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Abstract

Gene co-expression networks can be used to associate genes of unknown function
with biological processes, to prioritize candidate disease genes or to discern
transcriptional regulatory programmes. With recent advances in transcriptomics
and next-generation sequencing, co-expression networks constructed from RNA
sequencing data also enable the inference of functions and disease associations for
non-coding genes and splice variants. Although gene co-expression networks
typically do not provide information about causality, emerging methods for
differential co-expression analysis are enabling the identification of regulatory
genes underlying various phenotypes. Correlation networks are increasingly being
used in bioinformatics applications. For example, weighted gene co-expression
network analysis is a systems biology method for describing the correlation
patterns among genes across microarray samples. Weighted correlation network
analysis (WGCNA) can be used for finding clusters (modules) of highly correlated
genes, for summarizing such clusters using the module eigengene or an
intramodular hub gene, for relating modules to one another and to external sample
traits (using eigengene network methodology), and for calculating module
membership measures. Correlation networks facilitate network based gene
screening methods that can be used to identify candidate biomarkers or
therapeutic targets. Gene regulatory networks can be used to identify the genes of
cancer affected patients that are responsible for tumor formation. We provide a
method to use weighted gene co-expression network analysis to identify genes that
are responsible for cancer patient based on clinical trait information by cross-
matching with healthy patient genes.



1. Introduction

1.1 Gene Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators
that interact with each other and with other substances in the cell to govern the
gene expression levels of mMRNA and proteins. These play a central role in
morphogenesis, the creation of body structures, which in turn is central to
evolutionary developmental biology.
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Figure: A gene regulatory network to differentiate between Basal Ganglia,
Neocortex and Neural Progenitor cells
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1.2 Lung Cancer

Lung cancer is a type of cancer that begins in the lungs. Your lungs are two spongy
organs in your chest that take in oxygen when you inhale and release carbon
dioxide when you exhale.

Lung cancer is the leading cause of cancer deaths in the United States, among both
men and women. Lung cancer claims more lives each year than do colon, prostate,
ovarian and breast cancers combined.

People who smoke have the greatest risk of lung cancer, though lung cancer can
also occur in people who have never smoked. The risk of lung cancer increases with
the length of time and number of cigarettes you've smoked. If you quit smoking,
even after smoking for many years, you can significantly reduce your chances of
developing lung cancer.

/ Stage 3A Non-Small Cell Lung Cancer /

/ TIN2MO / / TeNaMo / / T3N1MO / / T3N2MOo /

Figure: Lung cancer stage 4.
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1.3 Weighted correlation network

Weighted correlation network, also known as weighted gene co-expression
network (WGCNA), is a widely used data mining method especially for studying
biological networks based on pairwise correlations between variables. While it can
be applied to most high-dimensional data sets, it has been most widely used in
genomic applications. It allows one to define modules (clusters), intramodular
hubs, and network nodes with regard to module membership, to study the
relationships between co-expression modules, and to compare the network
topology of different networks.

The application of complex network modeling to analyze large co-expression data
sets has gained traction during the last decade. In particular, the use of the
weighted gene co-expression network analysis framework has allowed an unbiased
and systems-level investigation of genotype-phenotype relationships in a wide
range of systems
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1.4 Weighted Correlation Network Analysis (WGCNA)

Weighted correlation network analysis (WGCNA) can be used for finding clusters
(modules) of highly correlated genes, for summarizing such clusters using the
module Eigen gene or an intramodular hub gene, for relating modules to one
another and to external sample traits (using Eigen gene network methodology),
and for calculating module membership measures. Correlation networks facilitate
network based gene screening methods that can be used to identify candidate
biomarkers or therapeutic targets. These methods have been successfully applied
in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and
analysis of brain imaging data.

WGCNA has been widely used for analyzing gene expression data (i.e. transcriptional
data), e.g. to find intramodular hub genes.

