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Abstract

This paper summarizes the different imaging techniques and methodologies used to
perform classification of the different stages of a disease called diabetic retinopathy.
In particular, it focuses on deep learning techniques to perform such detection in the
fundus images of the patient’s eye. Diabetic retinopathy is a progressive disease that
causes the patient to lose eyesight if not diagnosed and treated at an early stage.
Ophthalmologists usually diagnose the patient of this disease by screening the retinal
fundus images to look for lesions. But the inaccuracy of such diagnosis together with
the delay between diagnosis and treatment motivated researchers to automate this
process of diagnosis. Using neural networks to train the system on a set of training
images, it is possible to make systems that are more accurate and faster than human
experts.
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Chapter 1

Introduction

1.1 General Overview

Visual perception is an integral part of human life. The eye is an organ that helps
humans in this perception by allowing them to interact with the world. It involves
sophisticated parts in the retinal region of the eye that reacts to the lighting condition
to which it is exposed to. Such parts include the light sensitive rods and cones that
send nervous impulses once light falls on it. These nervous impulses triggers the brain
and causes it to detect the object that the person sees.

Although this method of sensing is very crucial to the humans, it can be easily im-
paired by various diseases, causing them to become blind in extreme cases. One such
disease is Diabetic Retinopathy (DR) that is very common in diabetic patients and is
one of the major reasons for such patients to lose their vision. It is also the fastest
growing cause of blindness in the world. But it is possible to eliminate the risk of this
disease if it is detected early and treated for accordingly.

The symptoms of this disease include growth of small legions or hemorrhages at its
initial stages. Ophthalmologists can detect such symptoms of the disease by screening
the fundus images of the eye. These are images of the retina taken through the pupil.
Any hemorrhages or legions detected in the image ensures that the patient is positive of
the disease. But detection of such lesions are difficult and often time consuming since
they are very small and complex structures. Hence researchers are looking for ways
to automate the detection procedure so that the ophthalmologists can concentrate on
treating the disease rather than detecting.
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Figure 1.1: Normal vs diseased retina

1.2 Motivation

The increasing number of diabetic patients and the influx in blindness among these
patients caused by DR motivated us to work in this field. Also, the toll it takes
on the ophthalmologists to detect the complex symptoms, motivated us to automate
the system of detection so that they can concentrate more on treatment rather than
detection. The delay between the detection and treatment procedure also drove us to
work on this field because machines can detect the disease faster than humans.

1.3 Purpose of this report

This report initially elaborates on what the different stages of Diabetic Retinopathy
are and what are the symptoms of such stages. It also includes the motivation that
has driven us to work on this problem of automation. It then summarizes all the
related works that have been done on detection of Diabetic Retinopathy using imaging
techniques including works that have been done both with and without deep learning
techniques. Lastly we conclude the report with our proposed methods and future works
that can still be done in this field of research.
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Chapter 2

Diabetic Retinopathy

2.1 Stages of Diabetic Retinopathy

Diabetic Retinopathy (DR) occurs when tiny blood vessels in the retina are damaged
due to diabetes. These blood vessels leak blood or fluid forming lesions or hemorrhages
that blur the vision of the patient. Each eye of a patient can be at different stages of
the disease. But for the sake of simplicity, we broadly categorize the the disease into
two categories:

• Non-Proliferative Diabetic Retinopathy (NPDR)

• Proliferative Diabetic Retinopathy (PDR)

Non-Proliferative Diabetic Retinopathy is the initial stage of DR where the biological
abnormalities starts growing. Depending on the extent of the growth, the stages can
be further categorized into mild and severe NPDR. If the disease still goes untreated,
the final stage of the disease, Proliferative DR is achieved.

Once PDR is reached, new blood vessels start growing at a very fast rate. The ten-
dency of the blood vessels to change and leak at the same time causes blindness or
complete loss of vision. Hence the level of severity of the disease can be classified into
5 distinctive stages ranging from stage 0 to stage 4. Stage 0 is the safe state whereas
stage 4 is the most severe stage that usually leads to blindness. The stages are:
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• Stage 0: no DR

• Stage 1: mild DR

• Stage 2: moderate non-proliferative DR

• Stage 3: severe non-proliferative DR

• Stage 4: proliferative DR or Macular Edema (ME)

(a) Stage 0 (b) Stage 4

Figure 2.1: Safe state versus severe state

2.2 Image Dataset Available

In order to find a reliable model of neural network, we need a set of consistent high
quality images that can be used to train and compare the performance of the networks.
Some available datasets are DIARET DB0 [1], DIARET DB1 [2], MESSIDOR [3], and
Kaggle [4]. Here we have listed the publicly available fundus image datasets that are
available:

• Messidor-2 [3]: Dataset of 1748 labelled color fundus images of 874 subjects with
diabetes. Images of both the eyes of the subject are present in the dataset.

• Kaggle Dataset [4]: Dataset of 35126 labeled color fundus images of diabetic
subjects. The dataset contains images of both the eyes of the patients. But
the number of images in different classes are unbalanced and the images are of
different aspect ratio. So, they need to be pre-processed before training.
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Chapter 3

Literature Review

3.1 Non Deep-Learning Methods

Most non-deep learning approaches consist of several steps. Preprocessing steps such
as contrast enhancement are usually carried out initially to lessen image variation by
normalizing the original retinal image. Afterwards, irrelevant anatomical components
such as the optic disk and vessels are removed. Finally, only the remaining pathological
features of DR are retained for subsequent classification.

Non-deep learning methods from 2015 or earlier can be grouped into two types: exudate
(EX) segmentation and red lesion (RL) segmentation.
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3.1.1 Exudate Segmentation

EXs are lipoprotein intraretinal deposits due to vascular leakage. They appear in reti-
nal images as yellowish lesions with well-defined edges. Their shape, size, brightness,
and location vary among different patients. When clusters of EXs are located in the
macular region, they are indicative of macular edema (ME), which is the main cause
of visual loss in DR patients. For this reason, many researchers introduced the idea
of a coordinate system based on the location of the fovea to determine DR grading.
Different techniques have been proposed for EXs detection. They can be divided into
four categories:

Region Growing Method

o Automated detection of diabetic retinopathy on digital fundus images
(2008) [5].

• Authors: Sinthanayothin et al

• Purpose: develop an automated screening system to analyse digital colour retinal
images for important features of non-proliferative diabetic retinopathy (NPDR).

