can be proven
mathematically. Moreover, lattices give us flexibility in working with matrices, which,
in our case, are predicted and/or generated by acquired data originating from array
of sensors. We described the whole process elaborately in section 4.5.

1.3.1 Implementation of the Protocol

We implemented our protocol using weather sensor data of Sensorscope from 39 dif-
ferent locations. After acquiring weather sensor data of one month from [52] and [51],
we used them to train LSTM-Network model to later predict time series with noisy
data. As we wanted to use the data to generate session keys, waiting for more than
one month to get all the data for the next session key was not feasible. Thus, to
demonstrate our protocol, we took small portion of acquired data and added little
noise to them. We used our trained LSTM-network model to predict the rest of the
sensor data. Furthermore, as our weather data spanned for more than one month, and
for each day, we had several observations, we considered, data from each day belong
to a separate classes. To acquire maximized interclass distance and minimized intra-
class distance, we changed the axes of original data using LDA. The Eigenvectors of
the axes are used to change the axes of the predicted dataset. We had 9 features
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from each dataset - the different weather sensors. Upon applying cross-correlation
between the features, we ended up with 45 features. We used these 45 features from
both original data and predicted data to generate the session keys for communica-
tion between two parties. We elaborated the implementation procedure thoroughly
in chapter 5. The decryption accuracy of our protocol is discussed in chapter 6.

1.4 Thesis Organization

In this dissertation we contemplated on proposing a framework to secure communi-
cation over the cloud using the diversity of IoT devices. Our work in this thesis is
organized as follows. In chapter 2, we discuss the preliminary tools we used through-
out our work. The research works done to secure different layers of IoT architecture
are discussed in chapter 3. Our proposed framework and its details are elaborated
in chapter 4. The implementations we have done to experiment on our proposed
framework is detailed in chapter 5 whereas the results of such experiments by varying
different parameters are described in chapter 6. Finally, we conclude this dissertation
with chapter 7 where we have shed light on future directions the researchers might
follow to progress this work.
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Chapter 2

Preliminaries

This chapter includes the tools and techniques that we have gone through while
seeking a comprehensive security solution for IoT architecture. Some of these topics
may seem irrelevant to this dissertation but present the readers an entry point to the
world of cryptography and artificial intelligence. In this chapter, we constraint our
discussion in two parts. We first discuss the basis of Asymmetric Key Cryptography
and its mathematical background. Later we shift our focus to present a background
study on Artificial Neural Network.

2.1 Asymmetric Key Cryptography

The general notion of Asymmetric Key Cryptography and the distinctive feature
that separates it from its Symmetric counterpart is that, in the former, the key to
encrypt messages is different from the one to decrypt it. This is not the case for
Symmetric Key Cryptography where both the encryption and decryption keys are
the same. This distinctive feature of Asymmetric Key Cryptography has given rise
to Public Key Cryptography, where owner of the key-pair shares one key in the pair
with everyone - the Public Key - and keeping the other part secret - the Private
Key. Either of the keys can be used to encrypt a message; the opposite key from the
one used to encrypt the message is used for decryption. In this section we focus our
discussion on how these key-pairs can be generated and what purpose they can serve
as the cryptographic primitives.

We start our discussion by describing three NP-hard problems - Integer Factor-
ization Problem [30], Discrete Logarithmic Problem [27] and Closest Vector Problem
[33]. All these three have no algorithm to solve an average instance of the problem ef-
ficiently in polynomial time, which means these problems have been used to generate
key-pairs and cryptographic primitives in different public key cryptographic schemes.

2.1.1 Integer Factorization Problem

To decompose a sufficiently large composite integer into a product of smaller integers
is not a problem that can be solved by any already known efficient algorithm in
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polynomial times. Yet this has not been proven either that there cannot be any
algorithm that can solve this problem in polynomial time. This perceived hardness
of decomposition of a large integer into its constituent factors is known as Integer
Factorization Problem. When the smaller constituent smaller integers are primes, the
problem is known as Prime Factorization. In [29], Kleinjung et al. has shown that
even with hundreds of machines, a 768 bit number takes at least two years to be
decomposed.

Example. We can easily calculate the product of two prime numbers: p1 and p2.
The Prime Factorization Problem states that given largenumber = p1×p2, decomposing
largenumber into its prime factors is not solvable in polynomial times when none of
p1 and p2 is known. However, if someone knows any of the primes, the other prime
factor of largenumber can easily be found using trivial division operation.

Application: RSA. In RSA, this asymmetry is based on the practical difficulty
of the factorization of the product of two large prime numbers. The acronym RSA is
made of the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard
Adleman, who first publicly described the algorithm in 1978 [35]. Here we have
presented a worked example of RSA algorithm. The algorithm involves four steps:

• Key Generation This steps to generate the Public Key and the Private Key
is given below:

1. Select two prime numbers,p and q, that are sufficiently large. For this
example we have selected very small primes compared to the ones used in
practical implementation.

p = 61; q = 53

2. Compute n = pq giving

n = 61× 53 = 3233

3. Compute the totient of the product as λ(n) = lcm(p− 1, q − 1) giving

λ(3233) = lcm(60, 52) = 780

4. Choose any number 1 < e < 780 that is coprime to 780. Choosing a
prime number for e leaves us only to check that e is not a divisor of 780.
let, e = 17

5. Compute d, the modular multiplicative inverse of e (mod λ(n)) yielding,
d = 413. The process is described in Appendix A.

The Public Key is (n = 3233, e = 17) whereas the Private Key is (n = 3233, d =
413).
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• Key Distribution Suppose that Bob wants to send information to Alice. If
they decide to use RSA, Bob must know Alice’s public key to encrypt the
message and Alice must use her private key to decrypt the message. To enable
Bob to send his encrypted messages, Alice transmits her public key (n, e) to
Bob via a reliable, but not necessarily secret, route. Alice’s private key (d) is
never distributed.

• Encryption For a padded plaintext message m, where m = 65, the encryption
function is

c(m) = me (mod n)

= 6517 (mod 3233)

= 2790

(2.1)

Thus, the encryption of 65 is 2790.

• Decryption The decryption function for cipher text, c = 2790 is

m(c) = cd (mod n)

= 2790413 (mod 3233)

= 65

(2.2)

2.1.2 Discrete Logarithm Problem

To introduce the Discrete Logarithm Problem, we start with its first application in
cryptography. Whit Diffie and Martin Hellman in 1976 first applied this problem
in sharing keys secretly among two parties [17]. This is a cryptographic method to
exchange keys between two parties without having to actually share it on an unsecure
line. In this method two parties who want to share a symmetric key generate a
common public key for both of them along with a private key for each of them. Now
the public and private parts of the key are mixed together generating two separate
keys for two parties and the newly generated key in exchanged. The received key
is again mixed with the private part of keys of each individuals and it results in a
symmetric key, which is only known by the sharing parties and no one else. Here is
an example of the protocol, where Alice and Bob shares a common secret.

1. Alice and Bob agree to use a modulus p = 23 and base g = 5 (5 is a primitive
root of modulo 23. The process of finding primitive root is described later).

2. Alice chooses a secret integer a = 6, then sends Bob A = ga (mod p)

A = 56 (mod 23) = 8

3. Bob chooses a secret integerb = 15, then sends Alice B = gb (mod p)

B = 515 (mod 23) = 19
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4. Alice computes s = Ba (mod p)

s = 196 (mod 23) = 2

5. Bob computes s = Ab (mod p)

s = 815 (mod 23) = 2

6. Alice and Bob now share a secret (the number 2).

Both Alice and Bob have arrived at the same value, because,

Ab (mod p) = (ga (mod p))b (mod p)

= (ga)b (mod p)

= (gb)a (mod p)

= (gb (mod p))a (mod p)

= Ba (mod p)

(2.3)

To understand the underlying mechanism and mathematical background behind
this secret sharing protocol, we have to get ourselves accustomed to the following
concepts.

• Groups: A Group is an abstract mathematical concept which is defined by
a set of elements and one group operation. The operation must be similar to
ordinary integer arithmetic but has to be defined on pairs of elements of the
Group. The result of the operation must also be an element of the same Group.

For example, let the set, integer modulo n forms a group under the operation
of addition modulo n. If Zn is the set of integers modulo n, then,

Zn = {0, 1, ........., n− 1}

If we add any two elements in the group and get the modulo of n, we will get
an element in the group. However, this is not the only property that a Group
has to hold. If G◦ is a group which is defined over the operation ◦, then it must
hold the following properties.

1. Closeness: If, a, b ∈ G◦, then, a ◦ b = c ∈ G◦

2. Associativity: If, a, b, c ∈ G◦, then, (a ◦ b) ◦ c = a ◦ (b ◦ c)
3. Neutral Element: There exists a neutral element, e, for which a◦e = a.

In the previous example, 0 is the neutral element in Zn.

4. Inverse Element: There exists an inverse element, a − 1, for each
element a ∈ G◦, for which a ◦ a−1 = e. In the previous example, for each
element in Zn, there can be found another element in the same group for
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which the addition modulo n of those two elements will be the neutral
element, 0. For example,

0 + 0 (mod n) = 0

1 + (n− 1) (mod n) = 0

2 + (n− 2) (mod n) = 0

.

.

.

(n− 1) + 1 (mod n) = 0

(2.4)

• Abelian Group: An Abelian Group has all the properties of a Finite Group
along with the property of Commutativity. That is, for a group G◦ to be
Abelian, elements a, b ∈ G◦ has to show the commutative property: a◦b = b◦a.

• Multiplicative Group: One of the group operations - multiplication modulo
n- has found rather importance in cryptography because of it can be related with
prime numbers. From Appendix A, we have seen that, Modular Multiplicative
Inverse of a modulo n exists only if gcd(a, n) = 1. Now, for a set of elements
can only be a group under the operation of multiplication modulo n when there
exists a Modular Multiplicative Inverse of each element of the set.

For example, for the set Z9 to become a multiplicative group Z∗9, it has to get
rid of the elements a ∈ Z9 for which gcd(a, 9) 6= 1. Thus,

Z∗9 = {1, 2, 4, 5, 7, 8}

Now, if we select an group operation that is multiplication modulo prime in-
teger, p, we can take all the integers less than p and greater than 0 to form a
multiplicative group. Such as,

Z∗p = {1, 2, 3, ..., p− 1}

• Finite Group: If the number of elements of a Group is finite, then the group
is called a Finite Group. For example Z∗9 is a finite group.

• Cardinality: The Cardinality or the Order of a group is the number of ele-
ments present in that group. For example, the Cardinality of Z∗9 = ||Z∗9|| = 6.

• Order of an Element: Each element in a Multiplicative Group can generate
certain number of elements of the same group by multiplying with itself . For
example, if we consider the group Z∗11, where,

Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

11



Now, the element a ∈ Z∗11 can generate certain elements in the group Z∗11. if
a = 3,

a1 (mod 11) ≡ 3; a4 (mod 11) ≡ 4;
a2 (mod 11) ≡ 9; a5 (mod 11) ≡ 1;
a3 (mod 11) ≡ 5; a6 (mod 11) ≡ 3;

As we can see, element a = 3 ∈ Z∗11 generates {3, 9, 5, 4, 1} by multiplying with
itself. After that the process repeats itself by generating the same elements.
The minimum number of operations that it took for a = 3 to generate the
neutral element e = 1, is called the order of the element.

ord(a) = ord(3) = 5

• Generator: If the order of an element in a Group is same as the Cardinality of
that Group, then the element is called a Generator of the Group. A Generator
is also known as the Primitive Element or Primitive Root.

For example, the element a = 2 is a Generator for Group, Z∗11, because

a1 (mod 11) ≡ 2; a4 (mod 11) ≡ 5; a7 (mod 11) ≡ 7;
a2 (mod 11) ≡ 4; a5 (mod 11) ≡ 10; a8 (mod 11) ≡ 3;
a3 (mod 11) ≡ 8; a6 (mod 11) ≡ 9; a9 (mod 11) ≡ 6;

a10 (mod 11) ≡ 1;

• Cyclic Group: A Group, G, is called Cyclic if it contains an element (α) with
maximum order, such that ord(α) = ||G||. For every prime p, Z∗p is a Finite,
Abelian, Cyclic group.

Now as we go back to our previous example of Diffie-Hellman Key exchange protocol,
where we took g = 5 and p = 23, since 5 is a Generator or Primitive Root of the group
Z∗23. But to relate Discrete Logarithm Problem with this key exchange protocol, let
us consider, β ∈ Z∗p. Now, β can be expressed as,

gx ≡ β (mod p) (2.5)

Discrete Logarithm Problem in Zp

If Eve is paying attention to the communication between Alice and Bob, Eve will
be given p, β ∈ Z∗p and g and will need to find x such that equation 2.5 holds. Such
an integer x is the discrete logarithm of β to the base g. Thus, x = indβg (mod p)
(another word for Discrete Logarithm is index ) [27]. Unfortunately for Eve, finding
such x is a computationally hard problem given a large enough prime p. And this is
the basis of Discrete Logarithm Problem.