It is often used as data reduction step in systems genetic applications where modules are
represented by "module Eigen genes". Module Eigen genes can be used to correlate
modules with clinical traits. Eigen gene networks are co-expression networks between
module Eigen genes (i.e. networks whose nodes are modules). WGCNA is widely used in
neuroscientific applications, and for analyzing genomic data including microarray data,
single cell RNA-Seq data. DNA methylation data, miRNA data, peptide counts and
microbiota data (16S rRNA gene sequencing). Other applications include brain imaging
data, e.g. functional MRI data.
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2. Synthesis of GRN

Solving a GRN related to any development process requires knowledge of what
transcription factors and signal molecules are involved in the system, when and
where the genes are expressed, and most importantly, how the regulatory genes
interact with one another. None of these data is simply acquired, and extensive
measurements are typically needed to characterize the temporal and spatial
expression of all relevant regulatory genes, while a huge number of data points is
required to identify the genuine linkages among interacting genes as the activities
of individual genes are alternately removed from the system one by one.

The first step in building a GRN is to identify the regulatory genes involved. When
the complete genome sequence is available, the most comprehensive and arguably
the best solution is a top-down approach, i.e., a genome-wide survey of all
predicted regulatory genes followed by characterization of their spatial and
temporal expression patterns.



3. Problem Domain and Problem Statement

3.1 Challenges & Research Issues

There are some challenges in this problem domain. Those are discussed below —

e The dataset for lung cancer has not been well built and correlation
between data had to be done.

e There was insufficient trait information available for the healthy patients
which caused a data shift in the final result.

e The gene expression data and trait data was in incompatible format.

e The library functions in R “GO.db” packages in the recent update was
flawed to the point that some library functions had to be re-written to
make the code work.



3.2 Problem Statement

To construct a gene regulatory network from Merged Lung Cancer Datasets
To compare cancer patient GRN with healthy patient GRN
Merging multiple existing Lung cancer datasets

Use trait module information to track module of genes responsible for
cancer.

Using the module trait relation finding the genes responsible for lung
cancer.
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4. Existing Methods to Form GRN

There are some existing methods to form GRN. Some of them are given below.

e WGCNA: A tool that constructs a co-expression network using Pearson
correlation (default) or a custom distance measure.

e ARCANE: A tool that removes indirect connections between genes (i.e.
partners of a gene that have a stronger correlation with each other than
with the gene itself), leaving only those connections that are expected to be
regulatory.

e GENIE3: A tool that incorporates TF information to construct a regulatory
network by determining the TF expression pattern that best explains the
expression of each of their target genes.

e Combat: A method that is robust to outliers and also effective at batch
effect correction in small sample sizes (<25).

e Dicer: A method that identifies modules that correlate differently between
sample groups, e.g. modules that form one large interconnected module in
one group compared with several smaller modules in another group.

e DiffCoEx: A method that uses a similar approach to WGCNA to identify and
group differentially co-expressed genes instead of identifying co-expressed
modules.

e Dingo: DINGO is a more recent tool that groups genes based on how
differently they behave in a particular subset of samples (representing e.g.
a particular condition) from the baseline co-expression determined from all
samples

11



HO-GSVD: A tool similar to GSVD, but that can be used across multiple
sample groups rather than only two.

David: A widely used tool with an online web interface. Users supply a list
of genes and select the annotation categories from various sources to
identify enrichment.

g:Profiler: A tool that performs enrichment analyses for gene ontologies,
KEGG pathways, protein— protein interactions, TF and miRNA binding sites.
GIANT: Tissue-specific interaction network database. Includes 987 Datasets
encompassing 38 000 conditions describing 144 tissues types.

12



5. Literature Review

Title: E-MTAB-6043 - A microarray meta-dataset of non-small cell lung cancer

Conference: European Bioinformatics Institute 23 March 2018

e 41 different types of methods are described

e Comparison between different kinds of existing methods and enlisting
features

e Creating a benchmark for module creation methods

e Popular methods such as WGCNA, Dicer, DiffCoEx, GSCNA are described
with benefits.
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Title: WGCNA: An R package for weighted correlation network analysis

Article: bmcbioinformatics 29 December 2008

e Analysis of the WGCNA package and helpful R function related to it.

e Sample construction of Mouse Liver gene expression data and
comparison of it.

e Describes the ins and outs of the Weighted gene co-expression
analysis method.
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Title: WGCNA: An R package for weighted correlation network analysis
Article: bmcbioinformatics 29 December 2008

* Analysis of the WGCNA package and helpful R function related to it.

* Sample construction of Mouse Liver gene expression data and comparison
of it.