• Method: High performance pre-processing of the colour images was performed.
Previously described automated image analysis systems were used to detect ma-
jor landmarks of the retinal image (optic disc, blood vessels and fovea). Recur-
sive region growing segmentation algorithms combined with the use of a new
technique, termed a Moat Operator, were used to automatically detect features
of NPDR. These features included haemorrhages and microaneurysms (HMA),
which were treated as one group, and hard exudates as another group.

• Features:

– Hard exudates : identified as adjacent pixels with similar colour or grey
level

– HMA : sharpened using Moat Operator then identified by thresholding

• Classifier: Multilayer perceptron neural network to identify blood vessels

• Data: 112 digital fundus images of patients attending a DR screening service

• Results: sensitivity and specificity for exudate detection were 88.5% and 99.7%
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Thresholding Method

o Detection of exudates in retinal images using a pure splitting technique
(2010) [6].

• Authors: Jaafar et al

• Method: an adaptive thresholding based on a novel algorithm for pure splitting
of the image is proposed. A coarse segmentation based on the calculation of
a local variation for all image pixels is used to outline the boundaries of all
candidates which have clear borders. A morphological operation is used to refine
the adaptive thresholding results based on the coarse segmentation results

• Features:

– Exudates : local variation for each pixel of exudate region with clear margins

– o Non-exudates : discriminated using major axis length, minor axis length,
area, solidity

• Data: 50 abnormal images from DIARETDB0 database screening service

• Results: 91.2% sensitivity, 99.3% specificity

o A novel automatic image processing algorithm for detection of hard exu-
dates based on retinal image analysis (2008) [7].

• Authors: Sanchez et al

• Method: based on Fishers linear discriminant analysis and makes use of colour
information to perform the classification of retinal exudates.

• Features:

– Hard exudates : modified RGB model

– Non-exudates : selecting pixels around optic disk depending on its area

• Classifier: Fishers linear discriminant (FLD)

• Data: 58 retinal images with variable colour, brightness, and quality

• Results: sensitivity of 88% using the lesion-based performance evaluation crite-
rion, and accuracy of 100% (sensitivity of 100% and specificity of 100%) image-
based classification
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Mathematical Morpholopy Methods

o Exudate detection in color retinal images for mass screening of diabetic
retinopathy (2014). [8]

• Authors: Zhang et al

• Purpose: automatically detect normal exams in a tele-ophthalmology network,
thus reducing the burden on the readers

• Method: new preprocessing methods, which perform not only normalization and
denoising tasks, but also detect reflections and artifacts in the image. A new
candidates segmentation method, based on mathematical morphology. These
candidates are characterized using classical features, but also novel contextual
features. A random forest algorithm is used to detect the exudates among the
candidates

• Features:

– Contextual : distance between barycenter of candidate to nearest vessel,
minimum distance of candidate to nearest vessel

– Ultimate opening, a multi-scale morphological operator

– Mean value of normalized saturation channel of each exudate candidate

• Classifier: Random forest method

• Data: A new clinical database, e-ophtha EX, containing precisely manually con-
toured exudates. It is very heterogeneous. It contains images gathered within
the OPHDIAT telemedicine network for diabetic retinopathy screening

• Results: AUC between 0.93 and 0.95

o Automatic detection of diabetic retinopathy exudates from non-dilated
retinal images using mathematical morphology methods (2008). [9]

• Authors: Sopharak et al

• Method: Preprocessing (RGB to HIS, median filter, contrast enhancement, op-
tic disc elimination), exudates detection (closing, local variation, thresholding,
morphological reconstruction)

• Features:
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– Exudate detection : size of structuring element in dilation, window size in
local variation operator, threshold valued calculated using Otsu algorithm

– Macular detection : Applying closing operator then thresholding

• Data: All digital retinal images were taken from patients with nondilated pupils
taken at Thammasat University Hospital

• Results: Results: sensitivity and specificity are 80% and 99.5%

Classification Method

o A computational-intelligence-based approach for detection of exudates in
diabetic retinopathy images (2009). [10]

• Authors: Osareh et al

• Objective: Automated identification of exudate pathologies in retinopathy im-
ages based on computational intelligence techniques.

• Method: The color retinal images are segmented using fuzzy c-means cluster-
ing following some preprocessing steps, i.e., color normalization and contrast
enhancement. The entire segmented images establish a dataset of regions. To
classify these segmented regions into exudates and nonexudates, a set of initial
features such as color, size, edge strength, and texture are extracted. A genet-
icbased algorithm is used to rank the features and identify the subset that gives
the best classification results. The selected feature vectors are then classified
using a multilayer neural network classifier.

• Features:

– Exudate discrimination : compactness of region, region size, region edge
strength, mean Luv values inside and outside the region and Gabor filter
response features

• Classifier: three-layer perceptron NN with 65 node input

• Data: large image dataset consisting of 300 manually labeled retinal images

• Results: 96.0% sensitivity, 94.6% specificity
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o Neural network based detection of hard exudates in retinal images (2009).
[11]

• Authors: Garcia et al

• Method: an algorithm which includes a neural network (NN) classifier. Three NN
classifiers were investigated: multilayer perceptron (MLP), radial basis function
(RBF) and support vector machine (SVM)

• Features:

– Exudates : mean RGB values inside and outside the region and their stan-
dard deviations, region size, compactness and edge strength

• Data: 117 images with variable colour, brightness, and quality. 50 of them (from
DR patients) were used to train the NN classifiers and 67 (40 from DR patients
and 27 from healthy retinas) to test

• Results: Using a lesion-based criterion, a mean sensitivity (SEl) of 88.14% and
a mean positive predictive value (PPVl) of 80.72% for MLP. With RBF, SEl =
88.49% and PPVl = 77.41%, while SEl = 87.61% and PPVl = 83.51% using
SVM

o Automated detection of exudates for diabetic retinopathy screening (2007).
[12]

• Authors: Fleming et al

• Method: Candidate exudates were detected using a multi-scale morphological
process. Based on local properties, the likelihoods of a candidate being a mem-
ber of classes exudate, drusen or background were determined. This leads to a
likelihood of the image containing exudates which can be thresholded to create
a binary decision

• Features:

– Exudate candidate : normalized luminosity and its standard deviation, nor-
malized boundary gradient, candidate area, distance from nearest MA de-
tected, and standardized colour features

• Classifier: SVM having radial basis function kernel

• Data: 13 219 images of which 300 contained exudates

• Results: sensitivity 95.0% and specificity 84.6%
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o Automated Detection and Differentiation of Drusen, Exudates, and Cotton-
Wool Spots in Digital Color Fundus Photographs for Diabetic Retinopathy
Diagnosis (2007). [13]

• Authors: Niemeijer et al

• Purpose: To describe and evaluate a machine learningbased, automated system
to detect exudates and cotton-wool spots in digital color fundus photographs and
differentiate them from drusen, for early diagnosis of diabetic retinopathy

• Method: : Each pixel was classified, resulting in a so-called lesion probability
map that indicates the probability that a pixel is part of a bright lesion. Pixels
with high probability were grouped into probable lesion pixel clusters. Based on
cluster characteristics each probable lesion pixel cluster was assigned a probability
indicating the likelihood that the pixel cluster was a true bright lesion. Each
bright lesion cluster likely to be a bright lesion was classified as exudate, cotton-
wool spot or drusen.