Elliptic Curves as Cyclic Groups

Similar to multiplicative groups, Elliptic curves are potent candidates as cyclic groups
to be utilized in cryptography.

12
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(a) Elliptic Curve created by y2 = x3−x+1 (b) Group Operation on Elliptic Curve

Figure 2.1: Elliptic Curve as a Cyclic Group

Elliptic Curve Background. The main motivation behind Elliptic Curves is the
search for a cyclic group other than Z∗p for which Discrete Logarithm Problem is
difficult and the key is shorter than the multiplicative groups. We could consider
polynomials like x2+y2 = r2 or ax2+by2 = r2 which provide specific shapes. However
for using in cryptography, we need to consider polynomial over Zp. Similarly, elliptic
curves are also some polynomial defined over Zp and show cyclic group properties.
Why Elliptic curves and not some other polynomial shows such properties are beyond
the scope of this work. Readers should look into the origin of Elliptic Curves in
cryptography from [36].

Definition. The elliptic curve over Zp is the set of all pairs (x, y) ∈ Zp such that

y2 ≡ x3 + ax+ b (mod p)

where, p > 3

and, (a, b) ∈ Zp
and, 4a3 + 27b2 6≡ 0 (mod p)

(2.6)

The elliptic curve is defined together with a point θ at infinity along y-axis. Moreover,
from figure 2.1a, we can see that elliptic curves are symmetric along x-axis. If we
connect any point on the curve to the point at infinity θ with a line, the connecting
line will be parallel to the y-axis.

Group Operations on Elliptic Curve. For a Discrete Logarithm Problem, we
need a Cyclic Group with a set of elements and a group operation. Equation 2.6
gives us the set of elements. Two group operations are defined over the Elliptic
curves, namely Point Addition and Point Doubling. In figure 2.1b, we show examples
of both the operations.
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• Point Addition: As we can see from the figure, points P and Q on the curve
are joined with a line which intersects the curve on a third point. The point is
reflected on the other side of the x-axis, since the curve is symmetric along that
axis. Thus we get a point R, by adding two points, P and Q, on the curve.

• Point Doubling: A tangent, drawn along the point V on the elliptic curve
in figure 2.1b, intersects the curve on another point. The intersection point is
reflected along the x-axis and we get the point 2V . The process done on the
elliptic curve is known as point doubling.

Analytical Expressions for Group Operations. For an elliptic curve E : y2 ≡
x3 + ax + b (mod p) and points P1, P2 ∈ E, where, P1 = (x1, y1) and P2 = (x2, y2),
we calculate the analytical expressions for the group operation in the following way.

As the equation of the curve, E is given as:

y2 = x3 + ax+ b (2.7)

We get the values of x3 and y3 from equation 2.8.

x3 = m2 − x1 − x2 (mod p)
y3 = m(x1 − x3)− y1 (mod p)

where,

m =


y2−y1
x2−x1 (mod p) ; if P1 6= P2 [Point Addition]

3x21+a

2y1
(mod p) ; if P1 = P2 [Point Doubling]


(2.8)

The derivation of the equations are given in Appendix B.

Example. Here we present an example on how we calculate point addition and point
doubling on Elliptic curves. Let, y2 = x3 + 2x + 2 (mod 17). For correspondence
with the equation 2.8, here we have, a = 2, b = 2 and p = 17. Let a point be Q(5, 1).

• Point Doubling: In point doubling, the slope,

m =
3× (52) + 2

2× 1
= (2)−1 × 77 (mod 17)

The calculation of Modular Multiplicative Inverse of 2 (mod 17) is shown in
Appendix A. From the calculation, we see,

2−1 (mod 17) ≡ 9
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Thus,
m ≡ 9× 77 (mod 17)

≡ 9× 9 (mod 17)

≡ 81 (mod 17)

≡ 13 (mod 17)

(2.9)

Thus, after point doubling, the point 2Q(x3, y3) is calculated by:

x3 ≡ m2 − x1 − x2 (mod 17)

≡ 132 − 10 (mod 17)

≡ 6 (mod 17)

y3 ≡ m(x1 − x3)− y1 (mod 17)

≡ 13× (5− 6)− 1 (mod 17)

≡ 13× 16− 1 (mod 17)

≡ 3 (mod 17)

(2.10)

Thus, 2Q ≡ (6, 3) (mod 17)

• Point Addition: If we want to add 2Q(6, 3) from the previous example to
Q(5, 1), this will require point addition on Elliptic Curve. For point addition,
slope m is calculated by

m ≡ y2 − y1
x2 − x1

(mod 17)

≡ 1− 3

5− 6
(mod 17)

≡ 2

1
(mod 17)

≡ 1−1 × 2 (mod 17)

≡ 2 (mod 17)

(2.11)

Now let R = Q+ 2Q and R ≡ (x3, y3) (mod 17). So,

x3 ≡ 22 − 6− 5 (mod 17)

≡ −7 (mod 17)

≡ 10 (mod 17)

y3 ≡ m(x3 − x1)− y1 (mod 17)

≡ 2(10− 5)− 1 (mod 17)

≡ 9 (mod 17)

(2.12)

Thus, R ≡ (10, 9) (mod 17)
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(a) Elliptic Curve Neutral Element (b) Elliptic Curve Inverse Element

Figure 2.2: Group Properties of Elliptic Curve

Elliptic Curve Group Properties. Elliptic curves hold all properties to be
considered as groups. Herein, we will discuss two vital properties of groups that are
held by elliptic curves.

• Neutral Element: For a set of elements in a group E, there should be a
neutral element θ for which for all elements P ∈ E, P + θ = P .

As we can see from equation 2.6, elliptic curve defines an element at infinity,
θ along y-axis and the line, intersecting any point on the curve and θ will be
parallel to y-axis. Thus, if we perform Point Addition on the neutral element θ
and any point on the curve, P , the reflection will be along y-axis on P . Figure
2.2a depicts the point addition operation between P and θ.

• Inverse Element: In a group E, for each element P , there is an inverse
element (−P ), for which P + (−P ) = θ, where θ is the neutral element.

Since Elliptic curves are symmetric along x-axis, if P ∈ E and P = (x, y),
then (−P ) ∈ E = (x,−y). As we can see from the figure in 2.2b, the point
addition operation of P and (−P ) will be reflected along y-axis back to the
neutral element θ at infinity. This is because the line connecting P and (−P )
is parallel to y-axis and such line connects θ at infinity.

Group Cardinality of Elliptic Curves. According to Hasse’s theorem, the group
cardinality, #E of the elliptic curve, described by equation 2.6, can be estimated by
the approximation given by equation 2.13.

||#E − (p+ 1)|| ≤ 2
√
p (2.13)

For a large enough prime number, equation 2.13 can be approximated as

#E ≈ p
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Elliptic Curve Discrete Logarithm Problem

Given an elliptic curve E, we consider a primitive element P and another element T on
the curve. The Discrete Logarithm problem is to find the number of group operations
it takes to go from P to T . In other words, if P + P + ......... + P = dP = T , then
the Discrete Logarithm problem is to find the integer d, where P and T are given.

If the elliptic curve is chosen carefully (i.e., NIST proposed elliptic curves [20]),
the best known algorithm to compute the EC-DLP requires approximately

√
p steps,

where p is the finite field over which the curve is defined (i.e., a large prime). All
Elliptic Curve protocols rely on this hardness of the EC-DLP.

Elliptic Curve Diffie-Hellman Key Exchange

We show here a straight forward adoption of Diffie-Hellman Key Exchange protocol
in Zp using elliptic curves. Let, Alice and Bob want to exchange keys and they decide
on a particular elliptic curve, E and primitive element P = (x, y). The following
steps describe the key exchange protocol.

1. Alice and Bob both selects their secret keys: a and b respectively, where

a, b ∈ {2, 3, .........,#E − 1}

2. Alice calculates A by hopping around the elliptic curve E, a times. Similarly,
Bob calculates B by b times hopping around the same elliptic curve. Both of
them start their hop from the primitive element P . A and B are the public
keys of Alice and Bob respectively. Thus,

A = aP = point on the curve, E = (xA, yA)

B = bP = point on the curve, E = (xB, yB)

3. Alice and Bob exchange their public keys with each other.

4. Upon receiving Bob’s public key,B, Alice computes a.B = (xAB, yAB), by hop-
ping along the elliptic curve E, a times, starting from point B. At the same
time, after Bob receives Alice’s public key, A, Bob computes b.A = (xAB, yAB)
by hopping along the curve b times, starting from point A.

5. Since both Alice and Bob have come up with the shared secret T = (xAB, yAB),
they can use either of these two values to encrypt and decrypt messages.

Discussion. The hardness of Discrete Logarithm Problem depends on calculating
the number of hops it takes to get from P = (x, y) to T = (xAB, yAB). It is computa-
tionally expensive to calculate these values. If we look at the described key exchange
protocol both Alice and Bob should also face the same problem, since they will also
have to calculate the hops sequentially - a times for Alice and b times for Bob. To
alleviate the computational complexity of calculating points on the curve, given the
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hop count, [23] includes a list of algorithms i.e., Double-and-Add method, Windowed
method, Sliding Window method, etc.

In the following section, we discuss the Double-and-Add method as an example
to explain the efficiency of calculating a point of a curve, if the number of hops are
already determined.

Algorithm 1 Double-and-Add Method

Require: Scalar Multiple 2 ≤ a < #E, Primitive Element P ∈ E
1: b ∈ Zlen2 ← ConvertToBinary(a) {Convert a into binary string b of length len}
2: Q← P
3: for i = 2 to len do
4: Q← Q+Q {Point Doubling}
5: if b[i] ==′ 1′ then
6: Q← Q+ P {Point Addition}
7: end if
8: end for
9: return Q

Double-and-Add Method

In this part, we describe the Double-and-Add method to compute the scalar multiple
of P , where P is a Primitive Element on an Elliptic Curve. The method works by
converting the scalar multiple, a, of P into a binary string and then traversing the
string from left to right. For each 0 in the string, the method doubles the point on
the curve and for each 1 the point is doubled at first and added with the primitive
element P . Finally, we receive the point on the curve equivalent to aP .

Algorithm 1 describes the process in brief. As the binary string is traversed from
left to right, this method is also known as Left-to-Right method.

Table 2.1: Example of Double-and-Add Method

Step Operation Comment Decimal
Scalar

Multiple

Binary
Scalar

Multiple
φ Q← P Initial Step 110P 12P
1a Q← Q+Q Point Doubling 210P 102P
1b Q← Q+ P Point Addition 310P 112P
2a Q← Q+Q Point Doubling 610P 1102P
3a Q← Q+Q Point Doubling 1210P 11002P
3b Q← Q+ P Point Addition 1310P 11012P
4a Q← Q+Q Point Doubling 2610P 110102P
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Example. Let us calculate the value of 26P . The scalar multiple here is 2610 given
as a decimal value. If we convert 26 into binary string, we get 110102. Thus calculating
the value of 2610P is equivalent to calculating 110102P . Now we describe the steps
of calculating the value of 2610P in table 2.1.

Discussion. As we can see in the example given in table 2.1, calculating 26P took
only 6 steps to be computed. A brute-force method still takes 26 steps to compute
the value. This results in computational efficiency by reducing the complexity from
O(n) to O(log2 n) where the finite field of the Elliptic Curve is defined by a n-bit
prime number.

2.1.3 Closest Vector Problem

Previously, we have discussed two computationally hard problems based on which
many cryptographic tools have prevailed and elaborately used. One major issue re-
garding Integer Factorization Problem and Discrete Logarithm Problem is that no
one can prove that there can not be an algorithm that solves the problems in polyno-
mial times. As Quantum Computers are increasingly becoming a reality, the risk of
quantum algorithms solving such problems are starting to be realized throughout the
cryptographic community. Moreover, these computational problems do not ensure
every test-cases to be as hard as the next one. For example, Integer Factorization
problem can be hard to solve given very large prime numbers but the same cannot
be said for any randomly selected prime.

A ground-breaking solution to such problems was established on foundation laid
by Ajtai in [1] where he proved the hardness of lattice problems in average cases
whose details, however, is not the focus of our discussion in this work. To understand
the Closest Vector Problem, we need to understand the basics of Lattices.

Lattice. Let Rm be an m-dimension Euclidean space. A Lattice in Rm is the set

L(b1, ...,bn) =

{
n∑
i=1

xibi : xi ∈ Z

}
(2.14)

of all integer combinations of n linearly independent vectors b1, ...,bn in Rm where
m ≥ n. That is, n linearly independent vectors, each with m dimensions and there
integral combinations, form a Lattice. Each point in the lattice is described by the
equation 2.14, from where we can see that the lattice points are spread throughout
the Rm plane. The integers n and m are called the rank and dimension of the Lattice
L, respectively. The sequence of vectors b1, ...,bn is called a Lattice Basis and can
be conveniently represented as a matrix. For example,

B = [b1, ...,bn] ∈ Rm×n
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Figure 2.3: Example of a Lattice in R2

The basis vectors are the columns of matrix B which are linearly independent.
Thus, the lattice notation L can be written more compactly as

L(B) = {Bx : x ∈ Zn}

We can calculate L by regular matrix-vector multiplication. Graphically, a lattice
can be described as the set of intersection points of an infinite, regular n-dimensional
grid. It should be mentioned here that a lattice n independent vectors each with
m-dimensions will form an infinite n-dimensional grid.