* Describes the ins and outs of the Weighted gene co-expression analysis
method.
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Title: A merged lung cancer transcriptome dataset for clinical predictive modeling

Article: nature.com, 24 July 2018

* 17 different datasets merged into different cluster of datasets
* Forms world’s largest (till date) lung cancer dataset information
* Published and updated from 2009 till date.
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6. Datasets
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Figure: Gene-expression dataset
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7. Research Challenges

Three were several challenges that occurred during the execution of the idea for
finding the culprit genes that caused the spur of cancer tumors. The method
selected was to follow a weighted gene regulatory network analysis approach. lon
the proposed method the R studio was used to operate on the gathered datasets.

1. The dataset formed for the execution of the data had not been well built and
thus it the retrieved data from the internet could not been used directly to
process.

2. Hence the dataset had to be trimmed and formatted to the point that
co-relation could be possible.

3. The trait information for healthy patients was not sufficient. Therefore, a shift
in the final data could have affected the results a bit.

4. The gene expression data and trait data was in incompatible format.

5. The library functions in R “GO.db” packages in the recent update was flawed to
the point that some library functions had to be re-written to make the code
work.
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8. Relative Research Extension

8.1 Integrating Gene Regulatory Networks to identify cancer-specific
genes

When an organism is subjected to a different condition either internal or external
to it (environmental changes, stress, cancer, etc.), its underlying mechanisms
undergo some changes. To build robust and reliable Gene Regulatory Networks
(GRNs) from microarrays, it is necessary to integrate multiple data collected from
other researches. To identify links in common among a set of independent studies,
researchers apply consensus networks analysis. For example, a clustering
technique can be applied and coupled with a statistically based gene functional
analysis for the identification of novel genes. Again, group genes that perform
similar functions into ‘modules’ and then build networks of these modules to
identify mechanisms at a more general (higher) level. More recently, a similar
approach was applied to a large number of cancer datasets where case and control
are compared. For each dataset, the pairwise correlation of gene expression profile
is computed and a frequency table is built. Then the values in the table are used to
build a weighted gene co-expression frequency network. After this they identify
sub-networks with similar members and iteratively merge them together to
generate the final network for both cancer and healthy tissue.
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8.2 Weighted Frequent Gene Co-Expression Network Mining to ldentify
Genes Involved in Genome Stability

Distinct types of human cancer share similar traits, including rapid cell proliferation,
loss of cell identity, and the ability to migrate and seed malignant tumors in distal
locations. Understanding these common traits and identifying the underlying
genes/networks are key to gaining insight into cancer physiology, and, ultimately,
to prevent and cure cancer. With cancer gene expression microarray datasets
increasingly accumulated in central repositories, many bioinformatics data analysis
methods have been developed to identify cancer related genes, characterize
cancer subtypes and discover gene signatures for prognosis and treatment
prediction. As an example, in breast cancer research, a supervised approach was
adopted to select 70 genes as biomarkers for breast cancer prognosis and was
successfully tested in clinical settings. However, a major drawback of such an
approach is that the selected gene features are usually not functionally related and
hence, cannot reveal key biological mechanisms and processes behind different
patient groups.

In order to overcome this hurdle to identify functionally related genes associated
with disease development and prognosis, several approaches have been adopted.
One such approach is gene co-expression analysis, which identifies groups of genes
that are highly correlated in expression levels across multiple samples. The metric
to measure the correlation is usually the correlation coefficient (e.g., Pearson
correlation coefficient or PCC) between expression profiles of two genes. Using this
approach, we were able to identify new gene functions in regulating cell mitosis in
breast cancer by studying genes that have high correlation with the expression of
the DNA repair protein, BRCAL.
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By applying an advanced network mining algorithm, dense modules of highly co-
expressed genes can be identified which can lead to the discovery of new gene
functions, disease genes and biomarkers. For example, Horvath's group has
developed a series of weighted gene co-expression network analyses using a
hierarchical clustering based approach [6], [10], [12]- [15]. This method was
applied to identify disease-associated genes such as ASPM in glioblastoma.
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8.3 Gene expression profiling predicts clinical outcome of breast cancer