• Features:

– True bright lesion detection : area, perimeter, compactness, length, width,
mean gradient, mean of green channel pixels, mean CIE-LUV intensities,
local pixel contrast, distance to closest red lesion

• Classifiers: k-NN and a linear discriminant analysis classifier

• Data: Three hundred retinal images from one eye of 300 patients with diabetes
were selected from a diabetic retinopathy telediagnosis database (nonmydriatic
camera, two-field photography): 100 with previously diagnosed bright lesions and
200 without

• Results: The system achieved an area under the receiver operating characteristic
(ROC) curve of 0.95 and sensitivity/specificity pairs of 0.95/0.88 for the detection
of bright lesions of any type

3.1.2 Red Lesion Segmentation

MAs are small saccular bulges in the walls of retinal capillary vessels. In color fundus
images, MAs appear like round red dots with a diameter ranging from 10 to 100 m.
MAs are difficult to distinguish from dot-HEMs, which are a little bigger. MAs are
normally the first retinal lesions that appear in DR and their number has a direct rela-
tionship to DR severity. Several approaches have been proposed for MAs segmentation

13



through color image analysis. The techniques for RL detection can be also divided into
four categories:

Region Growing Methods

o Automated microaneurysm detection using local contrast normalization
and local vessel detection (2006). [14]

• Authors: Fleming et al

• Method: Various methods for contrast normalization are compared. Best results
were obtained with a method that uses the watershed transform to derive a
region that contains no vessels or other lesions. Dots within vessels are handled
successfully using a local vessel detection technique

• Features: number of peaks in smoothed energy function, major axis length, ec-
centricity of the elliptical cross section of the paraboloid, depth of the candidate,
energy at the boundary

• Classifier: k-NN with k = 15

• Data: images acquired from diabetic patients attending the Grampian Diabetes
Retinal Screening Programme 1441 images were graded by a clinician for the
presence of MAs

• Results: sensitivity 85.4% and specificity 83.1%

Mathematical Morphology Methods

o Automated microaneurysm detection method based on eigenvalue analysis
using hessian matrix in retinal fundus images (2013). [15]

• Authors: Inoue et al

• Method: After image preprocessing, the MA candidate regions were detected by
eigenvalue analysis using the Hessian matrix in green-channeled retinal fundus
images. Then, 126 features were calculated for each candidate region. By a
threshold operation based on feature analysis, false positive candidates were re-
moved. The candidate regions were then classified either as MA or false positive
using artificial neural networks (ANN) based on principal component analysis
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(PCA). The 126 features were reduced to 25 components by PCA, and were then
inputted to ANN

• Features: based on pixel value, shape, texture analysis, reduced using principal
component analysis (PCA)

• Classifier: Classifier: artificial neural network (ANN)

• Data: 25 retinal images from the retinopathy online challenge (ROC) database

• Results: true positive rate was 73

o Automated detection of red lesions from digital colour fundus photographs
(2011). [16]

• Authors: Jaafar et al

• Method: After pre-processing, a morphological technique was used to segment
red lesion candidates from the background and other retinal structures. Then a
rule-based classifier was used to discriminate actual red lesions from artifacts. A
novel method for blood vessel detection is also proposed to refine the detection
of red lesions

• Features: aspect ratio, area, perimeter, circularity, eccentricity, mean intensity,
inner standard deviation

• Classifier: Rule-based classifier

• Data: standarised test set of 219 images

• Results: sensitivity of 89.7% and a specificity of 98.6% (at lesion level)

o Detection of microaneurysms using multi-scale correlation coefficients
(2010). [17]

• Authors: Zhang et al

• Method: a new approach based on multi-scale correlation filtering (MSCF) and
dynamic thresholding is developed. This consists of two levels, microaneurysm
candidate detection (coarse level) and true microaneurysm classification (fine
level)

• Features: area, perimeter, aspect ratio, circularity of the candidate, total, average
and normalized intensities, compactness
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• Classifier: Discrimination table

• Data: ROC (retinopathy on-line challenge) and DIARETDB1 (standard diabetic
retinopathy database)

• Results: 2nd rank in ROC competition

o Automatic detection of microaneurysms in color fundus images (2007).
[18]

• Authors: Walter et al

• Method: The first step consists in image enhancement, shade correction and
image normalization of the green channel. The second step aims at detecting
candidates, i.e. all patterns possibly corresponding to MA, which is achieved
by diameter closing and an automatic threshold scheme. Then, features are
extracted, which are used in the last step to automatically classify candidates into
real MA and other objects; the classification relies on kernel density estimation
with variable bandwidth

• Features: no. of pixels in region, circularity, mean and maximal values of top-
hat, dynamic (a classical morphological contrast measure), outer and inner grey
level mean and standard deviation, grey level contrast, colour contrast

• Classifier: KNN

• Data: 21 annotated images Grampian Diabetes Retinal Screening Programme
1441 images were graded by a clinician for the presence of MAs

• Results: sensitivity was 88.5% at an average number of 2.13 false positives per
image

Wavelet-Based Method

o Optimal wavelet transform for the detection of microaneurysms in retina
photographs (2008). [19]

• Authors: Quellec et al

• Method: MAs are detected by locally matching a lesion template in subbands
of wavelet transformed images. To improve the method performance, the best
adapted wavelet within the lifting scheme framework is used. The optimization
process is based on a genetic algorithm followed by Powells direction set descent

16



• Data: 120 retinal images analyzed by an expert

• Results: sensitivity of 89.62%, positive predictive value of 89.50%

Hybrid Methods

o Retinal Microaneurysm Detection Through Local Rotating Cross-Section
Profile Analysis (2013). [20]

• Authors: Lazar et al

• Method: MA detection through the analysis of directional cross-section profiles
centered on the local maximum pixels of the preprocessed image. Peak detection
is applied on each profile, and a set of attributes regarding the size, height,
and shape of the peak are calculated subsequently. The statistical measures of
these attribute values as the orientation of the cross-section changes constitute
the feature set that is used in a nave Bayes classification to exclude spurious
candidates. A formula for the final score of the remaining candidates is given,
which can be thresholded further for a binary output