A 2-dimensional example is shown in Figure 2.3. The lattice points are spread
through the whole R2 plane. We are just depicting a small portion of the lattice
points. Each point on the figure is part of the lattice. There, the basis vectors are

b1 =

[
1
2

]
; b2 =

[
1
−1

]

Moreover, each point on the figure 2.3 is integral combination of b1 and b2. For
example, the vector, c is obtained by 2b1 + b2.

Definition of CVP. Closest Vector Problem or CVP is one of the computationally
hard problems formulated on Lattices. Given a lattice L ⊂ Rn, a target point t ∈ Rn
and a distance bound d, the CVP asks for a lattice point v ∈ L at distance ||t−v|| ≤ d,
provided such lattice point exists. In the ”Exact” version of CVP, the distance bound
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Figure 2.4: Example of Closest Vector Problem in R2

is considered to be the distance d = µ(t,L) = minv∈L||t−v||. In other words, in exact
CVP, the task is to find the lattice point which is the closest to a given point. In
the ”Approximate” version, CV Pγ, the distance bound is set as d = γ.µ(t,L), which
means to find any lattice point within a n-dimensional sphere centering the point t
having a radius of d. Here γ ≥ 1 is a coefficient that determines the length of the
radius of the sphere.

In figure 2.4, we have given an example of a 2-dimensional lattice generated by
two basis vectors b1 and b2. We also considered an arbitrary point t ∈ R2 space. As
we can see from the figure, the closest lattice point is at d1 distance from t. Let, the
point is v1. In the Exact version of CVP, point v1 should be the only solution to the
problem. However, in the Approximate version, the distance bound is given by d. As
we can see from the figure, point v1 is inside the 2-dimensional sphere with radius d.
Interestingly, the lattice point, with distance d2 from t, is also inside the sphere. Let,
the new point be v2. Thus, in CV Pγ, both v1 and v2 will be a solution to the Closest
Vector Problem.

Discussion. As per the example given in figure 2.4, we can solve the problem very
easily since the lattice given there has only two dimensions. However, increasing the
number of dimensions of basis vectors, the CVP problem becomes more and more
difficult to solve within polynomial times. Thus, to solve a lattice based Closest
Vector Problem is computationally difficult with increased ranks and dimensions.
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Application of CVP in Cryptography

With the introduction of one-way fuction based on Short Integer Solution problem
by Ajtai[1] in 1996, lattice based cryptography took off. Later Oded Regev’s seminal
work on Learning with Error problem[48] formulated a cryptographic tool based on
this machine learning problem. In this section, we are going to discuss the application
of these problems in cryptography and why both of them fall in the family of Closest
Vector Problem.

Short Integer Solution

Let, m,n, q ∈ Z and a matrix A has n rows and m columns and each of the values
of A are between 0 and q − 1, that is A ∈ Zn×mq . Moreover, let x be a short column
vector in terms of Euclidean distance and has m dimensions, that is, x ∈ {0, 1}m.
Furthermore, let m ≥ n log2 q and ||x|| ≤

√
n log2 q. The Short Integer Solution asks

to find the short vector x, given the matrix A and vector b = A.x ∈ Znq .

Example. Let m = 4, n = 3, q = 10. Thus, A ∈ Z3×4
10 . Let,

A =

1 2 9 4
5 7 4 8
9 5 7 6

 and x =


1
0
1
1

 . Thus, b = A.x =

14
17
22



Now, to solve b = A.x where we have 3 equations and 4 unknowns, such as,

1.x1 + 2.x2 + 9.x3 + 4.x4 = 14

5.x1 + 7.x2 + 4.x3 + 8.x4 = 17

9.x1 + 5.x2 + 7.x3 + 6.x4 = 22

(2.15)

Discussion. Since, equation 2.15 is a non-homogeneous linear system, the general
solution to such system consists of a specific solution to the system (Ax = b) and a
generic solution to the homogeneous system (Ax = 0). However, since the number of
equation is less than the number of unknowns in equation 2.15, there can be arbitrary
number of solution to the specific solution to the inhomogeneous system. Thus, the
solution vector [x1, x2, x3, x4]

T can be arbitrarily long. As an example, if we consider
it as a Closest Vector Problem, the solution vector will be far from the target point
t, as shown in figure 2.4. Thus, the solution vector cannot be solved by any known
algorithm in polynomial time.

Compression using SIS. As, A ∈ Zn×mq and x ∈ {0, 1}m, fA(x) = Ax (mod q) ∈
Zn×1q . The main security parameter here is n : the number of rows in the matrix A.
This defines the difficulty of inverting a matrix which implicitly means that we can
make m as large as we want. The function fA(x) maps m bits of vector x to n log2 q
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bits since input x is binary but output is integer (mod q). Hence, we introduce
log2q with n. When m > n log2 q, fA(x) maps larger domain of inputs to smaller
n log2 q output. Thus, fA(x) acts as a compression function. Equation 2.16 shows an
example of such compression. Here we can see that for m = 2n log2 q, m-bit input is
compressed into m

2
-bit output by compression function fA(x).

Let, m = 2n log2 q

Thus, fA : {0, 1}m → {0, 1}n log2 q

=⇒ fA : {0, 1}m → {0, 1}
m
2

(2.16)

Collision Resistant Hash Function. A collision resistant hash function com-
presses the input from set X to some output set Y, where ||X|| > ||Y||. Since, the
size of input set X is less than that of output set Y, there are collisions generated by
such functions. However, finding these collisions are computationally hard problems.
As for Short Integer Solution problem, the reasons behind SIS produces Collision
Resistant Hash Function is described below.

• One-way Function. Given a SIS function fA : {0, 1}m → Znq , given a output
vector t ∈ Znq , finding the input short vector x ∈ {0, 1}m is computationally
hard. This makes function fA a One-way function.

• Regularity. A function f : X → Y is regular if all y ∈ Y have same |f−1(y)|.
That is, if f(x ∈ X) = y ∈ Y, then the inverse function f−1(y ∈ Y) will produce
|x ∈ X| as output. In other words, A function is regular, if uniform input
distribution to the function generates uniform output distribution.

Now if we fix two short vectors x1 and x2 for our SIS function while randomly
select the key A1 and A2, the outputs of fA1(x1) and fA2(x2) are pairwise inde-
pendent. Moreover, since SIS functions map larger domain of inputs to smaller
outputs, both of t fA1(x1) and fA2(x2) are pairwise independent compression
functions. From Leftover Hash Lemma [24], we know that a compression func-
tion is regular if it is pairwise independent. This makes SIS a regular function.

From the discussion above, we understand that SIS is One-way and Regular. This
makes the outputs from the SIS function to be distributed randomly and the output
cannot be traced back to the input. Thus, even if collision happens they are random
and computationally hard to be reproduced. Thus, Short Integer Solution creates
Collision Resistant Hash function. Moreover, we can see that the randomness of the
hash function depends on the size of output set. As a result, the security of the hash
function fA : {0, 1}m → Znq depends on the size of n whereas m can be increased as
much as needed.

Perfectly Hiding Commitment. SIS functions can be used to perfectly hide
commitment. The analogy behind such cryptographic tool is the following:

• Lock message in a box
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• Give the locked box to a receiver but keep the key

• Give the key at a later time.

For example, Person A may have found an algorithm to predict the stock market with
absolute precision. However, to prove such result to Person B, Person A may want to
expose the prediction to Person B before the stock market opens for a particular date.
However, to disclose such result to Person B may give Person B the leverage to invest
in stock market and thus creating an uneven playing field for the other investors.
Person A, thus, locks his prediction in a box and sends it to Person B. Once the
actual status of the stock market is out, Person A can give Person B the key to the
box. Person B can open the box and check the results of Person A’s prediction by
cross-referencing it with the actual stock market data. Such process dose not provide
any knowledge to Person B yet proves a point by Person A. Such cryptographic tool
is known as Zero Knowledge Proof. In order to execute such action, one may need
to perfectly hide the message until a desired time come when the message cannot be
changed, rather the message is decrypted. The implementation of such process can
be described as the following.

• Randomized Function. Let msg be the message. A randomizer r is imple-
mented on the message to create a commitment. So the randomized function
becomes c = Commit(msg, r)

• Commit(msg, r). The randomized message c is given to the verifier who
will cross-check the message m once she receives the key to the committed
randomized message.

• Open. When the right time comes, the sender reveals both msg and r
such that the verifier can calculate Commit(msg, r) = c′ and checks that the
previously sent commitment c is in fact same as c′.

Now that we understand the process of Zero Knowledge Proof, we should look at the
reasons why such process is called Commitment.

1. The message sender cannot change her message and get the same cipher
text. Let c = Commit(msg, r) is given to the verifier. After a while, the
sender changes her mind and tries to find another randomizer r′ such that
she would generate the same cipher text c = Commit(msg′, r′). However,
Commit(msg, r) = Commit(msg′, r′) is hard to find.

Thus, once the sender commits to a message it is computationally hard for her
to prove that she sent a different message.

2. As Commit(msg, r) is randomized, it is hard for the verifier to guess msg from
c = Commit(msg, r) without any knowledge of r.

Thus, from the above discussion , we can conclude that perfectly hiding commitments
need to have the following properties:
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1. Hiding: c = Commit(msg, r) is independent of msg . r randomizes the
function.

2. Binding: For msg 6= msg′, Commit(msg, r) = Commit(msg′, r′) is hard to
find.

Now that we understand the basic mechanism of Perfectly Hiding Commitment, let
us look at how we can implement such protocol using lattices.

• Choose A1, A2 ∈ Zn×mq where A1, A2 are random.

• Message msg ∈ {0, 1}m and randomness r ∈ {0, 1}m.

• Calculate commitment:

Commit(msg, r) = f[A1,A2](msg, r)

= A1.msg + A2.r

= c

(2.17)

• Send cipher text c to verifier. Both Sender and Verifier know about A1 and A2.

• Later, reveal msg, r to verifier to cross-check the message.

Finally, let us look at the properties of the commitment based on SIS.

1. Hiding Property: It can be noticed that A2.r = fA2(r) which is uniform at
random over Znq . When we add A2.r to A1.msg, we get a completely random
value.

2. Binding Property: Finding Commit(msg, r) = Commit(msg′, r′) where
(msg, r) 6= (msg′, r′) gives a collision in f[A1,A2]. But as we discussed earlier,
such collision is hard to find in SIS.

Digital Signature. To understand the procedure to produce digital signature
using Short Integer Solution, we need to at first look at the homomorphism property
of SIS. A function f : X → Y is called homomorphic if f(x1 ∗ x2) = f(x1) ∗ f(x2)
where x1, x2 ∈ X and ∗ is an arbitrary binary operation. SIS shows the following
homoporphic properties.

1. Let, A ∈ Zn×mq and x1, x2 ∈ {0, 1}m are two short vectors. Consequently,
(x1 + x2) is also short. Thus, fA(x1 + x2) ≈ fA(x1) + fA(x2) is approximately
homomorphic.

2. SIS is also key-homomorphic. For example, let, A1, A2 ∈ Zn×mq and x ∈ {0, 1}m
where A1, A2 are the keys.

f[A1+A2](x) = fA1(x) + fA2(x)

= A1.x + A2.x
(2.18)
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Now let us look at a common digital signature scheme.

• Using a Key Generation algorithm, generate a public key, secret key pair
(Pk, Sk).

• Sign a message msg with the secret key Sk to generate the signature σ.

Sign(Sk,msg) = σ

• Verify the signature using Public Key Pk, message msg and signature σ.

Finally, let us look at the implementation details of digital signatures using Short
Integer Solution. Let X = [x1, x2, ........., x`] ∈ {0, 1}m×`. Thus,

fA(X) = [fA(x1), fA(x2), ........., fA(x`)]

= [Ax1, Ax2, ........., Ax`]

= AX (mod q) ∈ Zn×`q

(2.19)

Now, let us discuss the scheme using SIS.

• Key Generation. The key to SIS, A is the publicly available parameter. The
secret key, Sk = (X, x) where X ∈ {0, 1}m×` and x ∈ {0, 1}m. The public key,
Pk = (Y = fA(X), y = fA(x)). The public key is the image of Sk under fA.

• Message. The message is a short vector msg ∈ {0, 1}`.

• Sign Message. The message is signed with Sk and msg.

sign(Sk,msg) = (X.msg + x) = σ

• Verify. Once the receiver receives the message and signature, she can verify
the signature with the message, signature and public key of the message sender.

fA(σ) = fA(X.msg + x)

= fA(X.msg) + fA(x)

= AX.msg + Ax

= Y.msg + y

(2.20)

As we can see from equation 2.20, Y.msg+y can be calculated from the received
message and public key, Pk.