Breast cancer patients with the same stage of disease can have markedly different
treatment responses and overall outcome. The strongest predictors for metastases
(for example, lymph node status and histological grade) fail to classify accurately
breast tumors according to their clinical behavior. Chemotherapy or hormonal
therapy reduces the risk of distant metastases by approximately one-third;
however, 70-80% of patients receiving this treatment would have survived without
it. None of the signatures of breast cancer gene expression reported to date allow
for patient-tailored therapy strategies. Here we used DNA microarray analysis on
primary breast tumors of 117 young patients, and applied supervised classification
to identify a gene expression signature strongly predictive of a short interval to
distant metastases ('poor prognosis' signature) in patients without tumor cells in
local lymph nodes at diagnosis (lymph node negative). In addition, we established
a signature that identifies tumors of BRCA1 carriers. The poor prognosis signature
consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This
gene expression profile will outperform all currently used clinical parameters in
predicting disease outcome. Our findings provide a strategy to select patients who
would benefit from adjuvant therapy.
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8.4 Computational methods to dissect gene regulatory networks in cancer

Cancer is a disease of gene dysregulation, where cells acquire genetic alterations
that drive aberrant signaling. These alterations adversely impact transcriptional
programs and cause profound changes in gene expression. Large international
consortia have generated massive tumor profiling data sets across many cancer
types, collecting mutation and copy number variation, mRNA expression, and in
some cases epigenomic and proteomic profiles. An overarching goal of these
tumor-profiling efforts is to identify genes that are essential drivers of cellular
processes in cancer. Here we review diverse computational methodologies that
have sought to interpret somatic alterations and gene expression data through
models of gene regulatory networks.
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8.5 The gene regulatory network for breast cancer: integrated regulatory
landscape of cancer hallmarks

In this study, we infer the breast cancer gene regulatory network from gene
expression data. This network is obtained from the application of the BC3Net
inference algorithm to a large-scale gene expression data set consisting of 351
patient samples. In order to elucidate the functional relevance of the inferred
network, we are performing a Gene Ontology (GO) analysis for its structural
components. Our analysis reveals that most significant GO-terms we find for the
breast cancer network represent functional modules of biological processes that
are described by known cancer hallmarks, including translation, immune response,
cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and
response to wounding. Furthermore, by using a curated list of census cancer genes,
we find enrichment in these functional modules. Finally, we study cooperative
effects of chromosomes based on information of interacting genes in the breast
cancer network. We find that chromosome 21 is most coactive with other
chromosomes. To our knowledge this is the first study investigating the genome-
scale breast cancer network.
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9. Our Proposal

The idea behind our work is to form a database for lung cancer with information
gathered from open information and use that information to correlate the datasets
so that we can use a weighted gene regulatory network analysis method to find the
module and from the modules the genes responsible for cancer formation.
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10. Details

The datasets gathered from multiple open sources was first converted to csv
(comma separated value) format. Then the datasets were cross-matched using the
R language.

To merge the datasets and do cross-matching among them so that information that
can be correlated can be filtered out from it. Afterwards the filtered information
will be used to correlate the datasets.

The correlation will be done using a weighted gene co-expression network analysis
method that has been redesigned to fit the dataset created. From WGCNA the
necessary modules will be separated from which finally the genes responsible will
be found.
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11. Experiment

The data gathered has been in tab delimited value format, excel sheet format
comma delimited value format and there were a bunch other formats as well all
those data had to be converted into a comma separated value format which helped
the access of data using R. Afterwards some library functions started to
malfunction. The root of the cause was identified as a system error in the WGCNA
package for R which contained the “Go.db” and the “org.Hs.eg.db” databases. The
version of R used in the time of experimentation was 3.5.1 for which apparently
the WGCNA package was not updated yet. Therefore, core library functions had to
be built again. Afterwards when the formatting of the data was done and the library
rebuilt as well, the correlation began. To do the correlation the weighted gene
correlation method had been redesigned to perform operation on the dataset
designed. There were layered result as the code had been done in the similar
fashion the results were analyzed to identify the necessary modules and from the
modules the culprit modules which gave the culprit genes as the vastly connected
genes in the identified module.

29



12. Results
Hierarchical clustering of gene-expression data of cancer affected patients

Figure
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The hierarchical clustering had been used to identify if any pruning of genes had to
be done and if so where should it be. All genes under the projected red line had
been used in this case to perform operation to correlate.