• Features: increasing and decreasing ramp height, ramp slope, top and peak
width, peak height

• Classifier: Nave Bayes classifier

• Data: The ROC publicly available dataset consisting of 50 training and 50 test
images

• Results: overall score of 0.423, ranked 2nd in ROC competition

o Assessment of four neural network based classifiers to automatically detect
red lesions in retinal images (2010). [21]

• Authors: Garcia et al

• Objective: detect red lesions (RLs), like haemorrhages and microaneurysms

• Method: extracted a set of colour and shape features from image regions and
performed feature selection using logistic regression. Four neural network (NN)
based classifiers were subsequently used to obtain the final segmentation of RLs:
multilayer perceptron (MLP), radial basis function (RBF), support vector ma-
chine (SVM) and a combination of these three NNs using a majority voting (MV)
schema
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• Features: Region size, mean and standard deviation of RGB values in and around
the region, compactness, edge strength, homogeneity, colour difference, circular-
ity, eccentricity, aspect ratio

• Classifiers: MLP, RBF, SVM

• Data: 115 images divided into a training set of 50 images (with RLs) and a test
set of 65 images (40 with RLs and 25 without RLs)

• Results: best results were obtained for RBF. Using a lesion-based criterion, a
mean sensitivity of 86.01% and a mean positive predictive value of 51.99% were
obtained. With an image-based criterion, a mean sensitivity of 100%, mean
specificity of 56.00%

o Mixture model-based clustering and logistic regression for automatic de-
tection of microaneurysms in retinal images (2009). [22]

• Authors: Sanchez et al

• Method: a statistical approach based on mixture model-based clustering and
logistic regression. The innovative segmentation approach based on a statistical
mixture model based clustering allows a robust separation of the foreground
and background scenes and, specifically, a segmentation of MAS in a totally
unsupervised manner

• Features: based on shape, colour, brightness, contrast

• Classifier: logistic regression classifier

• Data: public database proposed by the Retinal Online Challenge

• Results: overall score in the ROC competition of 0.332404

o Automated microaneurysm detection method based on double-ring filter
and feature analysis in retinal fundus images (2009). [23]

• Authors: Mizutani et al

• Method: After image preprocessing, candidate regions for microaneurysms were
detected using a double-ring filter. Any potential false positives located in the
regions corresponding to blood vessels were removed by automatic extraction of
blood vessels from the images. Twelve image features were determined, and the
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candidate lesions were classified into microaneurysms or false positives using the
rule-based method and an artificial neural network

• Features: area, circularity, length to width ratio, mean value of red, green and
blue bits, contrast

• Classifier: rule-based method and a three-layered feed forward ANN with back
propagation algorithm

• Data: Retinopathy Online Challenge (ROC) database (50 training cases, 50 test
cases)

• Results: sensitivity for detecting microaneurysms was 65% at 27 false positives
per image

o Automatic detection of red lesions in digital color fundus photographs
(2005). [24]

• Authors: Niemeijer et al

• Method: a new red lesion candidate detection system based on pixel classifica-
tion. Using this technique, vasculature and red lesions are separated from the
background of the image. After removal of the connected vasculature the re-
maining objects are considered possible red lesions. An extensive number of new
features are added to those proposed by SpencerFrame. The detected candidate
objects are classified using all features and a k-nearest neighbor classifier

• Features: area, perimeter, aspect ratio, circularity, total, mean and normalized
intensities in green plane and shade corrected image, compactness, mean and
standard deviation of filter outputs

• Classifier: kNN, linear discriminant, quadratic discriminant

• Data: 100 images and was used to train and test composed of data taken from a
screening program.

• Results: sensitivity of 100% at a specificity of 87%

3.2 Deep Learning Methods

Feature engineering, involves computing explicit features specified by experts, resulting
in algorithms designed to detect specific lesions or predicting the presence of any level
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of diabetic retinopathy. Deep learning is a machine learning technique that avoids such
engineering by learning the most predictive features directly from the images given a
large data set of labeled examples. This technique uses an optimization algorithm
called back-propagation to indicate how a machine should change its internal param-
eters to best predict the desired output of an image. Some of the papers using deep
learning algorithms to create models are given in the following section.

3.2.1 Convolutional Neural Network

A convolutional neural network (CNN) is a class of deep, feed-forward artificial neu-
ral networks. CNNs use a variation of multilayer perceptrons via backpropagation
designed to require minimal preprocessing. CNNs use relatively little pre-processing
compared to other image classification algorithms. This means that the network learns
the filters that in traditional algorithms were hand-engineered. This independence from
prior knowledge and human effort in feature design is a major advantage.

Segmentation Using CNN

o Development and Validation of a Deep Learning Algorithm for Detection
of Diabetic Retinopathy in Retinal Fundus Photographs (2016). [25]

• Authors: Varun Gulshan et al

• Objective: To apply deep learning to create an algorithm for automated de-
tection of diabetic retinopathy and diabetic macular edema in retinal fundus
photographs.

• Method: CNN was implemented using Inception-v3 architecture proposed by
Szegedy et al. The optimization algorithm used to train the network weights
was a distributed stochastic gradient descent implementation by Dean et al.
To speed up the training, batch normalization as well as preinitialization using
weights from the same network trained to classify objects in the ImageNet data
set were used. An ensemble of 10 networks trained on the same data was used,
and the final prediction was computed by a linear average over the predictions
of the ensemble.

• Data: The EyePACS-1 data set consisted of 9963 images and Messidor-2 data
set had 1748 images
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• Result: The performance of the algorithm at the high-sensitivity and high-
specificity operating points are:

– High-sensitivity operating point: specificity was 84.0% and sensitivity was
96.7%.

– High-specificity operating point: specificity was 93.8% and sensitivity was
90.7%

– The area under the receiver operating characteristic curve was 97.4%

o Improved Automated Detection of Diabetic Retinopathy on a Publicly
Available Dataset Through Integration of Deep Learning (2016). [26]

• Authors: Michael David Abramoff et al

• Objective: To compare performance of a deep-learning enhanced algorithm for
automated detection of diabetic retinopathy.

• Method: A hybrid device applies a set of CNN-based detectors to each of the
images in the exam. These detectors are trained and optimized to detect normal
retinal anatomy, such as optic disc and fovea, as well as the lesions character-
istic for DR, such as hemorrhages, exudates, and neovascularization. They are
inspired by Alexnet and the Oxford Visual Geometry Group network architec-
tures. The analysis software provides four types of outputs:

– Negative: implying no or only mild DR present

– rDR: implying rDR is present

– vtDR: implying vtDR is present

– Low exam quality: implying either protocol errors or low quality of the
individual images.