Learning with Errors Problem

Learning with errors (LWE) is a problem in machine learning that is conjectured
to be hard to solve. Introduced by Oded Regev in 2005 [48], it is a generalization
of the parity learning problem. Regev showed, furthermore, that the LWE problem
is as hard to solve as several worst-case lattice problems. The LWE problem has
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recently[44] been used as a hardness assumption to create public-key cryptosystems,
such as the ring learning with errors key exchange by Peikert. In this section the will
demonstrate how to design a public key cryptosystem from LWE.

Public Key Cryptography using LWE

As opposed to what we have understood from SIS problem where the input to the SIS
function is compressed, LWE expands the input and perturbs the input with error.
This error perturbation is used to generate the keys for public key encryption.

Let m,n, q ∈ Z, a matrix A ∈ Zn×mq , a short vector s ∈ Znq and an m-dimensional
error vector e ∈ α where α << 1 ≈ 0.01 is the error rate of Gaussian error distribution
and α.q >

√
n. Given (A, (sT .A+eT )), LWE asks to find a short vector s. For example,

Let, A =

1 2 1 9
3 7 2 2
9 5 4 3

; s =

1
3
2

 and, e =


e1
e2
e3
e4



Now, b = sT .A

=
[
1 3 2

]
.

1 2 1 9
3 7 2 2
9 5 4 3


=
[
28 33 15 21

]
Thus, b′ = b + eT

=
[
28 33 15 21

]
+
[
e1 e2 e3 e4

]
(2.21)

Public Key Scheme. Let Bob wants to send a message-bit to Alice. The proce-
dure to use LWE based public key encryption scheme is described below.

1. Let, matrix A ∈ Zn×mq is publicly available for both Alice and Bob.

2. Alice’s secret key is a vector, s ∈ Znq . The public key of alice is b′ = sT .A+ eT .
Alice sends her public key to Bob.

3. Bob generates a m-bit vector x ∈ {0, 1}m. This vector x is used to generate
Cipher Text Preamble u = A.x and sends it to Alice.

4. Let, the message bit that Bob wants to send to Alice in msgbit ∈ {0, 1}. Bob
computes u′ = b′.x +msgbit.

q
2

and sends it to Alice.

5. Alice receives both u and u′ and computes u′ − sT .u ≈ msgbit.
q
2
. For a large

enough prime q, Alice gets a value that is very close to q
2

or something that is
very far from q

2
.

The proof of accuracy of this public key scheme is given in Appendix D.
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2.2 Artificial Neural Network

In this section, we constrain our focus on Feed Forward Artificial Neural Network.
A feedforward neural network is an artificial neural network wherein connections
between the units do not form a cycle. As such, it is different from recurrent neural
networks.

The feedforward neural network was the first and simplest type of artificial neu-
ral network devised. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the output
nodes. There are no cycles or loops in the network.

2.2.1 Single-Layer Perceptron

The simplest kind of neural network is a single-layer perceptron network, which con-
sists of a single layer of output nodes; the inputs are fed directly to the outputs via a
series of weights. In this way it can be considered the simplest kind of feed-forward
network. The sum of the products of the weights and the inputs is calculated in
each node, and if the value is above some threshold (typically 0) the neuron fires
and takes the activated value (typically 1); otherwise it takes the deactivated value
(typically -1). Neurons with this kind of activation function are also called artificial
neurons or linear threshold units. In the literature the term perceptron often refers
to networks consisting of just one of these units. A similar neuron was described by
Warren McCulloch and Walter Pitts in the 1940s.

A perceptron can be created using any values for the activated and deactivated
states as long as the threshold value lies between the two.

Perceptrons can be trained by a simple learning algorithm that is usually called
the delta rule. It calculates the errors between calculated output and sample output
data, and uses this to create an adjustment to the weights, thus implementing a form
of gradient descent.

Single-unit perceptrons are only capable of learning linearly separable patterns;
in 1969 in a famous monograph entitled Perceptrons, Marvin Minsky and Seymour
Papert showed that it was impossible for a single-layer perceptron network to learn
an XOR function (nonetheless, it was known that multi-layer perceptrons are capable
of producing any possible boolean function).

Although a single threshold unit is quite limited in its computational power, it
has been shown that networks of parallel threshold units can approximate any con-
tinuous function from a compact interval of the real numbers into the interval [-1,1].
This result can be found in Peter Auer, Harald Burgsteiner and Wolfgang Maass ”A
learning rule for very simple universal approximators consisting of a single layer of
perceptrons”.

A multi-layer neural network can compute a continuous output instead of a step
function. A common choice is the so-called logistic function:

f(x) =
1

1 + e−x
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With this choice, the single-layer network is identical to the logistic regression
model, widely used in statistical modeling. The logistic function is also known as
the sigmoid function. It has a continuous derivative, which allows it to be used
in backpropagation. This function is also preferred because its derivative is easily
calculated:

f ′(x) = f(x)(1− f(x))

2.2.2 Multi-Layer Perceptron

This class of networks consists of multiple layers of computational units, usually inter-
connected in a feed-forward way. Each neuron in one layer has directed connections to
the neurons of the subsequent layer. In many applications the units of these networks
apply a sigmoid function as an activation function.

The universal approximation theorem for neural networks states that every con-
tinuous function that maps intervals of real numbers to some output interval of real
numbers can be approximated arbitrarily closely by a multi-layer perceptron with
just one hidden layer. This result holds for a wide range of activation functions, e.g.
for the sigmoidal functions.

Multi-layer networks use a variety of learning techniques, the most popular being
back-propagation. Here, the output values are compared with the correct answer to
compute the value of some predefined error-function. By various techniques, the error
is then fed back through the network. Using this information, the algorithm adjusts
the weights of each connection in order to reduce the value of the error function by
some small amount. After repeating this process for a sufficiently large number of
training cycles, the network will usually converge to some state where the error of
the calculations is small. In this case, one would say that the network has learned
a certain target function. To adjust weights properly, one applies a general method
for non-linear optimization that is called gradient descent. For this, the network
calculates the derivative of the error function with respect to the network weights,
and changes the weights such that the error decreases (thus going downhill on the
surface of the error function). For this reason, back-propagation can only be applied
on networks with differentiable activation functions.

In general, the problem of teaching a network to perform well, even on samples
that were not used as training samples, is a quite subtle issue that requires additional
techniques. This is especially important for cases where only very limited numbers of
training samples are available. The danger is that the network overfits the training
data and fails to capture the true statistical process generating the data. Computa-
tional learning theory is concerned with training classifiers on a limited amount of
data. In the context of neural networks a simple heuristic, called early stopping, often
ensures that the network will generalize well to examples not in the training set.

Other typical problems of the back-propagation algorithm are the speed of conver-
gence and the possibility of ending up in a local minimum of the error function. Today
there are practical methods that make back-propagation in multi-layer perceptrons
the tool of choice for many machine learning tasks.
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Chapter 3

Related Works

As concerns regarding the security of IoT devices have been rising sharply throughout
the last decade, scholarly articles tackling such challenges and proposing countermea-
sures are increasing exponentially [32]. However, these security solutions generally
concern themselves within any of these three major layers of IoT architecture - Edge-
side layer, Cloud/Server-side layer or User-side layer. Moreover, the current trend
to hook every device with the internet has resulted in numerous heterogeneous IoT
devices from Edge-side layer working together for billions of use-cases and smart sys-
tems with the help of Cloud/Server-side layer along with providing services to the
User-side layer. Before we go into details of our proposed method to use the het-
erogeneity of these IoT devices and vast spectrum of their use-cases to come up a
solution for secured communication among different layers of IoT architecture, a brief
discussion on the current security solutions for these interacting layers are presented
in this section.

3.1 Edge-side Layer

According to [37], at the computing nodes of Edge-side layer, the edge computing
nodes are vulnerable to Hardware Trojans for integrated circuits, Non-network side
channel attack, Denial-of-Service attacks, Node Replication Attack, Camouflage etc.
Attacks against RFID-tags include tracking, inventorying, tag cloning, Eavesdrop-
ping, Side-Channel attack, etc. Side-Channel Analysis, Policy-based mechanisms
and intrusion detection systems (IDSs), Circuit modification are few viable counter-
measures to tackle the security risks in the computing nodes.

Hardware Trojans, as described in [53, 56], are modified integrated circuits which
are placed with malicious intents during the fabrication of devices. In [41], it is
proposed to use Side Channel Analysis of temperature and power consumption of
IoT devices to detect Hardware Trojans. Even malicious firmware or software can
be detected by without intruding devices using Side Channel Analysis as proposed
in WattsUpDoc [14]. Unfortunately, this very approach can be used to detect the
behavior of a device. For example, in [38], researchers have demonstrated how Elec-
tromagnetic and acoustic signals from medical devices can leak information about
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patients. More interestingly, in [11], it is demonstrated that how acoustic noise from
cyber-physical systems can leak information about the manufactured product. The
authors here used acoustic noise and vibration from 3D printers to steal geometric
information about the products that are being created.

Denial of Service attacks on edge nodes can affect both the edge computing devices
(i.e., sleep deprivation in [55], battery draining in [8], etc.) and communication [40]
among them. Some IoT devices are also prone to attack from Malware. To tackle these
problems, many works have proposed protocols to protect devices autonomously while
others have worked on integrating security measures in a distributed fashion. In [19],
researchers have proposed a lightweight cryptographic protocol to authenticate RFID
cards. [10] describes a model based security mechanism for computing devices that
preemptively predicts and reacts to cyber attacks without any human interventions.
On the other hand, works like [49] uses artificial intelligence to calculate trust in a
Vehicular Area Network (VAN) by collaborating with other vehicles in a particular
location. Additionally, collaborative effort to ensure security is also discussed in
[18] where, based on computation and power level of IoT devices, the devices work
together to ensure certain level of security.

IoT devices with constrained resources can sometimes be devoid of a memory
management unit, protection rings, hypervisors, or other security mechanisms. An
active attacker can take control of software modules and even the operating system
of such vulnerable devices. Moreover, the attackers can take control of the communi-
cation networks connecting these devices. In [39], authors propose an architecture to
deliver software securely to the edge nodes with limited resources along with confining
vulnerabilities in software or hardware with their own modules.

3.2 Cloud/Server-side Layer

No matter how secured the devices producing data and the communication channel
sending data to the cloud may be, all efforts can be undone by malicious entity in
an untrusted cloud. Groundbreaking work by Dan Boneh, Craig Gentry et al. in
[5], has introduced an encryption scheme - Somewhat Homomorphic Encryption -
that enables secured query execution over encrypted data in the cloud. Later Craig
Gentry went on to propose a Fully Homomorphic Encryption [21] that led the way to
secured computation over cloud. Results from these two schemes have been applied
in searching over encrypted data [45], classifying data using various machine learning
process in [6], confidential query processing [46], etc. Moreover, Brandenburger et
al. in [7] proposes a protocol for verification of integrity and consistency VICOS
for cloud where the trusted clients can check the integrity of their shared data on
the cloud. Given a Byzantine server, VIOCS detects irregularities in data based
on the operations performed by the clients. This, however, relies on the secured
communication and confidentiality between clients and server.
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3.3 User-side Layer

Protecting User Identity and access pattern along with confidentiality of the data over
the cloud are the major security challenges in the IoT architecture. In [47], researchers
present a list of cryptographic libraries to protect the user-data in an untrusted cloud.
However the work did not concern itself with the user identity and access patterns
in the cloud. One solution was provided in [2] that implements forward secrecy to
hide user identity and utilizes bloom filter to cloak user-access patterns. In terms of
integrity of information, [26] proposes an end-to-end integrity protection web platform
to ensure users with unadulterated data from the cloud.
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Chapter 4

Proposed Protocol

In this chapter, we propose a protocol to ensure a public key mechanism where the
communicating parties need to behave certain way or be part of the same environment.
The work-flow of this protocol is presented in section 4.5. But at first let us go through
some definitions and notations used in this work.

4.1 Definitions

Following are the definitions that are necessary to describe our proposed protocol.

4.1.1 Communicating Parties

Our protocol intends to facilitate two different parties to communicate using public
key encryption method. However, to corroborate the strength of the encryption, we
proposed interim methods that requires both parties to communicate at the start
of a communication session. Thus, in this work, to determine the parties in com-
munication, we denoted the party who ultimately wants to send message bits as
Message-Sending Party. On the other hand, the one who finally expects to receive
the message-bits is denoted as Message-Receiving Party.

4.1.2 Environment Variables

Environment Variables can be anything that both communicating parties have access
to and are difficult to replicate. This environment can be a face, a finger print, sensor
array in a smart car - any pattern-generating behavior that has multiple features or
variables in it and allows multiple observations of those features. Being part of the
same environment translates into having access to the variables of the environment
which in turn means that observations can be made of those variables with some
degree of freedom.