Height
0.7 0.8 0.9 1.0
| |

0.6

[Es]
f=1

= _
=

Dynamic Tree Cut

Merged dynamic

Cluster Dendrogram

5 _'T‘q-
1

I

Figure: The hierarchical cluster-tree
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After pruning a new tree is generated, divided the clusters and separated them by
creating modules and assigning different colors to it. Afterwards these modules are
compared with the trait information available as the trait data for patients.
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Figure: Module-Trait relationships

The module-trait relationship shows which module has what kind of concentration
at different traits. Traits are mapped for both cancer-affected patients and healthy
patients. Later the module-trait relation of the cancer-affected patients are
matched with the module-trait relation of the healthy patients.
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Figure: The heatmap made using the module-trait relationship of the cancer
affected patients

The heatmap correlates between the modules and show an inter-modular
relationship between them which helps to build a gene regulatory network of the
concerned genes. Here the concentration along the diagonal is high due to the
modules being absolutely the same. Which is why the upper triangular matrix is
where we put our focus in.
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Figure: The gene regulatory network formed using the data from cancer affected
patients.

There is a similar set of decisional results developed for the healthy patients as well.
The correlation among them has been done using the module-trait relation
between the two kinds of datasets. The reason being to identify cancer affected

patients by their traits. So that, in the future lung cancer patients can be detected
using their traits.
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A consensus module has been built that correlates the data between the module-
trait relationship between the healthy and cancer affected patients. Afterwards the
cancer-affected patient’s module-trait data has been cross-matched with the data
consensus module-trait data to find the most affected region.

o o o o o of@o o o o 1 0o 1 0 0 1 15

o o o o o o o offiwe 1+ o 3 5 3 2 o 1 >

o o[es 26 3 0o 2 5 19 3 11 23 10 11 1 [ vs
o 0 3 2 0 0 0 1 2 13 1 0 0 1 1 1 6

0O 0 2 2 3 0 0 0 4 0 0 0 0 0 0 1 1 40

o 0 0 0 1 0 0 2 0 0 0 o 0 o0 3

o 2 0 1 1 0 0 25 0 1 2 9 12 4 4 0 9

o 0 3 0 0 0 0 2 0 0 0 1 4 31 14| 4

o 2 4 0 1 0 0 2 16 3 0 9 3 7 2 2 2

o s 4 2 1 o 1 0 0o 0 0o 0 1 1 3 5 3

©o 0 1 0 0 0 0 0 0 0 0 0O 0 0 0 0 0

B o o o o o 0o 0o o 1 0 1 0 0 o o o 36||[%

o 0 0 0 0 0O O 0 1 0 0 0 0 0 0 1 0

0 0 2 00 0 1 0 3 0 0 3 2 0 36 22 8
o o o ©o 0 0 0 0 0 0 3 0 2 0 0 4 0/]|F10

o 0 o 0o 0 0 2 3 2 5 1 0 1 3 4 0

0o 0 0 0 ©o 0 0 0 0 0 0 0 0 0 0 1
B o o o o o o o o o 3o o 1 0o 0o o 1 L

0o 0 0 0 0 0 0 8 0 0 1 1 o o 2 o [El

0
L - IS

Figure: Relation between module-trait relationship of cancer-affected patients

and consensus module

From the above module-trait relationship diagram of consensus module
relationship between cancer affected patients to healthy patients to cancer
affected patients
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13. Result Analysis

The relationship of cancer affected patient to the consensus module trait shows
the module that contains the genes that are responsible for the formation of lung
cancer. Later a gene regulatory network is formed using the weighted gene co-
expression network analysis method to find out the most connected or hub genes.
These genes are identified as the culprit genes responsible for the cancer
formation. There are some previously identified genes responsible for lung cancer.
The genes found from this approach are later compared with the genes that are
previously believed to be true. There are some similarities between the two sets.
Dissimilarities exist too. However, the similarity between the proven to be guilty
genes and the genes identified by this approach suggests that this approach works.
Although the percentage of efficiency is yet to be calculated as there exists no
benchmark list that claims to have identified all the genes responsible for lung
cancer.
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14. Conclusion

We have developed a tool that aims to identify unique sub-networks and genes
based upon a number of related studies. We explore networks and genes that are
robust and unique to a pre-selected number of studies. We support our results
using prediction accuracy and a score to test the significance of identifying a subset
of unique genes. Furthermore, we created an application interface which allows
the user to combine different studies. Based on the findings we conclude that our
research is a robust and reliable method to analyze sets of data from lung cancer.
It detects the harmful genes responsible for lung cancer that could be potential
targets for further research.
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