If the index is above or equal to the vtDR threshold, a positive output for vtDR is
returned. If the vtDR index is below this threshold, the rDR index is thresholded.
If the rDR index is above or equal to this latter threshold a positive output for
rDR is returned. If it is below the latter threshold an output of negative is
returned. The device was never trained on any of the Messidor-2 images.

• Data: 10,000 to 1,250,000 unique samples, depending on the lesion to be detected
are used for training. Messidor-2 data consisting of 1748 images is used for
validation.

• Result: The device with CNN based detectors performed pretty good with results
of:
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– vtDR: 100% sensitivity, 91% specificity and 0.989 AUC.

– rDR: 96.8% sensitivity and 87.0% specificity

– The area under the receiver operating characteristic curve was 97.4%

o Fast convolutional neural network training using selective data sampling:
Application to hemorrhage detection in color fundus images (2016). [27]

• Authors: van Grinsven et al

• Objective: a method to improve and speed-up the CNN training for medical im-
age analysis tasks by dynamically selecting misclassified negative samples during
training

• Method: A dynamic CNN training strategy where informative normal samples
are dynamically selected at each training epoch from a large pool of medical
images. A dynamic weight is assigned to each pixel in the negative training pool
indicating its informativeness level. After each CNN training epoch, the weight of
each negative training pixel is updated. This process is repeated until a stopping
criterion is reached. The final trained CNN is used to classify each pixel in the
test images, resulting in a pixel probability map for each test image

• Network details: The CNN architecture used in this study consists of five convo-
lutional layers followed by rectified linear units (ReLUs) and spatial max-pooling.
The final layers of the network consist of a fully connected layer and a final soft-
max classification layer.

• Data: Kaggle and Messidor databases

• Result: A decreased training time from 170 epochs to 60 epochs with an increased
performance on par with two human experts was achieved with areas under the
receiver operating characteristics curve of 0.894 and 0.972 on two data sets. The
SeS CNN statistically outperformed the NSeS CNN on an independent test set

o Convolutional Neural Networks for Diabetic Retinopathy (2016). [28]

• Authors: Pratt et al

• Objective: A network with CNN architecture and data augmentation which can
identify the intricate features involved in the classification task such as micro-
aneurysms, exudate and haemorrhages on the retina and consequently provide a
diagnosis automatically and without user input
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• Method: Preprocessing tasks such as colour normalization and resizing were per-
formed. The network was trained using stochastic gradient descent with Nestrov
momentum. Afterwards, real-time dataaugmentation was used throughout train-
ing to improve the localisation ability of the network

• Network details: The network starts with convolution blocks with activation and
then batch normalisation after each convolution layer. As the number of feature
maps increases they move to one batch normalisation per block. All maxpooling
is performed with kernel size 3x3 and 2x2 strides. After the final convolutional
block the network is flattened to one dimension. To avoid overfitting they used
weighted class weights relative to the amount of images in each class. Likewise,
they performed dropout on dense layers, to reduce overfitting, until they reached
the dense five node classification layer which uses a softmax activation function
to predict our classification. The leaky rectified linear unit13 activation function
was used, applied with a value of 0.01, to stop over reliance on certain nodes in
the network. Similarly, in the convolution layers, L2 regularisation was used for
weight and biases. The network was also initialized with Gaussian initialisation
to reduce initial training time. The loss function used to optimise was the widely
used categorical cross-entropy function.

• Data: Kaggle databases

• Result: a sensitivity of 95% and an accuracy of 75% on 5,000 validation images

o Improved Microaneurysm Detection using Deep Neural Networks (2016).
[29]

• Authors: Haloi et al

• Objective: a novel microaneurysm (MA) detection for early diabetic retinopathy
screening using color fundus images

• Method: Each pixel of the image is classified as either MA or non-MA using a
deep neural network with dropout training procedure using maxout activation
function. No preprocessing step or manual feature extraction is required

• Network details: three convolutional layers each followed by a max-pooling layer
and one fully connected layer. And a softmax layer on the top of the network
with two neurons for MA and non-MA probability values

• Data: Retinopathy Online Challenge (ROC) and Diaretdb1v2 database

• Result: accuracy of 95% with sensitivity and specificity of 97% and 94% respec-
tively on Messidor dataset
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o Automated Identification of Diabetic Retinopathy Using Deep Learning
(2017). [30]

• Authors: Gargeya et al

• Objective: to develop a data-driven deep learning algorithm to automate DR
screening

• Network details: convolutional parameter layers learn iteratively filters that
transform input images into hierarchical feature maps, learning discriminative
features at varying spatial levels without the need for manually tuned parame-
ters. each convolutional layer used batch normalization and the ReLU nonlin-
earity function to ensure smooth training and prevent overfitting, while using
2-class categorical cross-entropy loss for class discrimination

• Data: Messidor 2 and E-Optha databases

• Result: a 0.94 and 0.95 AUC score
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Chapter 4

Proposed Method

4.1 Skeleton of Proposed Method

Our proposed method starts by performing a series of preprocessing steps to remove
the Optic Disc from the retinal image since it does not contribute to the disease.
This involves morphological operations such as opening and closing and other image
processing techniques. The functions of Matlab came in handy to perform these steps
with minimum difficulty.

We then divide our original dataset of images into two equally sized datasets containing
approximately half the number of images as the original dataset. This was done in
order to reduce the runtime of the overall neural network with minimal or no loss in
data accuracy compared to the original dataset. Also, it ensured that almost all the
images from the original dataset were used in the neural network for training.

In the third step we create bottleneck features for our dataset, one for every image.
Bottlenecks are the features that are made to train the last step of the pretrained
model. It reduces the access time during the training period since it does not have to
access mutiple layers of a model trained from scratch.

The bottlenecks are then used to train the already pretrained models using different
network architectures to achieve a full model. Differences in learning rates and the
number of epochs affect how fast the the models are formed. Once the models are
created the validation datasets are used to check the validation accuracy of the trained
model. Since we use multiple datasets to train the model, we get multiple accuracy
results. These accuracy results are averaged in the final step of the proposed method.
The time needed to train each model are timed to calculate the runtime of the proposed
method.
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Figure 4.1: Skeleton of Method.

4.2 Pre-Processing

Optic disc (OD) has a specific set of characteristics that makes its removal fairly easy.
It is usually circular in shape and of constant size, has high intensity and is found in
the same exact location in every retinal image. Sometimes dark objects may appear
in these optic disc regions which, if not removed beforehand, might contribute to the
accuracy despite of having no genuine relation to the disease itself.