In our work here, we assumed, the parties that want to communicate, are part of
the same environment or behave in similar ways and thus, they have access to same
environment variables. The observations made by different parties of these variables,
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should be similar enough to consider the Message-Sending and Message-Receiving
party as part of the same environment. When we demonstrate our work in chapter 5,
we assume that multiple weather stations may have access to same SensorScope sensor
network data and can use these sensor data to generate session keys. Thus, the sensor
data from the stations located in the same location makes the stations to be part of
the same environment, whereas stations from different locations belong to different
environments. As a result, the environment variables from the same environment,
in this case, sensor data from same location, will be similar with minimal noise. On
the contrary, SensorScope sensor networks in different locations will generate data so
dissimilar that the weather stations in different locations will be considered as if they
belonged to different environments.

4.1.3 Intermediate Keys

Our main goal in the proposed protocol is to ensure that the environment variable
data are part of the public key. So as to achieve that we introduced Intermediate
Keys which would be generated by both communicating parties individually from
the environment variable data. The Intermediate keys are matrices, generated from
environment variable data, are the main ingredients to generate session keys later in
the protocol. After environment variable data is acquired, both parties who want
to communicate, take the moving average of observations from each variables and
come up with the intermediate key. The window of the moving average is fixed for
both the parties and thus, the number of rows in the intermediate keys are less than
the observations of the environment variables. However, the number of rows in the
intermediate keys of both parties remains the same because of the same window
length. Moreover, the intermediate keys’ number of columns also remains the same
as the number of variables in the environment. The environment variable data are
modified by taking their moving average in order to smooth out the outliers and
spikes in the observed data and generate similar intermediate keys for both parties

4.1.4 Session Keys

Session keys are generated after both communicating parties have already acquired
Environment Variables and calculated their own Intermediate Keys. For initiating
communication, a session demands a session key which is generated by the collab-
oration of both parties. However, what will determine a new session and how long
a session will exist completely depends on the implementation. In this work, we
demonstrated each session as a certain length of message bits. When the message-
receiving-party receives that certain number of message-bits, a new session is initiated
which in turn requires a new session key to be generated.

Generating the Session Key is a three-step process, the message-sending party
initiates it and the message-receiving party completes the process. Moreover, we
have defined four matrices for the whole process to finish: Initial Session Key ,
Session Key Seed , Final Session Key and Session Key Index Matrix . The
processes to generate these session matrices are described below:
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1. The Message-Sending party picks a certain number of unique elements (i.e.,
prime numbers) and create a matrix wish dimensions same as the Intermediate
Keys. The unique elements are distributed randomly across the new matrix.
As the number of elements in the new matrix is far greater than the number of
unique elements, there will definitely be repetitions of the unique elements, but
they will be placed at random.

These unique elements are selected and distributed optimally based on the con-
straints described in section 4.5.3. We named this newly created matrix as
Initial Session Key .

2. In the next step, the Intermediate Key of the Message-Sending party is utilized
as the key to One-Time pad for encrypting Initial Session Key . We termed
this encrypted interim key as Session Key Seed . This Session Key Seed is
transmitted to the Message-Receiving party for decryption and generation of
Final Session Key . The number of unique keys is also sent to the Message-
Sending party.

3. In the last step, the Message-Receiving Party receives this Session Key Seed
and decrypts it to get the Initial Session Key using their own Intermediate
Key. The emphInitial Session Key of the Message-Receiving party may be
different from the one generated by the Message-Sending party. However, the
Initial Session Key, generated at the Message-Receiving Party ’s end, needs to
be same for Message-Sending party too. We bolstered the probability of Initial
Session Keys of the two parties to be same by randomly picking a small portion
of elements from the Initial Session Keys and creating Final Session Keys.

Thus, to enhance the chance of the two Final Session Keys to be same, Message-
Receiver party initially selects a list of indices at random from their own Initial
Session Key matrix. The said party then permute the random indices as many
times as necessary to fill a matrix with the same dimensions as the Initial
Session Key. This Session Key Index Matrix is then sent to Message-
Sending Party and both the parties pick the elements pointed by the indices
in Session Key Index Matrix from their own Initial Session Keys and form the
Final Session Key.

4.1.5 Unique Elements

When Message-Sending Party generates her own Initial Session Key matrix, she needs
to select the elements from a list of non-zero positive integers. The values in the list
are non repeating and the Message-Sending Party randomly chooses the elements to
form the Initial Session Matrix. In our work, these non-repeating non-zero integer
values are called Unique Elements.
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4.1.6 Public Keys

The Message-Receiving Party in any public key encryption method requires to have
a public key and a corresponding private key. We, too, in our work have incorporated
the working mechanism of a generic public key as Primary Public Key. However,
in our endeavor to make the Environment Variables as a part of the public key, we
proposed a method to use the Final Session Key as the key to generate one-way hash
of Primary Public Key using Short Integer Solution. Both Message-Receiving-Party
and Message-Sending-Party calculate their hash of Primary Public Key using their
own Final Session Key. In this literature, we call the hashed Primary Public Key as
Session Public Key . The Primary Public Key can remain the same throughout
the lifetime of a Message-Receiving Party while the Session Public Key needs to be
generated at the start of each session by both the Message-Sending and Message-
Receiving parties. However, the private key of the Message-Receiving party can
remain same as the Primary Public Key or it can be changed at the start of each
session

4.2 Notations

Throughout this work, we have assumed the Message-Receiving Party - one who
expects to receive message as PartyA, whereas the Message-Sending Party is denoted
as PartyB.

Uppercase letters and Uppercase Double Struck letters have been used to denote
Matrices and Sets respectively. For example, K,K1, K2 are matrices whereas X,Y
are sets of elements. It should also be noted that terms written in Camel Case
(i.e., EnvData) are also considered to be Matrices. Again, scalar values and vectors
have been represented using lowercase letters (i.e., m,n) and double struck lowercase
letters, (i.e., x, y), respectively. We have represented the dimensions of a matrix, K, as
m×n, which means that matrix K has m number of rows and n number of columns.
The transpose of a matrix is denoted by an uppercase ’T’ as a super-script, i.e., KT

1 .
Moreover, an element in matrix has been described as K(x, y), where, (x, y) ∈ {N−0}
and points to the element at row x and column y. Additionally, when we describe
two sets, i.e., X = {1, 2, ...,m} and Y = {1, 2, ..., n}, the Cartesian Product of X and
Y can be described by X × Y = {(x, y) | x ∈ X ∧ y ∈ Y}. On the other hand, if K1

and K2 are two matrices with dimensions m1 × n and n×m2 respectively, then the
Matrix Product of these two matrices has been denoted as K1×K2 which would have
the dimension of m1 × m2. However, scalar-scalar multiplication and scalar-vector
multiplications are denotes as m∗n and m∗x respectively, where m and n are scalars
and x is a vector.

4.3 Assumptions and Threat Models

In this section we focus on the threats that our work aims to neutralize. At first
we discuss how our protocol implements forward secrecy in case of leaked Long-term
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Secrets. Later we concentrate on an approach to tackle Distributed Denial-of-Service
attack using IoT devices by implementing our proposed protocol.

4.3.1 Leaked Secret Key

• Threat: Using a secret key for long time to decrypt messages in a public key
encryption system can give the secret away to a passive attacker. The problem
is more crucial when the long-term secret is easy to guess and this can be the
case for IoT devices, since it may not always be easy for numerous internet-
connected devices to have separate secret keys and to track all those secrets are
more difficult still. We can hardly rely on system administrators to always use
separate secrets for every IoT device working under certain environment.

• Guarantees: Our protocol ensures forward secrecy that not only relies on the
long-term secret keys but also utilizes the behavioral patterns and interactions
among heterogeneous IoT devices in a system, to generate temporary keys for
each session of communication. Thus to decrypt a message sent to a specific
environment successfully, the receiver needs to hold the long-term secret key
along with the the behavioral patterns of that environment that comprises of
heterogeneous IoT devices.

• Assumptions: Instead of allowing each device of an environment to receive
individual messages, we assumed that the communicating parties have access
to an array of common IoT devices and the messages need to be sent from
PartyB to PartyA using session keys. PartyA decrypts the messages and can
even redirect the decrypted messages to some specific IoT device.

4.3.2 D-DoS Attack

• Threat: As more pervasive devices are getting connected to the internet each
day, to exploit certain genre of such devices and muster an attack on large-scale
digital infrastructure, that may deny services to legitimate clients, are getting
more probable. [4, 16] provide us with such an attack and unfortunately many
more are to follow unless some constructive steps are taken. One obstacle in
avoiding such Distributed Denial-of-Service attack by IoT-enabled devices is the
sheer number of similar devices with security flaws. Though many security pro-
tocols aim to prevent D-DoS attacks, initiated by infected IoT devices [15, 16],
hardly such solutions incorporates the heterogeneity and collaboration among
such devices. As a result, such solutions again revolve around specific devices
with specific characteristics.

• Guarantees: In our solution to verify group membership, we propose to include
the behavior of IoT devices from wide spectrum of categories, that work under
certain environment and show specific characteristics, in order to generate a
session key between a message-sender and a message-receiver. To achieve a
common session key is the proof of both communicating parties being part of the
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same group. Hence, a legitimate communicating party, upon failing repeatedly
to generate a common session key with the other one, would be encouraged to
block the other party from communicating, though such blocking process and
when a legitimate party should do so are beyond the scope of this work.

• Assumptions: We, in our proposal, assumed that the characteristics of the
pervasive devices in a certain environment are unique enough to be synthetically
generated by an attacker. Thus, the parties communicating can only generate
the session key after having observed the environment variables.

4.4 Protocol Overview

We restrict our discussion in this section to focus on how session keys are generated
and used to encrypt messages and decrypt them. As PartyB wants to send message-
bits to PartyA, PartyB is the Message-Sending party, whereas PartyA is the Message-
Receiving one. Figure 4.1 shows how PartyA and PartyB comes up with the same
session keys by acquiring data from their observations of the environment variables.

As a new session starts, both PartyA and PartyB observes their corresponding
environment and comes up with Intermediate Keys KitmA

and KitmB
respectively.

While PartyA waits for Session Key Seed, KSS to arrive from PartyB, PartyB comes
up with an Initial Session Key, KSIB , for itself along with the number of unique
elements, eluniq and a window size for calculating moving average, wOTP . KitmB

is
used as the key for the One-Time pad to encrypt KSIB and this encrypted key is called
Session Key Seed KSS. The process to encrypt KSIB to generate KSS is described
thoroughly in section 4.5.3.

Upon receiving KSS, eluniq and wOTP , PartyA decrypts KSS using her own Inter-
mediate Key KitmA

. As KitmA
and KitmB

are supposed to be similar because of being
generated by observations from same environment variables, decryption of KSS is to
relate closely to KSIB , which is called KSIA . However, the Final Session Key, KSF

need to be exactly same for both communicating parties, PartyA randomly selects
elements from KSIA and permutes the selected elements randomly to fill the Session
Key Index Matrix IdxSF . This IdxSF is sent to PartyB and she, too, come up with
the same KSF by selecting the elements from KitmB

that are pointed to by the indexes
in IdxSF . The detailed description of decrypting the Session Key Seed and generating
the Final Session Key are given in 4.5.3 and 4.5.3 respectively.

Later, both PartyA and PartyB generate their own Session Public Key, KSP by
using Short Integer Solution to come up with the hashed values of PartyA’s public
key, KpubA . PartyB encrypts the message bits, msgbits, using LWE based Public
Key Encryption, where KSP is considered to be the public key since both PartyA
and PartyB holds the common key. Once PartyA receives the msgbits, she decrypts
the messages using her long-term private key KpubA . For each bit of message, the
decrypted value will be close to

plg
2

or a value very far from
plg
2

, where plg is a large
prime number which is common for both PartyA and PartyB.
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Figure 4.1: Overview of the proposed protocol

4.5 Protocol Details

Herein, we discuss the detailed steps of our proposed procedure - from generating the
Intermediate Keys and Session Keys to encrypting and decrypting messages between
two parties. In this section, we reflect on how these proposed steps enables us over-
come several security threats along with our assumptions behind them as described
in 4.3. The steps of our proposed protocol is shown in figure 4.2.

4.5.1 Acquire Environment Variable Data

The first step of our protocol is to acquire environment variable data which requires all
the parties in communication to be part of the same environment. Let us first consider
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Figure 4.2: Steps in proposed protocol

that both PartyA and PartyB are part of the same environment. As they take their
own observations and/or predictions of the environment variables separately, let us
assume that there are nenv number of variables or features in the environment and
both the parties take menv observations. As there may be some noise associated with
the observation of the environment variables, we assume that PartyA and PartyB
come up with matrices EnvDataA and EnvDataB respectively, each of which has a
dimension of menv × nenv.