Since the position of the OD is fixed specifically in the middle third of the image, the
following steps focus on that part of the retinal images particularly. We initially work
on the red channel of the images since the intensity value of the OD is most distinct
from the rest of the image in that color channel. The processing starts by resizing all
the images to 600 by 800 pixels so that the complexity of the dataset is reduced and
the results are obtained faster during training.

The images are then passed through a median filter of size 11 by 11 pixels so that the
finer blood vessels are filled up. The results are shown in Figure 4.2b . This filter does
not blur out the border sharp edges such as the borders of OD or retina unlike other
neighborhood averaging filters. It basically replaces the pixel at the center of the filter,
fG(s, t), with pixel values of all its neighboring pixels as follows:

fmed(x, y) = median(s,t)εWxy{fG(s, t)}

where W represents a neighborhood centered around location (x, y) in the image.
On the resulting image we run a morphological top-hat transform so that it extracts
small elements and details from given images. It involves performing a morphological
opening operation on the input image based on a structuring element SE, and then
subtracting the result from the original image itself as follows:
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T (fmed) = fmed − (fmed ◦ SE)

A disk structuring element of size 60 pixels is used for this operation making sure that
the size of the structuring element is larger than the size of the OD. We then perform
contrast stretching on the image so that it enhances the overall dynamic range of the
image making the dark regions darker and bright regions brighter. A lower limit of
1% and an upper limit of 80% makes sure that the data is saturated at low and high
intensities of image. The output image is shown in Figure 4.2d.

(a) Red channel gray image. (b) Output of using median filter.

(c) Output of using top-hat filter. (d) Contrast stretching.

(e) Binary image. (f) Morphological opening and closing.

Figure 4.2: Presprocessing steps.

A thresholding filter is then used to convert the image into a binary one. Because a
threshold value of 0.7 is used, intensity values greater than this value are ceiled to one
whereas all other values are considered zero. Figure 4.2e shows the result. Finally, a
morphological opening is performed to further remove any small objects which are not
part of the OD. This is followed by a closing operation using a disk structuring element
of size 10 pixels to merge the adjacent objects together giving us an output as shown
in Figure 4.2f.
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(a) Original Image. (b) Image without the Optic disc.

Figure 4.3: Removal of Optic disc from the original image.

Since the output image now contains only the pixel values that contribute to the OD,
we find the center of all the points that have a binary value of 1. Using this point as
the center of a circle with a radius of 50 pixels, we remove any point from the original
image that fall within this circle. This leaves us with an image that has its OD region
blacked out as shown in Figure 4.3

4.3 Preparation of Datasets

The original dataset was divided into two smaller datasets of approximately half the
number of images as the original dataset, each containing random images. This ensures
that when we train the neural network with these datasets, majority of the images
from the original dataset are used for training the network giving us a better accuracy.
Also, training the network multiple times using these subsets of data helps improve the
overall accuracy since the network gets to train more than once unlike the traditional
method.

4.4 Transfer Learning

Transfer learning is a research problem in machine learning that focuses on storing
knowledge gained while solving one problem and applying it to a different but related
problem. For example, considering model A’s task is to identify 1000 kinds of objects
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like hats, cats, mats and we have such trained model at our hand, we want to create
a model B to detect a cat/dog classifier. Even if we have a small dataset we can use
the knowledge of model A during the training of model B and produce state of the art
results. [31]

There are multiple reasons behind using this approach instead of taking the traditional
training from scratch approach. Whenever we want to solve a unique problem using
machine learning the chances are high that we might not find enough data for our
model. Training with fewer data will result in not so good results. And even if we have
large data there is a possibility of not having enough resources like GPU to obtain
high-quality results. So transfer learning addresses these problems by already using
the knowledge in the form of a pre-trained model which someone has created with large
datasets, resources.

Figure 4.4: Transfer learning
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4.5 Architectures

Different architectures for neural networks have been proposed by researchers over time
that vary in its complexity and methodology. For our problem we use two different
architectures namely Google’s Inception V3 [32] model and MobileNet [33] model to
train our dataset of retinal images.

4.5.1 Inception V3

The inspiration comes from the idea that we need to decide whether we what a 3x3
or a 5x5 convolution at each layer of the model. Smaller convolutions recover local
features whereas larger convolutions recover high abstracted features. So instead of
deciding for ourselves as to what we want, we let the model decide for itself by finding
all the convolutions at each layer and determining which convolution is most suitable
at that layer. This operation is performed at each layer before it moves on.

Figure 4.5: Inception module with dimension reduction.

The basic inception module shown in Figure 4.5 gives us a brief demonstration of what
operations are performed at each layer. It is evident that there are a large variety of
convolutions being performed at each layer just as we mentioned earlier. The idea is
that we dont need to know ahead of time if it was better to do, for example, a 33
then a 55. Instead, we let the model do all the convolutions and let it pick what’s
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best.But there is also a max pooling layer alongside the convolutions. This was used
just because historically, good networks had pooling. So to achieve greater accuracy,
this operation was included.

Figure 4.6: 22 layers of Inception model.

But another major problem of this architecture is that the larger convolutions are more
computationally expensive and takes a lot of time to compute. So in order to address
the problem the paper suggests first doing a 11 convolution reducing the dimensionality
of its feature map, passing the resulting feature map through a relu, and then doing
the larger convolution. The 11 convolution is key because it reduces the dimensionality
of its feature map. The full architecture of the model is shown in Figure 4.6.

4.5.2 MobileNet

MobileNet is an architecture which is more suitable for mobile and embedded based
vision applications where there is lack of compute power.[34] This architecture was
proposed by Google. This architecture uses depthwise separable convolutions which
significantly reduces the number of parameters when compared to the network with
normal convolutions with the same depth in the networks. This results in light weight
deep neural networks.The normal convolution is replaced by depthwise convolution
followed by pointwise convolution which is called as depthwise separable convolution.

In the normal convolution, if the input feature map is of Hi,Wi, Ci dimension and we
want Co feature maps with convolution kernel size K then there are Co convolution
kernels each with dimension K,K,Ci. This results in a feature map of Ho,Wo, Co
dimension after convolution operation.

In the depthwise separable convolution, if the input feature map is of Hi,Wi, Ci dimen-
sion and we want Co feature maps in the resulting feature map and the convolution
kernel size is K then there are Ci convolution kernels, one for each input channel, with
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dimension K,K, 1. This results in a feature map of Ho,Wo, Ci after depthwise convo-
lution. This is followed by pointwise convolution [1x1 convolution]. This convolution
kernel is of dimension 1, 1, Ci and there are Co different kernels which results in the
feature map of Ho,Wo, Co dimension.