4.5.2 Generate Fixed Length Intermediate Keys

The next step in our protocol is to generate fixed length Intermediate Keys from the
observed and/or predicted Environment variables. Both PartyA and PartyB come
up with Intermediate Keys, KitmA

and KitmB
respectively. The length of intermediate

keys - the number of rows - should be less than or equal to that of the observations of
environment variables, though they must be same for both communicating parties. If
the length of both Intermediate keys is mitm , then the dimension of both Intermediate
Keys will be mitm × nenv, where menv ≥ mitm. In our protocol, we took the moving
average of the observations to reduce the length of the intermediate keys. So, each of
the parties dose the following to calculate the moving average of their observations
and generate Intermediate keys:

1. Compute the window size for moving average: To compute the Interme-
diate keys, we need to, at first, calculate the size of the moving average window.
The mean of each window will, later, be the value of an element in the Inter-
mediate keys. Let, ws be the window size for both the communicating parties,
where

ws = menv −mitm (4.1)

2. Compute mean value of observations for each window: Let us assume
that the Intermediate Key for a communicating party is Kitm which has the
dimensions of mitm × nenv. We calculate each element in Kitm from the obser-
vations, EnvData with dimensions menv × nenv , of the environment made the
communicating party from equation 4.2.
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Let,X = {1, 2, ...,mitm},Y = {1, 2, ..., nenv}

∀(x, y) ∈ (X× Y), Kitm(x, y) =

∑x+ws
i=x EnvData(i, y)

ws

(4.2)

Computational Complexity: From equation 4.2, we can see that the creation of
Intermediate key, Kitm matrix takes |X| × |Y| ×ws steps. Since ws << |X| × |Y|, the
complexity of creating the intermediate keys using moving average is O(|X| × |Y|).

4.5.3 Generate Session Keys from Intermediate Keys

Once PartyA and PartyB generates their own Intermediate Keys, PartyB generates
her Initial Session Key and encrypt it using One-Time pads with her Intermediate
Key as the encryption key. This encrypted Initial Session Key - Session Key Seed - is
sent to PartyA, who decrypt it using her Intermediate Key. Later PartyA generates
Final Session Key and send the Session Key Index PartyB. The process that leads
to generating the Final Session Key is described in the following sections.

Initial Session Key

As PartyB uses One-Time pads to encrypt Initial Session Key, the dimensions of her
Initial Session Key should be equal to the key- her Intermediate Key. This conversely
implies that PartyB needs to come with a Key of size mitm × nenv to encrypt KitmB

.
Let us assume that the key is KSIB . Now, as PartyA’s goal is to decrypt the Session
Key Seed using KitmA

and get as close as she can get to KSIB , we introduced three
constraints.

Constraints:

1. Number of Unique Elements: If PartyB selects a fixed number of Unique
Elements, eluniq, to generate the KSIB by placing those eluniq values at random,
the chance for PartyA to decrypt and approximate from a list of candidate values
increase. Thus, KSIB will contain only these eluniq values arranged randomly.

2. Window Size of Repeating Element: The Intermediate Keys generated by
both the communicating parties are exactly same in dimensions, though those
keys are generated by the observations made by the parties separately. We
assume that there are subtle differences among the observer and/or predicted
values. To let PartyA use her Intermediate key to decrypt the Session Key
Seed, in spite of such nuances, we need to make sure she can make a calculative
guess. Thus, we propose to generate KSIB such a way where consecutive wOTP
number of rows are repeated in KSIB .

As we can see in figure 4.3, there are three unique elements, namely
el1, el2 and el3. The number of times, rows are repeated consecutively,
wOTP is two. Thus, every two consecutive rows are the same and when PartyA
receives the Session Key Seed, can take the mean of these two rows and will
get a matrix with minimal error. The process is described in 4.5.3.
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Figure 4.3: Example of a KSIB to generate Session Key Seed

3. Range of Elements in KSIB : When PartyA tries to decrypt Session Key
Seed, the sent key is decrypted using her own Intermediate Key, KitmA

as de-
cryption key. However, the decrypted elements that form KSIA may deviate
from KSIB . Thus, to allow PartyA to round off KSIA to the closest unique
element, the unique elements should be selected by PartyB sparsely enough
that tolerates accurate decryption of KSIA , even with deviation between KitmA

and KitmB
which is under certain error threshold. Additionally, those unique

elements should be selected so closely that, if the deviation crosses a certain
error threshold, one unique element would randomly be rounded off as another,
on the time of decryption at PartyA’s end. Finally, the Unique Elements that
are selected should be reduced to the modulus of a large prime number, plg and
the prime should be commonly known by both PartyA and PartyB.

Thus we define two error thresholds for the deviations between KitmA
and KitmB

to let PartyB generate the Unique Elements. One. Average-Case Error Thresh-
old is the expected average case NRMS error between the Intermediate Keys,
represented as thavg. Two. Worst-Case Error Threshold is the worst tolera-
ble NRMS error between the Intermediate Keys, represented as thmax. thavg is
used in our work to calculate the sparseness between two consecutive unique
elements sorted in ascending order, whereas thmax is needed to calculate the
maximum value allowed for a unique element. The relation between these two
error thresholds and the sparseness of the unique elements is shown in Appendix
C.

Encryption of KSIB : PartyB selects eluniq unique elements and creates a matrix
with the dimension of (mitm/wOTP ) × nenv using these unique elements randomly,
where eluniq << (mitm/wOTP )∗nenv. Each row of this newly created matrix is repeated
wOTP times consecutively to create KSIB . Now, KSIB is used to element-wise multiply
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with KitmB
to create KSS following equation 4.3.

Let,X = {1, 2, ...,mitm},Y = {1, 2, ..., nenv}
∀(x, y) ∈ (X× Y),

KSS(x, y) = (KitmB
(x, y) ∗KSIB(x, y)) mod plg

(4.3)

Computational Complexity: From equation 4.3, we can see that the computa-
tional complexity is O(|X| × |Y|), given the fact that generating KSS matrix is a
element-wise operation.

Security: This KSS is sent to the other communicating party for decryption after
being encrypted using One-Time pads. According to our proposal, each row of KSIB

is repeated wOTP times and no elements along the columns are repeated at all. As we
can recall, the rows in KitmB

, which is the key to encrypt KSIB , are the moving average
values of observations made from different environment variables. Our assumption is
that the observations made by PartyA and PartyB of the same environment variable
may be slightly different and if an attacker wants to get the values of KSIB , she needs
to have access to observations from all environment variables, which is highly unlikely.
Thus we can trade off with the security with accuracy by repeating the values of KSIb

along the rows. However, if we repeated the values of KSIb along the columns, then
a compromised environment variable will leak the information of other variables, the
ones that are used to encrypt the same KSIB elements as the compromised one, to an
attacker.

Decrypting Session Key Seed

PartyB sends Session Key Seed, KSS, number of Unique Elements, eluniq and number
of times each row is repeated in KSIB , wOTP to PartyA. PartyA element-wise divides
KSS with its own intermediate key, KitmA

and gets KSIA . Then the mean of every
wOTP rows for each column of KSIA is calculated and rounded off to the nearest
integer value. Later, frequency of each of these integer values are calculated and top
eluniq integers with the highest frequencies are considered as the Unique Elements.
All other integers are rounded off to the nearest newly calculated Unique Elements
and KSIA is edited accordingly. The detailed procedure is described in algorithm 2.

Computational Complexity: From the procedure described in 2, we can see
that the computational complexity of the algorithm is O(mitm × nenv)

Generating Final Session Key

As it is absolutely imperative that both the communicating parties generate the exact
Final Session Key, PartyA selects p elements from KSIA and repeats these p elements
as many times as it takes to fill another matrix with the dimension of nenv × mpk,
where, mpk > (nenv ∗ lg(plg)). The newly created matrix is permuted randomly to
generate KSF . The index values of these elements are tracked while being repeated
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Algorithm 2 Decryption of Session Key Seed, KSS to get Initial Session Key, KSIA

Require: KSS, KitmA
, eluniq, wOTP , mitm, nenv, wOTP > 1

1: KSIA : ARRAY [mitm][nenv]
2: sz ← mitm/wOTP
3: TMP : ARRAY [sz][nenv]← [0] {Initialize with zeros}
4: tempc← 1; c← 1; X← Ø
5: for i = 1 to mitm do
6: for j = 1 to nenv do
7: TMP [c][j]← TMP [c][j] + bKSS[i][j]/KitmA

[i][j]e
8: if tempc == wOTP − 1 then
9: TMP [c][j]← bTMP [c][j]/wOTP e

10: X ∪ {TMP [c][j]}
11: end if
12: end for
13: tempc← tempc+ 1
14: if tempc == wOTP then
15: c← c+ 1
16: end if
17: end for
18: FREQ : ARRAY [||X||][3]← [x ∈ X][0][x ∈ X] {Initialize 3 columns of FREQ}
19: for i = 1 to sz do
20: for j = 1 to nenv do
21: idx← INDEX(TMP [i][j] in FREQ[...][1]) {Find index of a value}
22: FREQ[idx][2]← FREQ[idx][2] + 1
23: end for
24: end for
25: SORT (FREQ, 2) {Sort FREQ’s rows in desc. order by 2nd column values}
26: for j = 1 + eluniq to ||X|| do
27: minDist←∞; minIdx← −1
28: for i = 1 to eluniq do
29: dist← |FREQ[i][1]− FREQ[j][1]|
30: if dist < minDist then
31: minDist← dist; minIdx← i
32: end if
33: end for
34: FREQ[j][3]← FREQ[minIdx][1]
35: end for
36: for i = 1 to sz do
37: for j = 1 to nenv do
38: idx← INDEX(TMP [i][j] in FREQ[...][1])
39: TMP [i][j]← FREQ[idx][3]
40: end for
41: end for
42: KSIA ← REPROW (TMP,wOTP ) {Repeat each row of TMP wOTP times}
43: return KSIA
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(a) Randomly selecting elements along with
their indexes from KSIA

(b) Generating KSF and IdxSF

Figure 4.4: Generating Final Session Key and Session Key Index Matrix from Initial
Session Key of PartyA

and permuted creating another nenv ×mpk matrix called Session Key Index Matrix,
IdxSF . It should be noted that every wOTP − 1 rows that has the repeating values
in KSIA are ignored while picking elements for KSF . The index matrix, IdxSF is sent
to PartyB and she too form the same KSF as PartyA by picking the values pointed
by elements in IdxSF from her own Initial Session Key, KSIB .

Figure 4.4a shows how p elements along with their indexes are selected from KSIA .
Later these values are permuted and repeated to create KSF and IdxSF as shown in
4.4b.

Security: An attacker, trying to impersonate as PartyA, may monopolize her
chance to select Unique Elements randomly, by picking elements from KSIA that are
encrypted by certain environment variables’ data from the KitmA

. To prevent such
attack, PartyB can provide the least number of different columns from which PartyA
must choose her elements to create IdxSF and KSF matrices.

4.5.4 Generate Session Public Key

Session Public Key, KSP is generated by both PartyA and PartyB using the Primary
Public Key, KpubA of PartyA and Final Session Key, KSF . KpubA is publicly available
for anyone to access and its hashed values are used as KSP . As we have seen in [34],
Short Integer Solution can be used to generate One-way Hash Functions, in our work
we applied the same process to generate the hash values of the Primary Public Key
KpubA of PartyA.

We considered KpubA as a collection of mpk vectors that are short in terms of
Euclidean vector distance where each of these short vectors have mpk dimensions.
This makes KpubA a matrix with mpk ×mpk dimensions. According to [34], we took
each of these short vectors as input to the One-way Hash Function where we used
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KSF as the key. Thus,

Let,KpubA = [x1 x2 ... ... ... xmpk
]

Then,bi = (KSF × xi) mod plg

where, i = {1, 2, ...,mpk} and xi ∈ {0, 1}mpk

(4.4)

The vectors, bi’s generated from equation 4.4 has nenv dimensions. We take all the
bi’s and augment them to generate the KSP matrix. Consequently from equation 4.5,
KSP matrix has nenv ×mpk dimensions.

KSP = [b1 b2 ... ... ... bmpk
]

where, i = {1, 2, ...,mpk} and bi ∈ Znenv
plg

(4.5)

Computational Complexity: From equation 4.4 and 4.5, the step of generating
session public key takes O(m3

pk) steps.

Security. From each vector in KpubA with mpk dimensions, we get a vector with nenv
dimensions in equation 4.4. We have seen earlier in section 4.5.3, mpk > (nenv ∗ lg plg),
and it means that equation 4.4 maps mpk bits to smaller nenv ∗ lg plg bits. Thus, equa-
tion 4.4 acts as a compression function. As we are compressing elements from a larger
field to a smaller field, there are supposed to be collisions which was independently
shown in both [42, 31]. However, from [34], it is realized that compression done by
Short Integer Solution are essentially One-Way Functions and reversing the function
is computationally hard in average-case since the compressed key, KSP is calculated
individually by both PartyA and PartyB, and leaks no information to the outside
world.

4.5.5 Encrypt and Decrypt Message

In our work, we used LWE based public key encryption scheme where the Session
Public Key by PartyB is used to generate the encryption of message-bits whereas the
Session Public Key of PartyA is used to decrypt them. For distinguishing between
these two Session Public Keys, which are generated seperately, let us assume that
PartyA and PartyB generates KSPA

and KSPB
respectively. Our process includes the

following steps:

1. The process starts with PartyA by generating a private key kprvA ∈ {0, 1}nenv .
Thus, kprvA is a small vector with nenv random 0 or 1 values. kprvA is the long-
term private key of PartyA which can be used throughout the communication
or at the start of each session of communication with PartyB.
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2. PartyA encrypts KSPA
with kprvA and perturb it with a column vector of mpk

small errors, εA by following the equation in 4.6.

kA = KT
SPA
× kprvA + εA

or,

kA1

kA2

.

.

.
kAmpk

 = KT
SPA
×


kp1
kp2
.
.
.

kpnenv

+



εA1

εA2

.

.

.
εAmpk


(4.6)

The small error terms in εA are obtained by sampling from a fixed Gaussian

with mean µ =
plg

8∗mpk
and a standard deviation of ρ = µ +

√
2∗nenv

π
. The error

terms are also reduced to mod
plg
4

[9]. Thus, kA is a column vector with mpk

dimensions which is sent to PartyB.

3. PartyB, on the other hand, generates a column vector with mpk small error
terms εB, using the same error distribution mentioned for εA.

4. As PartyB receives kA, it calculates a row vector, u1 of length nenv and a scalar
u2 following the equations in 4.7 and 4.8 respectively.

u1 = εTB ×KT
SPB

(4.7)

u2 = εTB × kA +msgbit ∗
plg
2

(4.8)

Here, msgbit in equation 4.8 is the one-bit message that is encrypted by PartyB.
Both u1 and u2 are sent to PartyA for decryption of msgbit.

5. PartyA calculates the value of u from equation 4.9 to decrypt the message-bit
from PartyB.

u = (u2 − u1 × kprvA) mod plg (4.9)

The value of u will be close to
plg
2

or very far from
plg
2

depending on the sent
message-bit being 1 or 0 respectively.

Accuracy Proof. The proof of accuracy for equation 4.9 is given in Appendix
D, where we have shown that accuracy of decryption depends on the deviation
between KSPA

and KSPB
.
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Chapter 5

Experimental Implementation

In this section, we have described how we processed data from SensorScope’s sensor
networks so that such data can be considered as observations and/or predictions of
Environment Variables for our proposed protocol. At first, we have discussed the
properties of the acquired datasets from SensorScope and then the process to convert
sensor data is elaborated that was followed to implement and evaluate our proposed
protocol.

5.1 Dataset Properties

In 2007, two small SensorScope networks were deployed to collect environmental data
- one in Grand St. Bernerd Pass and another on top of rock glacier in Le Genepi. The
sensor networks collected data for over one month from 23 different stations in Grand
St. Bernerd Pass [51] and 16 different stations in Le Genepi [52]. Each recorded
data from all these 39 different stations includes the station ID, the date and time
of observation along with nine different sensor outputs - ambient temperature [◦c],
surface temperature [◦c], solar radiation [W/m2], relative humidity [%], soil moisture
[%], watermark [kPa], rain meter [mm], wind speed [m/s] and wind direction [◦].
Any unavailable sensor output is represented as [NaN ]. In our work, we considered
each of these 39 different datasets contains 9 different time-series, each representing
output of a specific sensor from SensorScope.

5.2 Implementation Details

Since we have acquired data from sensors that were recorded long time ago, just
adding Gaussian noise to the data and using them to demonstrate our proposed
protocol, lack real life implications. Thus, we assumed our protocol would get hold
of a small portion of a time series containing all the sensor outputs and the rest of
the time series data are to be predicted by LSTM-networks. Then we used Cross-
Correlation to increase the features of predicted datasets and lastly applied LDA on
them to shift axes of the features that generated the observations for environment
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Figure 5.1: Experimental implementation steps

variables which are necessary for our proposed protocol to be implemented. The steps
that lead to generating such desired observations are given in figure 5.1.

5.2.1 Pre-process and Sample Observations

After we acquired sensor data, we replaced [NaN ] values with 0. Though the numbers
of observations from St Bernerd and Le Genepi datasets are different and immense at
the same time, we wanted to sample a fixed number of observations for both of the
datasets. Thus, for each of the 39 different datasets, we selected different intervals to
sample observations and came up with 600 samples from each of them. Finally, each
of the nine features - output from nine different sensors - are normalized to give them
a range between 0.0 and 1.0.

5.2.2 Setup and Train LSTM-Network Model

Herein, our goal has been to create an LSTM-Network model that would, once trained,
be able to predict sensor outputs of the next time step, given a series of sensor outputs
of several previous steps. We used Keras [12] with Theano [2] back-end to build our
network.

Using Keras, we created a deep network architecture with stacked layers of LSTM
cells and exploited the fact that LSTM cells can build their states over a period of
the whole training sequence. We added three stacked LSTM layers, each of which
is stateful and contains 10 LSTM cells, to create a Sequential model. Moreover, the
first two LSTM layers output the hidden states of their cells to the next layer for
each time step. Each LSTM layer has a batch-size of 1, with a look-back period of
15 time-steps and 9 inputs. These 9 inputs are simply the 9 different sensors whose
output are to be predicted by the model. Additionally, the model includes an final
layer with 9 output fields that predict data from the sensors for the next time step.
The model was compiled to minimize Mean Squared Error using Adam (Adaptive
Moment Estimation) [28] optimization method.

We trained the model to predict the next time-step sensor data from every 15
previous time-steps. The training process ran for 120 epochs with single batch-size
and no shuffling. The model state was deliberately reset after each training epoch had
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been completed. It should be noted that any options, not mentioned in this section
but available to be customized by Keras, were set as default. For each of the 39
different normalized datasets, we trained separate LSTM-network models and used
them to predict time-series from noisy data.

5.2.3 Predict Time-Series from Noisy Data

In this section, we use the trained LSTM-network models from section 5.2.2 to predict
the noise-introduced datasets from section 5.2.1. Our main aim here is to predict the
time-series data of the sensor outputs and to provide practical applicability of our
proposed scheme. Once a model is trained with sensor data, any two parties who
have access to the sensors, can observe sensor outputs for 15 time-steps and use the
model to predict the rest of the output of the time-series. Otherwise, the parties
would have to wait for more than one month to read sensor outputs again to start
generating session keys, which is absurd for our scheme.

In our implementation, we demonstrated the predictability of our trained models
for each of the 39 dataset that follows the steps described below.

1. After training the LSTM-network models, we added normally distributed ran-
dom noise to each elements of the normalized and sampled datasets with mean
0 and standard deviations of 0%, 2%, 3% and 5% of the given elements, thus
creating four different datasets from one.

2. Since our model takes 15 previous time-steps to predict the next step, for 600
observations of each of these four newly created datasets, we received 585 pre-
dicted observations from the model.

3. Finally, we reverse the scaling of every datasets from the range of 0.0 − 1.0 to
their pre-normalization range.

Figure 5.2 shows an example of time-series prediction on noisy data. It depicts the
predictions of LSTM-network model trained on the dataset generated by a particular
station. Each of the sub-graphs in figure 5.2 represents predictions of an individual
sensor outputs over time. Each sub-graph also shows the predicted outputs of the
LSTM-network model when fed with data containing normally distributed random
noise which has a mean of 0 and standard deviations of 0%, 2%, 3% and 5% of original
normalized data.

5.2.4 Cross-Correlation of Features

For each of the datasets of SensorScope, we, by now, have four different predicted
outputs of sensors from LSTM-network models. Each of such predicted outputs have
nine-dimensional features where each dimension represents the individual outputs
of weather sensors. Later, we calculate the cross-correlation of these features with a
major goal to increase feature-dimensions. All possible pair of features from the initial
nine features are taken into consideration and their cross-correlations are calculated
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Figure 5.2: Prediction comparison of noisy data originated from a station in Grand
St. Bernerd Pass with station ID 2
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Algorithm 3 Calculate Cross-Correlation

Require: x1, x2, timeSteps, ||x1|| == ||x2||
1: len← ||x1||
2: y : ARRAY [len]
3: for i = 1 to len do
4: xx← 0
5: yy ← 0
6: xy ← 0
7: j ← i
8: loop
9: if j > 0 and j > (i− timeSteps) then
10: xx← xx+ (x1[j]× x1[j])
11: yy ← yy + (x2[j]× x2[j])
12: xy ← xy + (x1[j]× x2[j])
13: j ← j − 1
14: else
15: break
16: end if
17: end loop

18: y[i]←
√

xy×xy
xx×yy

19: end for
20: return y

which are incorporated as new features. Thus, from initial nine features, we now have
9+
(
9
2

)
= 45 features for each dataset. Moreover, since we have taken 15 time-steps to

predict the next step, when calculating the cross-correlation, the values are generated
going at most 15 time-steps back. The procedure to calculate cross-correlation from
two different features and a predetermined time-step is given in algorithm 3.

5.2.5 Classify Observations and Shift Axes using LDA

After increasing the number of features using Cross-Correlation, our datasets, pre-
dicted by the LSTM-network model, now contain 45 features and 585 observations.
The observations from where we predicted these datasets spanned throughout a period
of more than one month. As the evidence suggests from the time series of figure 5.2,
these predicted observations do not show any particular seasonality or trend. Con-
sequently, we classified the predicted datasets based on the date they were recorded.
Thus, all 585 observations of a particular predicted dataset fell under c classes, where
c is the number of unique dates when the actual observations were made. Our as-
sumption behind classifying the observations in such manner is that the data varied
slightly within one day which is also evident from figure 5.2 where we can see that
sudden fluctuations in values in the time-series tend to persist for a while before show-
ing any drastic change again. After classifying the predicted observations, we shifted
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the feature-axes to further minimize the inter-class distance among their values by
applying LDA on the predicted dataset of every stations which were introduced with
no noise. The Eigen Vectors acquired from this process were then used to shift the
axes of the predicted datasets with noise having standard deviations of 2%, 3% and
5% and were originated from the same station. This whole process of classifying
and shifting feature axes by implementing LDA essentially results in decreasing the
magnitude of the predicted values which in turn means that any deviation or noise in
predicted values will impact less when generating Session Keys using One-Time pads
- the process we have already described in section 4.5.3.

5.2.6 Implementation of Proposed Protocol

Throughout chapter 4, we referred to the behaviors of the pervasive devices as ob-
servations from the environment variables. Similarly, during our implementation of
the proposed protocol, we realized the predicted sensor outputs as observations of
environment variables. The predicted datasets with 0% error we generated here for
each station, are considered to be the observations of the environment variables made
by PartyA. On the other hand, we considered noisy datasets for each station, are
observations for PartyB. We also tested the decryption accuracy of our protocol
where PartyA and PartyB are from two separate environment. As we evaluated our
implementations, we have found that increasing noise in the observations of PartyB
decreases the decryption accuracy. In all these cases, our tests include results where
we varied Intermediate Key length, number of Unique Elements and number of ran-
dom elements selected from Initial Session Key of PartyA to create the Final Session
Key. In chapter 6, we have described, in details, the tests we have performed on our
protocol and the results we have acquired from these tests.

Since we have processed sensor data to implement the proposed protocol which
generates session key for our encryption scheme, we have managed to answer our first
Research Question (RQ1).
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Chapter 6

Accuracy Evaluation

The main goals of implementing our work are twofold. Primarily, we have aspired to
demonstrate that as we introduce varying noise in the observations of environment
variables, the decryption accuracy of messages varies accordingly. Secondly, it is also
shown that when the communicating parties use observations of variables from two
different environments, it results in absolutely random decryption of message-bits.
These are the results we have discussed in this section while comparing them against
the prediction accuracy of our LSTM-network model.

6.1 Prediction Accuracy of LSTM-Network Model

The prediction accuracy of our LSTM-Network model is calculated against the net-
work predicted dataset which had no added noise prior to the prediction. We consid-
ered Normalized Root-Mean-Squared Error (NRMSE) as the measure of our prediction
accuracy. For predicted datasets that were introduced with prior noise having 2%,
3% and 5% Standard Deviations, we found their average NRMS errors as 7.03%,
10.2% and 16.2% respectively, while comparing them with datasets having no noise
introduced. Moreover, in order to demonstrate such deviations in observations be-
tween different environments, we calculated the NRMS errors between two different
weather stations that were located in separate locations, namely- Grand St. Bernerd
and Genepi. For such calculation of accuracy, we found that our network model,
trained in dataset of one environment, fails to predict the datasets from another one
and had an NRMS error that is more than 100%. It should be noted that in all those
cases, lower values of NRMSE mean the model predicted datasets are predicted more
accurately than the other way round.

6.2 Comparison of Decryption Accuracy

During the implementation of our proposed protocol, we tested decryption accuracy
by taking three different length of Intermediate Keys - 300, 400 and 450 - and two
different wOTP s -10 and 20 - to compare the results. Moreover, we tested our protocol
where we used 2, 4, 6 and 8 unique elements along with varying the number of random
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Figure 6.1: Average Decryption Accuracy over Noisy Data

elements picked by PartyA to create KSF from 45 to 200. Each of these tests were
repeated 25 times for every weather stations over varying noisy datasets and weather
stations from different environments. The calculation of decryption accuracy is con-
ducted by PartyB encrypting 1000 message bits and measuring the percentage of bits
that were decrypted accurately at PartyA’s end, while varying the parameters when
generating the session keys. This should be noted that since the message contains
only 1 or 0, a true random decryption of messages would get 50% of the message bit
correct.