This results in the reduction of number of parameters significantly and thereby re-
duces the total number of floating point multiplication operations which is favorable
in mobile and embedded vision applications with less compute power.By using depth-
wise separable convolutions, there is some sacrifice of accuracy for low complexity deep
neural network.

Figure 4.7: MobileNet architecture.
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4.6 Averaging

Since we used two different subsets of the same dataset containing random images,
some of the images are common in both of them while others are not. This step
helps in using a larger portion of the original dataset in training the neural network
compared to only half the dataset. And because bottlenecks are needed to be formed
only once for every image, the images that were common in both the datasets and
have already been trained in the first dataset, do not need to be considered again
when making bottlenecks for the second dataset. This reduces the combined runtime
of the two training procedures compared to the runtime of a single traditional training
procedure. Also, running the training steps twice for the two datsets, gives us two
accuracy values, which upon averaging, gives us a more rigid accuracy value for the
whole procedure.
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Chapter 5

Experimental Result and
Performance Analysis

5.1 Dataset and Experimental Setup

Implementations of diabetic retinopathy classification using CNN was attempted on
a laptop computer having Core i7 2.6 GHz processor, 16 GB RAM and GTX 960M
graphics card. These implementations were based on pretrained models developed by
Google that were trained beforehand using approximately 14 million images of the
ImageNet dataset. To train the final layer, we used our retinal image datasets of
Messidor-2 and Kaggle.

The code was implemented using python programming language on ubuntu operating
system. Library functions such as OpenCV, Theano, Lasagna and Tensorflow were
used. To carry out the preprocessing steps on the images, we used built-in functions of
Matlab 2017 program such as top-hat transform and morphological opening and closing
operations. The randomized subsets of data were also made using Matlab functions.
All the operations in Matlab were performed in Windows 10 operating system and
were later transferred to Ubuntu.

5.2 Performance Measurement

In order to keep track of the performance of our proposed method compared to other
methods, we used a set of metrics which are listed below. For a graphical representation
we used Tensorboard which is a performance monitoring tool offered by Tensorflow.
The metrics are:
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• Training accuracy: Training accuracy gives us an estimate of what percentage
of the training images the model could classify correctly. This is given by the
number of true positive images and the true negative images as a percentage of
the total number of training images.

• Validation accuracy: Similar to the training accuracy, we find the number of true
positive and true negative images that the model managed to find correctly as a
percentage of all the test images.But this time the accuracy is found for a different
set of images that haven’t been used in the training step before. This helps us
understand how well our model performs for unknown images and whether our
model is overfitted or not.

• Cross Entropy: Cross-entropy is commonly used to quantify the difference be-
tween two probability distributions. The smaller the value of cross entropy the
closer are the two probabilities. It is given by the equation:

H(p, q) = −
∑
x

p(x)logq(x)

• Runtime: Since our proposed method deals with ways to reduce the runtime of
the training process without significantly losing accuracy, we need to keep track of
the time it takes to execute the python scripts completely. The runtime includes
time taken to create the unknown bottlenecks and also the time necessary to run
all the epochs of the training process.

5.3 Comparative Analysis

5.3.1 Finding the right parameters

For the first part of the experiment we used the two datasets without any preprocessing
and varied the training iterations to see how the accuracy changed with change in
epoch. Also all the images in the dataset were used for this experiment, a default
learning rate of 0.01 was used and inception model was used as control. Notice that
we haven’t timed these experiments because we first wanted to find which dataset is
more suitable to work on. The results are given in the table below:
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Dataset/Epochs 500 1000 2000 4000
Kaggle 55.7% 57.1% 58.8% 60.1%
Messidor-2 76.1% 77.7% 78.8% 81.9%

Table 5.1: Finding the appropriate dataset.

(a) Variation of validation (blue) and training (orange) accuracy with every iteration.

(b) Variation of cross entropy with every iteration.

Figure 5.1: Graphical representation of performance metrics.
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It is evident from the results that the dataset of Messidor-2 gives us more accurate
results compared to Kaggle. This is because the images in Kaggle dataset are not
standardized unlike Messidor-2 where all the images are centered, properly illuminated
and of same size. Also with higher epochs, the accuracy values increase which indicates
that the neural network learns better about the dataset with every epoch. The decrease
in cross entropy with every epoch as shown in Figure 5.1 also proves that the difference
between the results and the expected output gets smaller with every iteration.

We then move on to determine for which architecture of neural network we get the
best accuracy results. Since we already found that Messidor-2 dataset gives us better
accuracy, we keep that same for the experiments this time. We also use all the images
in the dataset and a default learning rate of 0.01 as control values and find the results
for different iterations. The results are as follows:

Architecture/Epochs 500 1000 2000 4000
MobileNet 65.4% 74.7% 78.7% 79.3%
Inception V3 76.1% 77.7% 78.8% 81.9%

Table 5.2: Finding the appropriate achitecture.

Figure 5.2: Variation of accuracy for different architectures.
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As Figure 5.2 shows, results are indicative of the fact that Inception V3 is the better
architecture here. So, we move on to find which learning rate is the most suitable
for our dataset. Using the same dataset of Messidor-2 and architecture of Inception
V3, we find which learning rate is the most appropriate. For all the experiments we
maintain 500 epochs for faster runtimes assuming that the relative effect of learning
rate still remain unaffected for this number of epochs. The results and a graphical
representation are as follows:

Learning rate 0.005 0.01 0.1 0.5
Accuracy 78.7% 76.1% 52.1% 42.0%

Table 5.3: Finding the best learning rate.

Figure 5.3: Variation of accuracy for different learning rates.

The above set of experiments shows that for a small learning rate, like 0.005, the
training takes longer, but the overall accuracy increases. Higher values of learning rate,
like 1.0, trains faster, but typically reduces accuracy, or even makes training unstable.
So for all the experiments following this we use a learning rate of 0.01 since it gives
us a good balance between runtime and accuracy. Also to see how our preprocessing
steps affect the accuracy, we run a series of experiments. The results are as follows:
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Dataset/Epochs 500 1000 2000 4000
Normal 76.1% 77.7% 78.8% 81.9%
Preprocessed 77.5% 79.5% 81.5% 83.4%

Table 5.4: Comparing the effects of preprocessing the images.

Figure 5.4: Variation of accuracy for preprossed and normal images.