Figure 6.1 shows the summary of average decryption accuracy when varying the
noise in predicted datasets along with different length for Intermediate Keys. As we
can see for datasets having an NRMS error of 100% aamong them, we get an accuracy
around 50%, which represents random decryption of message-bits. Moreover, with the
introduction of more noise in predicted datasets, decryption accuracy falls accordingly.
Additionally, it can be seen from the results in figure 6.1 that reducing the length of
Intermediate Keys give more accurate decrypted messages.

As we tested our protocol by varying the unique elements count and the number
of random elements picked from KSIA , we can see from figure 6.2 that decreasing both
of these parameters result in high accuracy in decryption. With 2 unique elements
and 45 randomly picked elements from KSIA , we can achieve decryption accuracy as
high as 96% for datasets with 7.03% NRMS error.

We added variable noise to sensor data and our proposed protocol generates de-
cryption accuracy according to the induced noise, we have managed to answer the
second Research Question (RQ2).
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Figure 6.2: Decryption accuracy against varying Unique Elements count and Random
Elements from Initial Session Key of PartyA
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Chapter 7

Conclusion

Numerous works related to Security in IoT pointed out one of the most vulnerable
fact about these devices - their heterogeneity. It is the property that hinders any
standardization of the security protocols. However, in this work we intended to
use this very heterogeneity property of IoT devices to our advantage in establishing
a secure communication protocol between two parties. Going back to the attack
discussed in 1.1, if the victim servers were to consider the client behavioral patterns
to encrypt and decrypt payloads, as we proposed in this work, then all the encrypted
payloads from compromised IoT devices would have been impossible to decrypt. Upon
detecting such flawed communication, the servers could have identified such attacking
devices and blocked any further communication.

One of the major hurdle in going forward with the proposed protocol is to minimize
the data payload between the communicating parties while generating session keys.
Though we did not concern ourselves with the efficiency of our protocol in this work,
this aspect should be looked into in any future direction of this proposal. Moreover,
to handle mismatched session-keys so that such incident could be determined by both
parties before passing information, further investigation should be done and standard
protocols should be established. Finally, our implementation of the proposed protocol
deals with only time-series data from weather sensors. More work is required to
implement this protocol in other data generating fields including image processing,
HCI etc.

Finally, it might not be self evident how an encryption scheme can be useful if
some of the decrypted message-bit are flawed. We envision a new research area to
work with this type of flawed decryption, probably similar to network communication
where established protocols are there to manage dropped packets during transfer of
messages. But such schemes should be attractive given the difficulty one may face to
predict the behavior of an elaborate heterogeneous IoT environment.
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Appendix A

Modular Multiplicative Inverse

if p and q are coprimes, then Modular Multiplicative Inverse of p (mod q) exists and
it essentially means to find the inverse of p in p modulo q.

For a worked example, let, p = 17 and q = 780. Since, gcd(17, 780) = 1, the
inverse of 17 modulo 780 exists. Let, the inverse is p̄. Thus,

17 moduo 780 =⇒ p̄× 17 ≡ 1 (mod 780)

=⇒ p̄× 17 = k × 780 + 1

=⇒ 1 = p̄× 17− k × 780

where, k ∈ Z

(A.1)

Applying Extended Euclidean Algorithm in equation A.1, we get,

780 = 45× 17 + 15

17 = 1× 15 + 2

15 = 7× 2 + 1

(A.2)

Now from equation A.2, we get,

1 = 15− 7× 2

= 15− 7× (17− 1× 15)

= (780− 45× 17)− 7× (17− 1× (780− 45× 17))

= −367× 17 + 8× 780

(A.3)

From equation A.1 and A.3, we get,

p̄ = −367 and k = 8

Since, p̄× 17 ≡ 1 (mod 780), equation A.1 holds for all values of p̄ where,

p̄ ∈ {...,−367 + (−1)× 780,−367 + 0× 780,−367 + 1× 780, ...}
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Appendix B

Derivation of Equation 2.8

The equation of the elliptic curve, E is given by equation 2.7.

B.1 Calculating Point Addition

The equation of a line L through points P1(x1, y1) and P2(x2, y2) can be given as:

x− x1
x1 − x2

=
y − y1
y1 − y2

=⇒ x− x1
y − y1

=
x1 − x2
y1 − y2

=⇒ y − y1
x− x1

=
y2 − y1
x2 − x1

=⇒ y − y1
x− x1

= m; [The slope of the line]

=⇒ y = m(x− x1) + y1

(B.1)

Now, putting the value of y from equation B.1 in equation 2.7. we get,

y2 = x3 + ax+ b

=⇒ {m(x− x1) + y1}2 = x3 + ax+ b

=⇒ m2(x2 − 2x1x+ x21) + y21 + 2m(x− x1) = x3 + ax+ b

=⇒ x3 + (−m2)x2 + (a+ 2x1m
2 − 2m)x+ (b−m2x21 − y21 + 2mx1) = 0

(B.2)

Since we know the points P1 and P2, which should not be the same for point addition,
it is understood that x1 and y1 in equation B.2 are constants along with a,m and b.

Again, the equation in B.2 is a Cubic Polynomial. Let the line L intersects the
elliptic curve, E, at point S(xs, ys). So the three roots of the equation B.2 will be
x1, x2 and xs. From Viete theorem in [25], we know that for any cubic polynomial,
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where, P (x) = ax3 + bx2 + cx+ d with roots r1, r2 and r3, P (x) = 0 satisfy,

r1 + r2 + r3 = − b
a

(B.3)

Thus from equation B.2, we get,

x1 + x2 + xs = −−m
2

1
=⇒ xs = m2 − x1 − x2

(B.4)

Putting the value of S(xs, ys) from equation B.4 in B.1, we get,

ys = m(xs − x1) + y1 (B.5)

When we reflect S over the x-axis, the sign of the y-coordinate changes. Thus the
equations from B.4 and B.5 becomes B.6, where the point P3(x3, y3) is located where
y3 = −ys and x3 = xs since the values of x-coordinates remain unchanged.

x3 = m2 − x1 − x2
y3 = m(x3 − x1)− y1

where,

m =
y2 − y1
x2 − x1

(B.6)

B.2 Calculating Point Doubling

In Point Doubling for Elliptic Curves, the given points P1(x1, y1) and P2(x2, y2) are
the same. Thus, x1 = x2 and y1 = y2. Let, L be a tangent line touching the elliptic
curve, E from equation 2.7 at points P1(x1, y1) and intersecting E on point Ps(xs, ys).
The coordinates of P1 is given and we need to find out the point P3 and its reflection
along x-axis, P3(x3, y3).

If the slope of the line, L, is m and it crosses the y-axis at point (0, c), the equation
of the line becomes:

y = mx+ c (B.7)

Moreover, the slope of a curve can be calculated by taking the partial derivative
of the curve. For the elliptic curve, E, the slope m = dy

dx
(x1, y1)

dy

dx
(y2) =

dy

dx
(x3 + ax+ b)

=⇒ 2y(
dy

dx
) = 3x2 + a

=⇒ dy

dx
=

3x2 + a

2y

(B.8)
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Thus we can get the value of m from equation B.8:

m =
3x21 + a

2y1

Now putting the value of y from equation B.7 in 2.7, we get,

(mx+ c)2 = x3 + ax+ b

=⇒ x3 −m2x2 − 2mxc− c2 + ax+ b = 0

=⇒ x3 + (−m2)x2 + (a− 2mc)x+ (b− c2) = 0

(B.9)

Since the roots of the cubic polynomial are x1 and xs where the line L touches
the curve at P1(x1, y1), from equation B.3, we get,

2x1 + xs = −(−m2)

1
=⇒ x1 + x2 + xs = m2 ;[since x1 = x2]

=⇒ xs = m2 − x1 − x2

(B.10)

As the line L goes through points P1(x1, y1) and Ps(xs, ys), the equation of the
line can be given by,

x− x1
x1 − xs

=
y − y1
y1 − ys

=⇒ y − y1 =
(x− x1)(y1 − ys)

x1 − xs
=⇒ y = m(x− x1) + y1 ;[Since m is the slope of the line]

(B.11)

Now, reflecting equation B.10 and B.11 over x-axis we get the point P3(x3, y3).
Thus the values of the coordinates can be calculated by:

x3 = m2 − x1 − x2
y3 = m(x3 − x1)− y1

where,

m =
3x21 + a

2y1

(B.12)
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Appendix C

Range of Unique Elements

When PartyB selects the unique elements, she needs to consider two thresholds:
Average-Case Error Threshold (thavg) and Worst-Case Error Threshold (thmax). Let,
PartyB selects eluniq unique elements and they are sorted in ascending order: {el1 <
el2 < ... < eleluniq

}. The following lemma relates the sparseness of the unique elements
to the Error Thresholds.

Lemma 1. For a set of Unique Elements UE with eluniq elements, where UE =
{el1, el2, ..., eleluniq

} and el1 < el2 < ... < eleluniq
, for each eli ∈ UE,

100 ∗ eli−1
100− thavg

< eli <
100 ∗ el1

100− thmax
or,

100 ∗ eli+1

100 + thavg
> eli >

100 ∗ el1
100 + thmax

Here we assumed, Average-Case Error Threshold is thavg% and Worst-Case Error
Threshold is thmax% .

Proof. Let, valA = KitmA
(x, y) and valB = KitmB

(x, y). For any two Unique
Elements eli and elj, where eli, elj ∈ UE, let us consider the Session Key Seed,
KSS(x, y) = valB ∗ eli. Now, let val = KSIA(x, y). Thus,

val =
valB ∗ eli
valA

=

{
100∗eli

100−thavg ; if, valA = (1− thavg
100

) ∗ valB
100∗eli

100+thavg
; if, valA = (1 + thavg

100
) ∗ valB

}

Hence, to select a value for elj which will ensure that no unique element can be
rounded off as the next one,

elj >
100 ∗ eli

100− thavg
or, elj <

100 ∗ eli
100 + thavg

62



Conversely, to ensure that elj value will result in rounding off to some other unique
element randomly, given NRMS error more than Worst-Case Error Threshold, we
need to consider el1 as the smallest element in UE. Thus,

elj <
100 ∗ el1

100− thmax
or, elj >

100 ∗ el1
100 + thmax

So, for any two Unique Elements eli−1 and eli, where, eli > eli−1,

100 ∗ eli−1
100− thavg

< eli <
100 ∗ el1

100− thmax

Moreover, for any two Unique Elements eli+1 and eli, where, eli < eli+1,

100 ∗ eli+1

100 + thavg
> eli >

100 ∗ el1
100 + thmax
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Appendix D

Proof of Accuracy for Decryption

If we replace u1 and u2 of Equation 4.9 with their values from equation 4.7 and
equation 4.8 respectively, we get equation D.1.

u = ((εTB × kA +msgbit ∗
plg
2

)

− (εTB ×KSPB
)× kprvA) mod plg

(D.1)

Moreover, if we replace kA with equation 4.6, we get equation D.2.

u = ((εTB × (KT
SPA
× kprvA + εA)

+msgbit ∗
plg
2

)− (εTB ×KT
SPB

)× kprvA) mod plg
(D.2)

Now, applying distribution over matrix addition and association over matrix multi-
plication in equation D.2 we get equation D.3.

u = ((εTB × (KT
SPA
−KT

SPB
)× kprvA)

+ (εTB × εA) +msgbit ∗
plg
2

) mod plg
(D.3)

From equation D.3, we can see that the term (KT
SPA
−KT

SPB
) determines the accuracy

of decryption for msgbit ∗ plg2 , since (εTB × εA) is very small compared to plg. Thus, to
improve the accuracy of decryption, the deviation between KSPA

and KSPB
should

be minimized.
The normalized noise εTB in equation D.3 presents a probabilistic deviation by

working on (KT
SPA
− KT

SPB
). Moreover we can rewrite (KT

SPA
− KT

SPB
) × kprvA as

two different SIS functions where the key is kprvA . In other words, (KT
SPA
× kprvA)−

(KT
SPB
× kprvA) . Thus, the whole probabilistic deviation is compressed into a linear

combination of vectors where the wight of the vectors are 1 or 0 (since, kprvA ∈
{0, 1}nenv . As we are compressing two larger set to a smaller set with the same key,
both the compressed vectors should fall close to each other, should the deviation
between the two larger sets are small. And finally, the position of the compressed
vectors are perturbed by the noise εTB which determines the decryption accuracy in a
probabilistic way.
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Figure D.1: Compression using SIS function in εTB × (KT
SPA
−KT

SPB
)× kprvA

The process is depicted more clearly in Figure D.1. Here we can see that two large
vector fields are going through SIS function and finally the output fiel is constrained.
However, the error induced by εTB has the propensity to make the output pair closer or
take them further away. And this is the reason when the message is decrypted, some
of them tend to present flawed value and the decryption depends upon the closeness
between KSPA

and KSPB
.
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