So, from the above set of experiments it is evident that in order to achieve optimal
results, we should use Inception V3 architecture on Messidor-2 dataset and also ensure
high number of epochs and a learning rate of 0.01 for the most optimal results. But
despite of these optimal parameters, we could still have be far from optimizing the
training process if it takes a long time. So, we address to this problem in the next
section and propose a method to reduce the run-time.

5.3.2 Reducing the run-time

Once the appropriate parameters for the optimal results are obtained, we carry out
our proposed method of reducing runtime to see how well it performs. The series of
steps are as follows:
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• Firstly we execute our set of preprocessing steps on Messidor-2 dataset.

• We then transfer the dataset to Ubuntu OS and divide the dataset into two
subsets each containing approximately half the number of images as the original
datset.

• At this stage we initialize a timer to see how long it takes to get the results for
the first subset of images.

• We then begin the process of training our process which includes creating bot-
tlenecks and finding the training and validation accuracy at each epoch. The
parameters that we determined to be optimal are used for these steps.

• Once all the epochs have been completed, we stop the timer and record the
accuracy value and the runtime for the first subset.

• We repeat the same set of steps for our second dataset and then find the total
runtime and the average accuracy for the two sessions.

• To compare how well our method performed, we time a control session where we
use the full dataset. The runtimes and the accuracy values that we get from the
two methods are then compared.

The results that we obtained are as follows:

Method Accuracy Runtime
Traditional method 77.7% 388.0s
Proposed method (Attempt 1) (72.7% + 78.0%)/2 = 75.3% 170.9s + 93.0s = 263.9s
Proposed method (Attempt 2) (70.2% + 73.4%)/2 = 71.8% 172.1s + 110.6s = 282.7s
Proposed method (Attempt 3) (73.1% + 73.6%)/2 = 73.3% 158.7s + 104.2s = 262.9s

Table 5.5: Results of our proposed method.

From the above set of results it is evident that the runtime for our proposed method
reduces compared to traditional method but with a small trade-off of reduced accuracy.
This process would be very useful in cases where the dataset is already very large and
for any new images the accuracy does not increase by much. The ratio by which the
reduction in runtime exceeds the reduction in accuracy in the first attempt is given by:

Runtime reduction

Accuracy reduction
=

388− 263.4

77.7− 75.3
= 52 : 1
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This reduction in runtime could be particularly useful in rural areas where doctors are
not available for treatment and also powerful computers are not always at disposal for
such computationally expensive processes. Although it is true that training would not
be necessary after every patient’s data is collected, it does need to be trained when a
significant number of new images are collected waiting in line to be trained. In such
cases if training a model from scratch takes days, patients would be deprived of prompt
treatment. Hence for a small decrease in accuracy if there is an appreciable decrease
in runtime, it could help training using low spec-ed computers in rural areas easier and
in the process make way for more prompt treatment facilities.

5.3.3 Prior study performance comparison

The proposed method’s performance was compared with previous methods in the field
that have also been evaluated on the publicly available and independent Messidor-2
dataset. As stated before, our method achieved an accuracy of 75.3% on this dataset,
which is better than some of the previously published studies.
Both Sanchez et al. [35] and Seoud et al. [36] have proposed a computer-aided diagnosis
system for diabetic retinopathy screening, comparable to the performance of human
experts. Our method outperforms their approaches, both of which utilize non-deep
learning methods.
A deep learning approach using a data-driven grading algorithm has been proposed
by Gargeya et al. [30] has achieved impressive accuracy as well as reliability. Antal
et al. [37] produce even more competitive results by using an ensemble of several
retinal image processing algorithms that even outperform some of the deep learning
approaches.
The previous two approaches perform significantly better than our proposed methods,
but unfortunately none of the previous studies have published performance statistics
that evaluate runtime. Since our intention is to implement the proposed method in
remote or rural areas where quality medical screening is scarce, real-time runtime
performance is absolutely crucial. As we have already demonstrated the reduction of
run-time, we believe that the reasonable accuracy we have achieved is sufficient to
make the proposed method a viable screening tool in deprived locales.

Methods Sanchez et
al. 2011 [35]

Seoud et al.
2016 [36]

Proposed
Method

Gargeya et
al. 2017 [30]

Antal et al.
2014 [37]

Accuracy 59.0% 59.4% 75.3% 88.3% 90.8%

Table 5.6: Comparison of methods on the Messidor-2 dataset
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Figure 5.5: Model Comparison
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Chapter 6

Conclusion

As discussed in this report, many works related to this field have already been done
using deep learning and feature-based learning. But still, there is a scope to further
enhance the techniques to improve efficiency and the complexity of the algorithms.
Further research is necessary to determine the feasibility of applying this algorithm
in the clinical setting and to determine whether use of the algorithm could lead to
improved care and outcomes compared with current ophthalmologic assessment. And
it is also very important that we address this problem at hand fast since the predicted
numbers of people being infected by this disease are increasing everyday.

6.1 Limitation

Although we were able to reduce the runtime of the training process, we only used a
small dataset to come to this conclusion. The Kaggle dataset is sufficiently large, but
it is plagued by nagging problems such as varying resolutions and aspect ratios and
different file types and illumination. Variation in illumination also prevented us from
correctly removing the optical disc in pre-processing steps. Another persistent problem
in all datasets is that the classes are unbalanced, with most of the images being in the
negative class. This problem can be somewhat rectified by augmenting the dataset
via rotation, flipping, etc. but that leads to overfitting of data. Since our method
involves randomly segmenting the dataset, the ratio of run-time to accuracy is not
going to be consistent. In order to justify the usefulness of our method, we also need
to test our proposed method on larger datasets, to see if the run-time minimizations
are substantial. The hardware on which we tested our proposed method also restricted
us from training the network from scratch, which would have fetched better results.
Another complication which may be relevant to our intention of building a screening
tool for rural areas is that forming the dataset requires specialized equipment which
may not be locally available.
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6.2 Future Works

• Hardware permitting, we could try this approach with larger datasets or train
the network from scratch

• Try different neural network models such as RNN (Recurrent Neural Network),
Inceptionv4, ResNet, VGG, etc.

• Augment the dataset to balance the categories while also preventing overfitting

• Perform segmentation to identify the regions of interest before feeding into the
network

• Use an ensemble method by using multiple networks and taking the best result

• Instead of halving the dataset each time, we could divide into even smaller por-
tions to observe which division produces the optimal run-time to accuracy ratio.

• Use different preprocessing steps that increase the accuracy of the model such
as:

– Images could be of different resolution. Enlarging all images to one common
resolution might result in details to be lost. So we need to find optimum
resolution for which the best accuracy is achieved.

– There can be an unbalanced number of images in different classes. So we
need to ensure consistency in the preprocessing step without overfitting.
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